

SPRING 2018 SEMI-ANNUAL GROUNDWATER MONITORING REPORT OLD MIDLAND PRODUCTS SUPERFUND SITE OLA, ARKANSAS

EPA ID: ARD980745665

AFIN: 75-00049

SPRING 2018 SEMI-ANNUAL GROUNDWATER MONITORING REPORT OLD MIDLAND PRODUCTS SUPERFUND SITE OLA, ARKANSAS

EPA ID: ARD980745665 AFIN: 75-00049

Prepared for

Arkansas Department of Environmental Quality
Office of Land Resources
Groundwater Branch
5301 Northshore Drive
North Little Rock, AR 72118

Prepared by

FTN Associates, Ltd. 124 West Sunbridge Drive. Suite 3 Fayetteville, AR 72703

FTN No. R03013-0020-032

PROFESSIONAL GEOLOGIST'S CERTIFICATION

This Groundwater Monitoring Report was prepared under the direction and supervision of a qualified, Arkansas-registered Professional Geologist. Mr. Curtis Nunn, PG, of FTN Associates, Ltd. (FTN), was responsible for the overall preparation of the report.

Curtis Nunn, PG #1873

5 SPP 2018

Date

TABLE OF CONTENTS

PROI	FESSIO	NAL G	EOLOGIST'S CERTIFICATION	i								
1.0	EXE	CUTIVE	SUMMARY	1-1								
2.0	SITE	2-1										
	2.1	Site L	ocation	2-1								
	2.2	Site History										
		2.2.1	Operational History	2-1								
		2.2.2	Past Environmental Regulatory Involvement	2-1								
	2.3	Enviro	onmental Setting	2-3								
		2.3.1	Topography and Surface Water Conditions	2-3								
		2.3.2	Regional Physiography and Geology	2-3								
		2.3.3	Site-Specific Hydrogeologic Conditions	2-4								
3.0	GRO	UNDWA	ATER MONITORING PROGRAM	3-1								
	3.1	Groun	ndwater Monitoring Network	3-1								
	3.2	3.2 Sampling Methodology										
	3.3	3-3										
	3.4	Invest	igation Derived Waste (IDW) Management	3-4								
4.0	WAT	ER LEV	VEL DATA	4-1								
	4.1	Water	Level and NAPL Measurements	4-1								
	4.2	Groun	ndwater Flow Direction	4-1								
	4.3	Hydra	ulic Gradient and Rate of Groundwater Flow	4-3								
5.0	DAT	A VALI	DATION	5-1								
	5.1	Revie	w of Field Documentation	5-1								
	5.2	Revie	w of Laboratory Reports	5-3								
		5.2.1	Analytical Procedures	5-3								
		5.2.2	General Data Review	5-3								
		5.2.3	Laboratory QC Samples	5-4								
		5.2.4	Field QC Samples	5-5								
6.0	GRO	UNDWA	ATER QUALITY EVALUATION	6-1								

TABLE OF CONTENTS (CONTINUED)

	. 1	ъ.	11 1 1	- 0
	6.1		chlorophenol	
	6.2	yclic Aromatic Hydrocarbons	6-4	
	6.3	Carba	zole	6-4
	6.4	Other	SVOCs	6-5
7.0	INDIC	CATION	NS OF NATURAL ATTENUATION	7-1
	7.1	Gener	7-1	
		7.1.1	pH	7-3
		7.1.2	ORP	7-3
		7.1.3	DO	7-4
		7.1.4	TOC	7-4
	7.2	Groun	ndwater Geochemistry Changes	7-4
		7.2.1	Nitrate	7-5
		7.2.2	Manganese	7-5
		7.2.3	Ferric Iron	7-5
		7.2.4	Sulfate	7-6
	7.3	Degra	dation By-Products	7-6
		7.3.1	PCP Daughter Products	7-6
		7.3.2	Chloride	7-7
		7.3.3	Alkalinity	7-7
		7.3.4	Ferrous Iron	7-7
	7.4	Trend	s in Contaminant Concentrations	7-8
		7.4.1	PCP Concentration Trends	7-8
		7.4.2	PAH Concentration Trends	7-9
8.0	MAIN	ITENA	NCE TASKS	8-1
9.0	SUM	MARY.	AND CONCLUSIONS	9-1
10.0	RECO	OMMEN	NDATIONS	10-1
11.0	SELE	CTED I	REFERENCES	11-1

TABLE OF CONTENTS (CONTINUED)

LIST OF APPENDICES

APPENDIX A: Field Sampling Documentation

APPENDIX B: Laboratory Data Reports

APPENDIX C: IDW Waste Manifest

APPENDIX D: Historical Water Level and NAPL Data

APPENDIX E: Historical Analytical Data

LIST OF TABLES

Table 3.1 Table 3.2	OMP Superfund site, construction data for monitoring wells in the groundwater monitoring network	3-2
Table 4.1	NAPL and groundwater elevation data, OMP, spring 2018	4-2
Table 6.1 Table 6.2	OMP Superfund site, cleanup goals, USEPA (2006)	
	OMP Superfund site, spring 2018	6-3
Table 7.1	Summary of MNA parameters, OMP Superfund site, spring 2018	7-2
F' 2.1		2.6
Figure 2.1 Figure 2.2	Location map, OMP Superfund site Monitoring well location map, OMP Superfund site	
· ·		
Figure 4.1	Potentiometric surface maps, OMP Superfund site, April 23, 2018	
Figure 6.1 Figure 6.2	PCP concentration and temperature fluctuation pattern correlation in PAHs and PCP in groundwater exceeding cleanup levels	
Figure 6.3	Acenaphthene distribution in unweathered shale	
Figure 7.1	Time series graph for PCP in MW-3S.	7-10
Figure 7.2	Time series graphs for MW-3D	
Figure 7.3	Time series graphs for RW-1	7-12

1.0 EXECUTIVE SUMMARY

The Old Midland Products (OMP) Superfund site is a 38-acre tract of land located near Ola, Arkansas. Prior to 1980, creosote and pentachlorophenol (PCP) were used in wood treatment operations at this site. Consequently, site groundwater has been impacted by polycyclic aromatic hydrocarbons (PAHs), which are common constituents in creosote and PCP. Site remediation initially included pumping and treatment of impacted groundwater, which occurred between January 1994 and August 2006. In August 2006 an Amended Record of Decision (ROD) issued by the United States Environmental Protection Agency (USEPA) in February 2006, went into effect changing the groundwater remediation method to Monitored Natural Attenuation (MNA). The goal of the MNA program is to ensure there is no significant movement of the groundwater plume and that contaminants do not migrate beyond the boundary of the Technical Impracticability (TI) Zone. The Arkansas Department of Environmental Quality (ADEQ) has been monitoring the site since May 2009. FTN Associates, Ltd., (FTN) conducted spring 2018 groundwater sampling on behalf of ADEQ during the week of April 23, 2018. This report presents the findings from this semi-annual monitoring event.

PCP was detected at only one well location, MW-3S, at 799 μg/L, which exceeds the cleanup level of 1 μg/L. In addition, cleanup levels for four PAH compounds were reported at concentrations exceeding cleanup levels: naphthalene, benzo[a]anthracene, benzo[k]fluoranthene, and benzo[a]pyrene. Non-Aqueous Phase Liquid (NAPL) was observed in monitoring well MW-3D and recovery wells RW-1 and RW-7, indicating source material is present at the site. Except for notable detections in MW-3S, MW-3D, and RW-1, occurrences and concentrations of site contaminants are generally fewer and reduced or stable as compared to previous monitoring events. No site-related contaminants were detected in monitoring wells located downgradient from the TI Zone.

The primary mechanisms for natural attenuation of PCP and PAHs are adsorption and biodegradation. There are secondary lines of evidence that suggest biodegradation of PAHs and PCP is occurring at the site: groundwater data for pH, DO, and ORP generally indicate favorable groundwater conditions for natural attenuation, there is evidence that electron donors are being

depleted, degradation by-products are present, and decreasing trends for some constituents of concern indicate natural attenuation is occurring in the TI Zone at the site. These observations are generally consistent with those of previous monitoring events.

The groundwater monitoring program at OMP is intended to ensure that contaminants are not migrating beyond the TI Zone at concentrations above cleanup goals. As discussed in previous site reports, fractured bedrock presents a very complicated hydrogeologic setting in which to monitor contaminant movement and natural attenuation processes, as migration is affected by fracture geometry in addition to hydraulic gradients. During the current monitoring event, PCP and PAHs were not observed in monitoring wells downgradient from the TI Zone; nonetheless, site conditions prevent stating with certainty that contamination is contained within the TI Zone.

ADEQ personnel visited the site on April 26, 2018, to observe groundwater monitoring activities. No operations and maintenance (O&M) tasks were requested or completed for the current monitoring period.

2.0 SITE DESCRIPTION

2.1 Site Location

The OMP Superfund site is located approximately 1.2 miles southeast of Ola, Arkansas, off Highway 10 in Yell County. The entrance to the site is located at 35.023914 degrees latitude and -93.203684 degrees longitude. The site consists of approximately 38 acres of mostly undeveloped land with east-west right-of-way access for the Little Rock and Western Railway through the northern portion of the property. The OMP property formerly contained saw mills, a wood preserving treatment plant, waste storage lagoons, and water treatment settling lagoons. Figure 2.1 shows the location of the site.

2.2 Site History

2.2.1 Operational History

OMP operated a wood preserving plant and sawmill from approximately 1969 to 1979; however, historical imagery indicates a saw mill was operational at the site as early as 1960 (USEPA 2013). Wood preservation operations included treating wood with creosote and PCP. Effluent from the treatment process was discharged into lagoons. These lagoons frequently overflowed, draining to the on-site intermittent stream. Seepage from these unlined lagoons resulted in contamination of the shallow groundwater on site with NAPLs and associated dissolved organic constituents, primarily PCP and PAHs.

2.2.2 Past Environmental Regulatory Involvement

Between 1981 and 1988, ADEQ and the EPA conducted a series of inspections and determined that shallow groundwater in the area of the treatment lagoons was extensively contaminated with NAPLs, and overflow from the lagoons resulted in contamination of sediments and surface water in the on-site intermittent stream. In June 1986, the EPA added the OMP site to the National Priority List (NPL), and a Remedial Investigation/Feasibility Study (RI/FS) was initiated soon after. The RI/FS study found that PCP and PAH contamination was ubiquitous in surface and subsurface soils, surface water and sediments, groundwater, and fluids

in the lagoons. NAPL was identified in shallow groundwater at a depth of 20 ft below ground surface (bgs), and the volume of contaminated groundwater was estimated at 450,000 gallons. The human health risk assessment for the site concluded that the OMP site represented a risk to public health and the environment (USEPA 2006).

Site remediation activities designated in the 1988 ROD to address contamination source control included excavation and on-site incineration of contaminated soil, sediment, sludge, and extraction and treatment of contaminated groundwater. Soil, sediment, and sludge with PCP concentrations greater than 1 mg/kg were excavated and incinerated. Depths of excavation ranged from 0.7 ft bgs to 22.5 ft bgs. Remediated soil from the incineration process was backfilled in soil excavation areas and covered with clay and topsoil. Groundwater recovery wells were installed within the footprint of the excavated soil and remediated soil disposal area.

Groundwater pump and treat operations began in January 1994. The operation was shut down for a 20-month period beginning in January 1999, but contamination rebound occurred. The system was restarted in September 2000 and operated until August 2006 when the Amended ROD took effect (ADEQ 2011a). EPA issued the Amended ROD due to the pump and treat system's inability to remediate the aquifer to drinking water standards, the continued presence of both dense NAPLs (DNAPLs) and light NAPLs (LNAPLs), the complex site hydrogeology, and the length of time it would take to achieve the remedial goals (ADEQ 2011a). The Amended ROD (USEPA 2006) included a TI waiver for the area with the most contaminated groundwater and changed the groundwater remediation method to MNA with institutional controls to prevent use of contaminated groundwater. The MNA remedy required implementation of a groundwater monitoring program to ensure that there is no significant movement of the groundwater plume and that the contaminants are not migrating at concentrations above the cleanup goals beyond the TI Zone, which is the NAPL source area and surrounding monitoring wells (USEPA 2006). Figure 2.2 shows the TI Zone and groundwater monitoring network, including nearby residential wells. ADEQ has conducted semi-annual groundwater monitoring at the site since May of 2009. On March 22, 2017, ADEQ requested approval of a modification to the site O&M plan from the USEPA to discontinue sampling of the Barnes residential well. Approval was granted and the well has not been sampled since October 2016.

2.3 Environmental Setting

2.3.1 Topography and Surface Water Conditions

The OMP site is relatively flat with ground surface elevations between approximately 340 to 360 ft North American Vertical Datum of 1988 (NAVD88) (2017 USGS topographic quadrangle for Ola, Arkansas). Runoff from the site flows northwest to an intermittent stream, which flows northeast into Keeland Creek, located within the Petit Jean Wildlife Management Area.

2.3.2 Regional Physiography and Geology

The OMP site is located in the frontal Ouachita Mountains and closely borders the Arkansas Valley physiographic province. The Ouachita Mountains region consists of a series of generally east-west ridges and valleys formed by complex folds and thrust faults. North of the Ouachita Mountains, the Arkansas Valley forms a low-lying plain with low east-west ridges. Although much of the Arkansas Valley is only 300 to 600 ft above (mean sea level) MSL, the elevations of several ridges range from 1,000 ft MSL to more than 2,000 ft MSL. The site appears to be underlain primarily by the Pennsylvanian-aged Atoka Formation. McFarland (2004) describes the Atoka Formation as follows:

ATOKA FORMATION

Age: Pennsylvanian Period, Atokan Series.

Distribution: In Arkansas the Boston Mountains, Arkansas River Valley, and Ouachita Mountains; eastern Oklahoma, eastern New Mexico, and central and western Texas.

Geology: The Atoka Formation is a sequence of marine, mostly tan to gray silty sandstones and grayish-black shales. Some rare calcareous beds and siliceous shales are known. This unit has the largest areal extent of any of the Paleozoic formations in the state. It is the surface rock of the Boston Mountains and dominates the exposures in the Arkansas River Valley and the frontal Ouachita Mountains. It is also present in the southern part of the Ouachita Mountains. In the Arkansas River Valley and the frontal Ouachita Mountains, the Atoka Formation has been subdivided into upper, middle, and lower lithic members based on regionally mappable shale or sandstone intervals. The unit locally contains discontinuous

streaks of coal and coaly shale in the Boston Mountains and Arkansas River Valley. Fossil plants are common throughout the section but are generally poorly preserved. Poorly preserved invertebrate fossils are much less common and are found at several horizons. Trace fossils are relatively common in the Atoka Formation. The formation is conformable with the Bloyd Shale in the Boston Mountains and with the Johns Valley Shale in the Ouachita Mountains. The unit may be up to 25,000 feet in thickness in the Ouachita Mountains, although only large incomplete sections are known.

Original reference: J. A. Taff and G. I. Adams, 1900, U. S. Geol. Survey 21st Ann. Rept., pt. 2, p. 273.

Type locality: Named for Atoka, Atoka County, Oklahoma.

In the Ouachita Mountains physiographic province, the Atoka Formation is subdivided into upper, middle, and lower lithic members based on regionally mappable shale and sandstone intervals. The middle Atoka Formation outcrops in the area of the site and is described as a complexly folded gray-black shale ranging in thickness from 4,100 ft to over 6,200 ft, with three thick brown, micaceous, fine to medium grained sandstone intervals in the upper portion of the sequence (Haley, et al 2006).

In Yell County, Arkansas, the shale and sandstones of the Atoka Formation are part of the Ouachita Mountains aquifer (Kresse, et al., 2014). These low permeability rocks yield little water. As a result, limited quantities of groundwater are used only for domestic and non-irrigation uses. Fracture zones and bedding planes can function as high permeability conduits for groundwater flow in this aquifer.

2.3.3 Site-Specific Hydrogeologic Conditions

Based on a review of available boring logs, soils at the OMP site consist primarily of unconsolidated silty clay, which is approximately 6 ft to 21 ft thick. There is commonly a 0.5 ft to 1.5 ft layer with iron nodules at the base of the silty clay, which overlies highly fractured weathered shale. With depth, the shale becomes less weathered and contains fewer fractures. Shale generally impedes groundwater movement, except where open joints and fractures are present. Site boring logs indicate that the top of competent shale slopes to the northwest.

Historically, the aquifer at the OMP site has been divided into a shallow zone named the "Weathered Shale" and a deep zone named the "Unweathered Shale" (USEPA 2006). The upper

water bearing unit at the OMP site is within fractures and joint openings of the weathered shale, and to a lesser extent, underlying unweathered shale (USEPA 2006). The upper silty clay acts as a local confining unit. The weathered shale varies in thickness from 10 ft to 25 ft, is highly fractured, and has low strength. The unweathered shale directly underlies the weathered shale, is more competent, and is characterized by fewer fracture zones. According to past site investigations, shallow groundwater occurs in a 3-ft to 5-ft zone within the weathered shale at depths of 15 ft bgs to 20 ft bgs, in addition to occurring within the fracture zones of the underlying unweathered shale. On occasion, artesian conditions have been noted in the southwest portion of the site (USEPA 1988).

A literature review by FTN (2014a) identified a thrust fault bisecting the site striking northeast within the middle Atoka Formation. To date, there is no evidence that this fault provides a preferred migration pathway for site contaminants.

Figure 2.1 Location map, OMP Superfund site.

Figure 2.2 Monitoring well location map, OMP Superfund site.

3.0 GROUNDWATER MONITORING PROGRAM

3.1 Groundwater Monitoring Network

The current monitoring well network consists of 26 monitoring wells, eight recovery wells, twelve piezometers, and one private domestic well shown on Figure 2.2. Table 3.1 summarizes available information for well construction details.

Fourteen of the 26 monitoring wells and seven of the twelve piezometers are completed in the weathered shale. Wells within the weathered shale monitor the shallow portion of the aquifer and are identified with an "S" at the end of the installation name. These wells and piezometers are screened within portions of the interval occurring from 359 ft to 323 ft NAVD88, at depths less than 20 ft bgs.

Twelve monitoring wells and five piezometers are installed in the unweathered shale portion of the aquifer. Deep well installations range in total depth from approximately 35 ft bgs to 50 ft bgs and are screened within portions of the interval occurring from 337 ft to 298 ft NAVD88. Except for monitoring well MW-23, deep wells are identified with a "D" at the end of the installation name.

Recovery wells (RW-1 through RW-8) are screened across both the weathered and unweathered portions of the aquifer from approximately 341 ft to 313 ft elevation (NAVD88).

All but four monitoring wells are located within the TI Zone. Three of these wells are located upgradient of the TI Zone (MW-1S, MW-1D, and MW-12S), and one well is located downgradient of the TI Zone (MW-5S). One private domestic well is located off site, outside and downgradient from the TI Zone.

3.2 Sampling Methodology

FTN conducted groundwater sampling in accordance with EPA guidelines and the facility's Operations and Maintenance Procedures Plan (ADEQ 2011b). Sampling was conducted April 23-26, 2018. Depths to static water level in monitoring wells, recovery wells, and piezometers were gauged prior to purging and sampling. Gauging methodology is described in Section 4.1.

Table 3.1. OMP Superfund site, construction data for monitoring wells in the groundwater monitoring network.

	Installation	Northing (ft AR State	Easting (ft AR State	TOC Elevation	Total Depth	Screen Interval	Approximate Screen	
Installation ID	Date 1	Plane North NAD83) ²	Plane North NAD83) ²	(ft NAVD88) ²	(ft below TOC) ³	(ft bgs) 1,4	Elevation Interval (ft NAVD88)	Water-Bearing Zone
		111250)	1,112,00)	N	Ionitoring W	ells		
MW-1S		253670.42	951863.17	359.13	19.2	10 to 15	349.1 to 344.1	Weathered Shale
MW-3S		254001.88	951582.10	351.03	24.1	15 to 20	336.0 to 331.0	Weathered Shale
MW-5S	10/13/1986	254632.41	951655.92	341.95	20.6	12 to 17	330.0 to 325.0	Weathered Shale
MW-8S	10/21/1986	254285.91	951748.87	347.22	22.4	7.5 to 17.5	339.7 to 329.7	Weathered Shale
MW-9S	10/18/1986	254079.15	951459.50	348.52	20.3	5 to 20	343.5 to 328.5	Weathered Shale
MW-10S	10/19/1986	254275.16	951558.16	343.02	20.4	5 to 20	338.0 to 323.0	Weathered Shale
MW-12S	11/1/1986	253761.11	951400.42	354.92	24.9	10 to 20	344.9 to 334.9	Weathered Shale
MW-16S		254072.24	951755.13	353.71	30.0	10 to 20	343.7 to 333.7	Weathered Shale
MW-17S		253890.36	951626.76	351.27	25.5	10 to 20	341.3 to 331.3	Weathered Shale
MW-18S		253968.69	951474.29	349.88	26.5	10 to 20	339.9 to 329.9	Weathered Shale
MW-19S		254097.88	951597.03	350.75	26.9	10 to 20	340.8 to 330.8	Weathered Shale
MW-20S		254114.70	951685.34	352.27	31.3	10 to 20	342.3 to 332.3	Weathered Shale
MW-21S	9/23/2006	254213.13	951406.72	347.04	27.1	14.7 to 24.7	332.3 to 322.3	Weathered Shale
MW-22S	9/24/2013	254183.09	951622.85	350.57	27.1	14.7 to 24.7	335.9 to 325.9	Weathered Shale
MW-1D		253675.19	951864.85	358.66	44.0	36 to 41	322.7 to 317.7	Unweathered Shale
MW-3D		254009.27	951583.70	350.43	38.7	25 to 35	325.4 to 315.4	Unweathered Shale
MW-8D	10/28/1986	254279.40	951748.92	348.48	44.3	27.5 to 37.5	321.0 to 311.0	Unweathered Shale
MW-9D	10/18/1986	254074.28	951463.24	349.18	42.8	27.5 to 37.5	321.7 to 311.7	Unweathered Shale
MW-10D	10/20/1986	254278.85	951552.77	343.57	37.3	25.5 to 35.5	318.1 to 308.1	Unweathered Shale
MW-16D	9/24/2006	254074.17	951750.36	353.32	42.1	30 to 40	323.3 to 313.3	Unweathered Shale
MW-18D		253957.57	951472.79	350.29	39.6	25 to 35	325.3 to 315.3	Unweathered Shale
MW-19D		254084.23	951594.01	351.05	39.9	25 to 35	326.1 to 316.1	Unweathered Shale
MW-20D		254104.10	951683.59	352.45	39.2	25 to 35	327.5 to 317.5	Unweathered Shale
MW-21D	9/21/2006	254218.02	951406.55	346.95	40.9	34.9 to 44.9	312.1 to 302.1	Unweathered Shale
MW-22D	9/23/2006	254185.66	951616.89	350.28	42.1	30.3 to 40.3	320.0 to 310.0	Unweathered Shale
MW-23	9/20/2006	254281.48	951646.64	348.75	53.4	39.9 to 49.9	308.9 to 298.9	Unweathered Shale
					Piezometers			
P-2S	9/30/1986	253577.47	952255.23	360.47	22.9	15 to 20	345.5 to 340.5	Weathered Shale
P-3S	10/14/1986	254073.34	952185.64	349.88	20.8	12.5 to 17.5	337.4 to 332.4	Weathered Shale
P-4S	10/3/1986	254467.75	951450.13	345.34	20.0	12.5 to 17.5	332.8 to 327.8	Weathered Shale
P-5S	10/15/1986	253751.30	951401.75	352.89	21.3	12.5 to 17.5	340.4 to 335.4	Weathered Shale
P-6S	10/1/1986	254087.52	951402.69	349.09	20.0	12.5 to 17.5	336.6 to 331.6	Weathered Shale
P-7S	11/1/1986	253771.70	951384.70	354.46	23.4	8 to 18	346.5 to 336.5	Weathered Shale
P-8S	11/2/1986	253782.64	951369.35	354.14	23.5	8 to 18	346.1 to 336.1	Weathered Shale
P-2D	10/1/1986	253582.07	952254.78	360.13	35.6	23 to 33	337.1 to 327.1	Unweathered Shale
P-3D	10/15/1986	254064.71	952185.82	350.02	42.2	28 to 38	322.0 to 312.0	Unweathered Shale
P-4D	10/3/1986	254469.89	951458.42	345.07	40.2	27 to 37	318.1 to 308.1	Unweathered Shale
P-5D	10/16/1986	253751.42	951395.77	352.35	40.8	28 to 38	324.4 to 314.4	Unweathered Shale
P-6D	10/2/1986	254090.17	951405.46	349.00	39.7	26 to 36	323.0 to 313.0	Unweathered Shale
					Recovery Wel	lls		
RW-1	8/25/1993	253883.96	951744.96	347.45	28.9	6.6 to 26.6	340.9 to 320.9	Unweathered/Weathered Shale
RW-2	8/26/1996	253900.38	951677.34	346.94	28.1	6.5 to 26.5	340.4 to 320.4	Unweathered/Weathered Shale
RW-3	8/30/1993	253932.73	951623.74	346.39	28.9	6.5 to 26.5	339.9 to 319.9	Unweathered/Weathered Shale
RW-4	9/1/1993	253999.07	951567.67	345.93	28.5	6.6 to 26.6	339.4 to 319.4	Unweathered/Weathered Shale
RW-5	9/2/1993	254051.22	951562.94	345.41	33.4	6.5 to 31.5	338.9 to 313.9	Unweathered/Weathered Shale
RW-6	8/29/1993	254046.77	951620.27	347.17	28.9	6.6 to 26.6	340.6 to 320.6	Unweathered/Weathered Shale
RW-7	8/27/1993	253991.77	951678.73	347.22	26.6	6.5 to 26.5	340.7 to 320.7	Unweathered/Weathered Shale
RW-8	8/27/1993	253949.19	951729.75	347.13	28.3	6.5 to 26.5	340.6 to 320.6	Unweathered/Weathered Shale
					Private Well	s		
Neeley		254046.44	951226.65		9.0			

TOC - Top of Casing.

ft bgs - feet below ground surface.

Blank cells indicate no data.

^{1.} Data are from the well installation records, boring logs, or tables provided by ADEQ.

^{2.} Harmon Surveying, Inc. Report dated October 31, 2017.

^{3.} Data are from FTN groundwater sampling events.

 $^{4. \}quad Provided \ by \ ADEQ \ (email \ communication \ with \ Charles \ Johnson, \ ADEQ \ on \ 10/21/2013).$

Wells were purged by withdrawing groundwater from depths between mid-screen and the bottom of the well using a variable-speed peristaltic pump at low-flow rates of approximately 200 mL/minute or less. Water levels were monitored during purging to minimize drawdown, where possible. Purge rates were measured with a graduated cylinder and stopwatch and recorded every three to ten minutes during purging.

The pump discharge line was connected to a flow-through cell, and field stabilization parameters were monitored to determine when formation water was being purged. Data stabilization is defined as three successive readings with variation of: $\pm 0.2^{\circ}$ C for temperature, ± 0.1 su for pH, $\pm 3\%$ μ S/cm for specific conductance, $\pm 10\%$ Nephelometric Turbidity Units (NTU) or <10 NTU for turbidity, ± 0.3 mg/L or 10% for DO (whichever is greater), and ± 20 mV or 10% for ORP (whichever is greater). Instruments used to collect field measurements included a MicroTPW turbidity meter and a YSI Pro Plus multimeter inserted into the flow-through cell. Measurements were documented on Groundwater Sampling Records (Appendix A). Groundwater samples were collected from the discharge line after field parameters stabilized and were placed directly into sample containers.

At the request of ADEQ, ferrous iron concentrations in groundwater were evaluated in the field using a HACH ferrous iron test kit. Procedures for the field analysis of ferrous iron included the collection of groundwater into a measuring vial, the addition of ferrous iron reagent powder pillow to the measuring vial, mixing the solution, and correlating the approximate color change caused by the reaction to concentrations on the color wheel included in the kit. Evaluations for ferrous iron were documented on the Groundwater Sampling Records (Appendix A).

3.3 Laboratory Analyses

As required by the amended ROD (EPA 2006) and the facility's Operations and Maintenance Procedures Plan (ADEQ 2011b), groundwater samples are analyzed for PCP, PAHs, field parameters, and other parameters related to MNA or requested by ADEQ in FTN's Scope of Work (Table 3.2). Appendix B contains laboratory data reports.

Table 3.2. Groundwater monitoring constituents for OMP.

EPA ROD (2006) Constituent	ADEQ (2011) Operations and Maintenance Plan Constituent	ADEQ (2017) Requested Constituent
Pentachlorophenol (PCP)	Pentachlorophenol (PCP)	Pentachlorophenol (PCP)
Acenaphthene	Acenaphthene	Acenaphthene
Acenaphthylene	Acenaphthylene	Acenaphthylene
Anthracene	Anthracene	Anthracene
Benzo(a)anthracene	Benzo(a)anthracene	Benzo(a)anthracene
Benzo(a)pyrene	Benzo(a)pyrene	Benzo(a)pyrene
Benzo(b)fluoranthene	Benzo(b)fluoranthene	Benzo(b)fluoranthene
Benzo(g,h,i)perylene	Benzo(g,h,i)perylene	Benzo(g,h,i)perylene
Benzo(k)fluoranthene	Benzo(k)fluoranthene	Benzo(k)fluoranthene
Chrysene	Chrysene	Chrysene
Fluoranthene	Fluoranthene	Fluoranthene
Fluorene	Fluorene	Fluorene
Indeno(1,2,3)pyrene	Indeno(1,2,3)pyrene	Indeno(1,2,3)pyrene
Naphthalene	Naphthalene	Naphthalene
Phenanthrene	Phenanthrene	Phenanthrene
Pyrene	Pyrene	Pyrene
	Dibenzo(a,h)anthracene	Dibenzo(a,h)anthracene
	Nitrate	Nitrate
	Sulfate	Sulfate
	Alkalinity	Alkalinity
	Chloride	Chloride
	Fluoride	
	Total Organic Carbon	Total Organic Carbon
	Specific Conductance**	Specific Conductance**
	pH**	pH**
	Turbidity**	Turbidity**
	Oxidation Reduction Potential**	Oxidation Reduction Potential**
	Temperature**	Temperature**
	Dissolved Oxygen**	Dissolved Oxygen**
		Carbazole
		Total Iron
	· ·	Ferrous Iron**

^{**}Field parameters.

3.4 Investigation Derived Waste (IDW) Management

Purge water and decontamination water from the spring 2018 groundwater monitoring event were containerized in two separate 55-gallon DOT drums and staged northwest of the on-site propane tank. All personal protective equipment, disposable sampling equipment, and general refuse were disposed as municipal waste. FTN is coordinating removal of IDW drums,

and waste manifest and disposal documentation will be provided to ADEQ upon receipt for inclusion in Appendix C.

4.0 WATER LEVEL DATA

This section presents water level data for the spring 2018 monitoring event and discusses groundwater flow direction and rate of groundwater flow. Historical water level data is included as Appendix D.

4.1 Water Level and NAPL Measurements

Before sampling, static water levels were measured in monitoring wells, piezometers, and recovery wells with an interface probe to determine the level to maintain during purging, to contour the potentiometric surface, and to determine the hydraulic gradient. FTN gauged and recorded water levels on April 23, 2018. Depths to water were measured to the nearest 0.01 ft from the top of casing. Where NAPL was present, an interface probe was used to determine the depth to NAPL from the top of casing. Table 4.1 presents water level and NAPL data for the sampling period.

Historically, artesian conditions have been noted in the southwest portion of the site (USEPA 1988), and during the current sampling event, artesian conditions were observed at P-5S and P-5D. Well vaults were flooded at RW-2, RW-3, RW-4, RW-5, RW-6, RW-7, and RW-8, which prohibited the collection of water level data and NAPL measurements at these locations during the round of initial depth to water measurements across the site. Water levels in RW-06 and RW-7 vaults later decreased enough to allow access to the wells, and NAPL was observed at RW-7 during groundwater sampling.

4.2 Groundwater Flow Direction

The weathered and unweathered shale layers are together a single water bearing zone (USEPA 2006), however, consistent with past groundwater monitoring reports, water level data were used to construct potentiometric maps for both the weathered shale and unweathered shale portions of the aquifer (Figure 4.1). Available data from recovery wells is used to develop the potentiometric surface map for the weathered shale.

Table 4.1 NAPL and groundwater elevation data, OMP, April 23, 2018.

Well ID	Casing Elevation (ft NAVD88) ¹	Date	Depth to Water (ft below TOC)	Depth to NAPL (ft below TOC)	Groundwater Elevation (ft NAVD88)	Total Depth (ft below TOC)
RW-1	347.47	4/23/2018	0.06	Obs. NAPL	347.41	28.95
RW-2	346.94	4/23/2018	NM - flooded	NM - flooded	n/a	NM
RW-3	346.39	4/23/2018	NM - flooded	NM - flooded	n/a	NM
RW-4	345.93	4/23/2018	NM - flooded	NM - flooded	n/a	NM
RW-5	345.41	4/23/2018	NM - flooded	NM - flooded	n/a	NM
RW-6	347.17	4/23/2018	NM - flooded		n/a	NM
RW-7	347.22	4/23/2018	NM - flooded	Obs. NAPL	n/a	NM
RW-8	347.13	4/23/2018	NM - flooded	NM - flooded	n/a	NM
MW-1S	359.13	4/23/2018	4.75	NM	354.38	19.15
MW-1D	358.66	4/23/2018	3.89	NM	354.77	44.00
MW-3S	351.03	4/23/2018	6.38		344.65	24.11
MW-3D	350.43	4/23/2018	4.14	Obs. NAPL	346.29	38.55
MW-5S	341.95	4/23/2018	4.62		337.33	20.50
MW-8S	347.22	4/23/2018	5.31		341.91	22.42
MW-8D	348.48	4/23/2018	6.76		341.72	44.28
MW-9S	348.52	4/23/2018	5.32		343.20	20.36
MW-9D	349.18	4/23/2018	3.75		345.43	42.90
MW-10S	343.02	4/23/2018	1.70		341.32	20.36
MW-10D	343.57	4/23/2018	2.11		341.46	37.36
MW-10D MW-12S	354.92	4/23/2018	2.16	NM	352.76	24.88
MW-16S	353.71	4/23/2018	6.41	1NIVI	347.30	30.43
MW-16D	353.71	4/23/2018	7.53		345.79	42.03
MW-10D	351.27	4/23/2018	3.24		348.03	25.50
MW-18S	349.88	4/23/2018	3.42		346.46	26.52
MW-18D	350.29	4/23/2018	5.21		345.08	39.56
MW-18D MW-19S	350.75	4/23/2018	6.46		344.29	26.87
II .			5.43		l	
MW-19D	351.05	4/23/2018 4/23/2018	6.74		345.62	40.04
MW-20S MW-20D	352.27				345.53	31.22
MW-20D MW-21S	352.45 347.04	4/23/2018	6.66 5.06		345.79	39.18 27.09
ll .		4/23/2018			341.98	
MW-21D	346.95	4/23/2018	4.56		342.39	46.95
MW-22S	350.57	4/23/2018	7.78		342.79	27.14
MW-22D	350.28	4/23/2018	5.47		344.81	42.22
MW-23	348.75	4/23/2018	7.49	 NIM	341.26	52.30
P-2S	360.47	4/23/2018	4.07	NM NM	356.40	22.84
P-2D	360.13	4/23/2018	4.26	NM NM	355.87	35.60
P-3S	349.88	4/23/2018	1.06	NM NM	348.82	20.81
P-3D	350.02	4/23/2018	3.70	NM NM	346.32	42.21
P-4S	345.34	4/23/2018	4.90	NM	340.44	20.04
P-4D	345.07	4/23/2018	4.74	 ND (340.33	28.16**
P-5S	352.89	4/23/2018	0.00*	NM NM	352.89*	14.08
P-5D	352.35	4/23/2018	0.00*	NM	352.35*	40.80
P-6S	349.09	4/23/2018	5.72		343.37	13.15
P-6D	349.00	4/23/2018	3.31		345.69	39.71
P-7S	354.46	4/23/2018	1.44	NM	353.02	23.36
P-8S	dwater conditions, gro	4/23/2018	1.10	NM	353.04	23.55

^{*} Artesian groundwater conditions, groundwater elevation is a minimum.

NM = Not measured.

⁻⁻⁻ = No product observed or measured.

NAPL = Non-aqueous phase liquid.

Obs. NAPL = NAPL residue observed on probe or water surface during field measurements, but not detected by interface probe.

TOC = Top of casing.

^{1.} Harmon Surveying, Inc. Report dated October 31, 2017.

^{**} Not consistent with previous measurements. May indicate well casing obstruction.

As shown on Figure 4.1, water level data from the shallow wells indicates that groundwater flows to the north-northwest across the site. The configuration of the potentiometric surface within the TI Zone suggests the presence of a more northwesterly flow component that may be indicative of localized fracturing within the weathered shale, which may provide a preferential flow path for site-related contaminants. This pattern is consistent with previous observations (FTN 2018). Flow within the deeper portion of the aquifer was also generally to the north-northwest. For paired wells, nine pairs show an upward gradient and six pairs show a downward gradient (Table 4.1), generally consistent with previous results. The vertical gradient for well pair P-5S/P-5D could not be evaluated, because artesian conditions were observed at both wells.

4.3 Hydraulic Gradient and Rate of Groundwater Flow

Monitoring wells at the facility are screened in both weathered shale and unweathered shale. Variability of the water bearing lithologies at this site requires that estimated groundwater velocities be based on ranges of hydraulic conductivities for both portions of the aquifer. Both the Third Five-Year Review (ADEQ 2011a) and the USEPA ROD (USEPA 2006) describe the hydraulic characteristics of the shallow and deeper zones of the aquifer.

The groundwater flow rate (average linear velocity) was calculated using the following equation (Freeze and Cherry 1979):

 $V_x = -K/n_e * dh/dl,$ where: $V_x =$ linear velocity,

K = hydraulic conductivity, $n_e = effective porosity, and$ dh/dl = hydraulic gradient.

The hydraulic gradient was calculated for the weathered shale portion of the aquifer using data for P-2S to P-3S and MW-12S to P-6S, with the resulting hydraulic gradients determined to be 0.0.0151 ft/ft and 0.0288 ft/ft, respectively. The rate of groundwater flow was calculated using these hydraulic gradients, a conservative hydraulic conductivity of 1.70 ft/day (USEPA

2006), and an average effective porosity of 15% (USEPA 2006). The range of groundwater velocity for the weathered shale portion of the aquifer was calculated as 0.172 ft/day to 0.326 ft/day, or approximately 63 ft/year to 119 ft/year.

The hydraulic gradient for the unweathered shale portion of the aquifer was calculated using data for P-5D to P-4D and MW-1D to MW-8D, with the resulting hydraulic gradients determined to be 0.0167ft/ft and 0.0212 ft/ft, respectively. Using these gradient values, an average hydraulic conductivity of 0.15 ft/day (ADEQ 2011a), and an effective porosity of 15% (ADEQ 2011a), a range for groundwater seepage velocity values was calculated to be 0.0167 ft/day to 0.0212 ft/day, or 6.1 ft/year to 7.7 ft/year.

5.0 DATA VALIDATION

This section presents the results of the quality control (QC) review and data validation. Based on a review of laboratory data for the current sampling period, data are considered to be valid, except as noted below. Appendix A contains field documentation, and Appendix B contains laboratory reports.

5.1 Review of Field Documentation

Field QC included documenting pertinent information during field operations and reviewing field data sheets. Based on a review of field documentation, the following observations were noted:

- While adjusting groundwater sampling purge rates during in situ parameter stabilization, the low-flow purging minimal drawdown goal (i.e., less than approximately 0.3 ft; Puls and Barcelona 1996) was frequently exceeded; however, during sample collection, after suitable pumping rates were established, water level drawdown between the end of purging and after sample collection exceeded 0.3 ft at one well (MW-9S) where water levels dropped 1.35 ft using a pumping rate of 20 mL/min. Low permeability of shale formations makes achieving the drawdown goal difficult. These results are generally consistent with results from previous sampling events.
- Turbidity levels were generally low (less than 25 NTU), except for the groundwater samples collected from MW-9S (39 NTU), MW-20S (108 NTU), and MW-21D (37 NTU). Suspended solids that contribute to turbidity could affect analytical results for metals; therefore, field-filtered samples for dissolved metals were collected at each of the three locations.
- Ferrous (Fe²⁺) iron concentrations were not recorded in the field for samples from MW-22S and RW-1.
- The Neeley residential well was noted as not having a well cap. An open well casing may affect the representativeness of groundwater samples collected from a well by allowing entry of foreign materials and/or providing direct interaction between groundwater and atmospheric conditions. Total depth measurement is shallow compared to reported installation depth, indicating a well casing obstruction.
- Vegetation, including saplings, within the perimeter of steel protective bollards complicated access to monitoring installations and may compromise installation integrity in the future.

- Fire ant mounds are commonly found near monitoring installations at the site, including occasionally overlapping recovery well vault lids. At times, fire ant activity around monitoring installations, especially when disturbed by opening or closing recovery well vault lids, could possibly be a hazard to site visitors.
- The total well depth measurement at P-4D was 28.16 ft below TOC, which is inconsistent with previous measurements approximately 40 ft below TOC, indicating a possible obstruction of the well casing.
- Artesian conditions were observed at P-5S and P-5D. While depth to water measurements have frequently been less than 1 ft below TOC at both installations, the current monitoring event is the first instance of artesian conditions reported at P-5S and the second instance at P-5D. The first at P-5D was during the spring 2017 monitoring event.
- ADEQ personnel visited the site on April 26, 2018, to observe groundwater monitoring activities.
- For pre-purge initial water level measurements at background wells and most piezometers, an interface probe was not used to check for the presence of NAPL.

5.2 Review of Laboratory Reports

ADEQ's laboratory in North Little Rock, Arkansas, provided analytical services for this project. Laboratory report "Old Midland 2018 1700-1798" (June 27, 2018) is included in Appendix B. The lab report presents results for general water quality parameters and SVOCs analyses separately, and those divisions are subdivided into sample groups. Sample groups for water quality analyses include samples 1700-1713, 1772-1784, and 1785-1798. Sample groups for SVOCs analyses include samples 1700-1708, 1709-1713 and 1772-1780, 1781-1789, and 1790-1798. Samples 1714-1771 are part of the sample range listed on the report cover, but they were not collected as part of this project and no corresponding analysis results are included in the laboratory report. Though not listed in the cover sheet comment section, samples MW-9S, MW-9D, Neeley, and IDW-1 were collected as part of this project, and analysis results for those samples are included in the laboratory report.

5.2.1 Analytical Procedures

Groundwater samples were analyzed for semi-volatile organic compounds (SVOCs) using EPA Method 3510C/EPA 8270D, total alkalinity (as CaCO₃) (EPA Method 310.2), nitrate/nitrite as N (SM 4500-NO3 F), chloride and sulfate (EPA Method 300.0), total organic carbon (TOC) (SM 5310 C), and total iron (EPA 200.8). Data validation for non-site-related parameters included within these analyses was not addressed.

5.2.2 General Data Review

The following observations with respect to reported sample results were noted during a general review of laboratory reports:

- Samples were received by the laboratory in good condition, properly preserved, properly labeled, and COC documentation was complete.
- Due to a change in laboratory reporting procedures only total or dissolved iron was reported for metals analysis results. Previously, results for all metals associated with the analytical method were reported.

• Due to a change in laboratory report formatting procedures, each SVOCs sample group now corresponds to a single batch analysis.

5.2.3 Laboratory QC Samples

Laboratory QC samples are prepared by the laboratory to evaluate the accuracy and precision of laboratory testing procedures.

5.2.3.1 Method Blanks

The primary purpose of method blank samples is to document contamination resulting from analytical processes. All laboratory method blank samples were non-detect for analyzed parameters except di-n-butyl phthalate and bis(2-ethylhexyl)phthalate. These compounds are common laboratory contaminants and were not detected in groundwater samples at concentrations greater than ten times detections blanks.

5.2.3.2 Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as a measure of the laboratory's accuracy. LCS percent recoveries were within specified limits for all site-related parameters. Where reported, LCS duplicate (LCSD) recoveries were also within limits for site-related parameters. Where LCS/LCSD comparisons were made, they were within limits for all site-related parameters except for benzo(ghi)perylene in sample group 1709-1713 and 1772-1780 and several other site-related SVOCs in sample group 1781-1789.

5.2.3.3 Surrogates, Matrix Spikes, and Matrix Spike Duplicates

Surrogates, matrix spikes (MS) and matrix spike duplicates (MSD) were analyzed to determine the effect of the sample matrix on recovery of analytes. Recoveries were frequently low for the surrogate 2,4,6-tribromophenol indicating a potential low bias for PCP and other phenols; however, there were acceptable recoveries for all analyses of 2-fluorophenol, which is also a surrogate for phenols. Surrogates for PAHs (2-fluorobiphenyl, nitrobenzene-d5, and

terphenyl-d14) showed generally acceptable recoveries. MS and MSD recoveries for site-related parameters, and MS/MSD results for site-related parameters showed good agreement.

5.2.4 Field QC Samples

Field QC samples included groundwater duplicate samples and equipment rinsate blanks. QC samples were treated as regular samples with respect to sample collection, preservation, handling and chain-of-custody (COC) procedures.

5.2.4.1 Field Duplicate Samples

Field duplicates representing approximately 10% of the sample load were submitted to the laboratory for analysis. Duplicate samples were collected from MW-12S, MW-21S, and MW-23. These samples were analyzed for duplicate comparisons, which are shown in the laboratory reports. Only those parameters that were detected at a concentration five times the reporting limit and for which neither duplicate pair result is qualified or suspected of blank contamination was considered for these comparisons. Duplicate pairs met the RPD criterion of 20% for all comparisons with the following exceptions:

- The RPD for TOC in MW-23 and its duplicate was 74%.
- "R" flagged out of range duplicate RPDs for SVOCs in the laboratory report are primarily the products of comparisons using non-detect results.

5.2.4.2 Field Equipment Blank Samples

Ten equipment blank samples (EB-1 through EB-10) were prepared in the field and submitted to the laboratory for analysis. Sample results were non-detect for all parameters analyzed, except the following:

- Di-n-octyl phthalate was detected in equipment blank EB-4 at 0.2 µg/L. This compound is a common laboratory contaminant and was non-detect in all samples associated with this blank.
- 1,3-Dichlorobenzene was detected in equipment blanks EB-3 (0.29 μg/L) and EB-5 (0.42 μg/L); however, 1,3-dichlorobenzene is not a site related compound.

- Bis(2-ethylhexyl)phthalate was detected in equipment blanks EB-8 (0.21 µg/L) and EB-10 (0.23 µg/L). This compound is a common laboratory contaminant.
- Alkalinity was detected in equipment blank EB-9 at 40.6 mg/L. Detections occurred in four samples associated with this blank (Neely well, MW-8D, MW-18D, and MW-18S), with all concentrations less than five times the concentration in the blank. Field documentation indicates EB-9 was prepared adjacent to an onsite gravel road that was being traveled by vehicles during blank preparation. Dust generated from the road, rather than cross-contamination associated with sampling equipment, is a likely source for alkalinity in the blank. Data for associated groundwater samples is not suspected of being affected and is not flagged in data summary tables. Alkalinity concentrations in monitoring wells MW-18D, MW-18S, and MW-8D are similar to historical results.

6.0 GROUNDWATER QUALITY EVALUATION

This section presents groundwater sample results from the spring 2018 sampling event. PCP, carbazole, and PAH data are discussed and compared to established cleanup levels (USEPA 2006) in Table 6.1, where applicable, and indirect evidence for natural attenuation is evaluated. SVOCs not included in the groundwater monitoring program that were detected in groundwater samples at concentrations above USEPA (May 2018) RSLs are identified. Appendix E contains a listing of historical data.

Table 6.1. OMP Superfund site, cleanup goals, USEPA (2006).

Constituent	Cleanup Level (µg/L)
PCP	1
Acenaphthene	370
Acenaphthylene	940
Anthracene	800
Benzo(a)anthracene	0.2
Benzo(a)pyrene	0.2
Benzo(b)fluoranthene	0.2
Benzo(g,h,i)perylene	470
Benzo(k)fluoranthene	0.92
Chrysene	9.2
Fluoranthene	1500
Fluorene	240
Indeno(1,2,3)pyrene	0.2
Naphthalene	6.2
Phenanthrene	470
Pyrene	180

6.1 Pentachlorophenol

Table 6.2 summarizes results of PCP analyses. PCP was detected at a concentration exceeding the established cleanup level of 1 μ g/L in monitoring well MW-3S (799 μ g/L), which is the highest concentration in the well since October 2014 (Appendix E, Table E.1). There appears to be a reasonable agreement between PCP concentrations and groundwater temperature fluctuations in the well, suggesting environmental factors affect observed concentrations during individual monitoring events (Figure 6.1). PCP concentrations in this well have been relatively stable since the pump and treat system was deactivated in 2006.

Table 6.2. Summary of PCP, carbazole, and PAHs detected in groundwater, OMP Superfund site, spring 2018.

																													_					_	—
*HA¶ lgjoT	(ng/L)	1	0	0	16.2	277	0	0 (0 0	0 0	0 0	0	0	0	0	1.75	0	0	0	3.10	2.99	0	0	0	0	0 0	2 5	į i	I	i	I	000	50	I	0
Benzo [g,h,i] perylene	(µg/L)	470	<0.2	<0.2	ζ,	7	<0.2	<0.7	7.0	7.07	2.0 2.0 2.0	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.7	0.2 0.5	ا ا	7	- 1	!	1	<0.2	7	I	<0.2
* эпээвтийлв [А,в] oznэdiQ	(µg/L)	1	<0.2	<0.2	?	7	<0.2	<0.5	20.5	7.0	<0.5 <0.5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.7	0.2 0.2 0.2	ب ا ا	7		!	!	<0.2	7	!	<0.2
50-5,2,1] onsbnl	(hg/L)	0.2	<0.2	<0.2	?	7	<0.2	<0.7	7.0	7.0.7	20.2 0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	0.2 0.2	; (7	ı	i	1	<0.2	; 7	i	<0.2
Benzo [3] pyrene	ng/L)	0.2	<0.2	<0.2	Ç' '	7	<0.2	<0.5	7.0.5	7.0.7	2.0 2.0 2.0	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	20.5 5 0.2	2.0.5	t.:4		!	1	<0 >	77	1	<0.2
Benzo [k] fluoranthene																																			
Вепхо [b] Пиогап є ћепе																																			
	_																																		
Сһгузепе																																			
Benzo [a] anthracene																																			
Ругепе	(µg/L)	180	<0.2	<0.2	7	8.23	<0.2	<0.2	<0.2 0.2 0.2	7.07	20.2 C 0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	0.38	<0.2	<0.2	<0.2	<0.2	<0.2	0.2 20.5	2.0.5	1.57	1	1	1	<0.2	; 4	1	<0.2
Fluoranthene	(hg/L)	1500	<0.2	<0.2	2.61	5.06	<0.2	<0.5	7.0	7.0	<0.5 <0.5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	92.0	0.42	<0.2	<0.2	<0.2	<0.7	0.5	1.00	·	.	i	1	<0.2	77	1	<0.2
эпээгицти	(hg/L)	1800	<0.2	<0.2	۶ ک	8.75	<0.2	<0.5	7.0	7.0	<0.5 <0.5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.7	0.5	2.00		1	ŀ	1	<0.2	. 7	1	<0.2
Рһепапұһтепе	(hg/L)	470	<0.2	<0.2	2.49	108	<0.2	<0.7	7.0	7.0	2.0 20 0	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	0.33	0.87	<0.2	<0.2	<0.2	<0.2	0.5 0.2	2.0.7	t: 10	ı	i	ı	<0.2	\$ 0	ı	<0.2
Асепарһtһуһепе	(mg/L)	940	<0.2	<0.2	Q :	4.3	<0.2	<0.7	7.0	7.0	2.0 20 0 0 2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	0.2 0.2 0.2	; ? ?	' 1	ı	i	ı	<0.2	; 7	ı	<0.2
onoledthqqsV	(ng/L)	6.2	<0.2	<0.2	4.01	141	<0.2	<0.2	7.0>	7.0,	2.0 20.0	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	20.5 50.2	7.0.5	/t:7		!	1	<0.2	7. 7	!	<0.2
Асепарћећене		370							7.0					<0.2	<0.2											20.5		to	1	!		<0.2	45.5	1	<0.2
	_																															•	•		
	_								7.0>						<0.2			<0.2		99.0						<0.2			1	;		000	,	1	<0.2
*Sarbazole	(µg/L)	-	<0.2	<0.2	2.89	ζ,	<0.2	<0.2	2.0>	7.0 >	2.0 >	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.7	<0.2 CO.2	1.0.	15.61	1	!	1	0 >	; ₽	1	<0.2
Pentachlorophenol	(µg/L)	1	√1	$\overline{\vee}$	799	<10	⊽ .	√ -	√ √	7 7	7 7	7 7	√	∇	$\overline{\lor}$	$\overline{\lor}$	∇	$\overline{\vee}$	∇	∇	$\overline{\vee}$	∇	⊽	⊽ '	√ .	√ √	7 7	7	.	1	1	$\overline{\vee}$	<10	ŀ	~
Date	Sampled	s (µg/L)	4/25/2018	4/25/2018	4/26/2018	4/26/2018	4/25/2018	4/26/2018	4/26/2018	1/24/2018	4/24/2018	1/24/2018	4/24/2018	4/24/2018	4/24/2018	4/25/2018	4/26/2018	4/26/2018	4/25/2018	4/25/2018	4/24/2018	4/24/2018	4/23/2018	4/23/2018	4/23/2018	4/24/2018	4/25/2018	NS	S S	SN	SZ.	4/25/2018	4/25/2018	NS	Neeley 4/26/2018 <
=	s	Lev			•	•	•	•	4	•			7	,	•		-	•	7	4	4	4	7	•	4				1 1	4	ζ-,				ley 4,
Well	<u>e</u>	Clea	MW-1S	MW-1D	MW-3S	MW-3D	MW-5S	WW-8S	MW-8D	CK-WIM	MW-10S	MW-10D	MW-12S	MW-16S	MW-16D	MW-17S	MW-18S	MW-18D	MW-19S	MW-19D	MW-20S	MW-20D	MW-21S	MW-21D	MW-22S	MW-22D	DW 1	RW-2	RW-3	RW4	RW-5	RW-6	RW-7	RW-8	Neeley

* No established site cleanup level. $NS = Not \ sampled.$ $NR = Not \ Reported.$

6.2 Polycyclic Aromatic Hydrocarbons

Table 6.2 summarizes results of PAH analyses for the spring 2018 monitoring event. PAHs were detected in three shallow monitoring wells (MW-3S, MW-17S and MW-20S), two deep wells (MW-3D and MW-19D), and in two recovery wells (RW-1 and RW-7). NAPL was observed at MW-3D, RW-1, and RW-7. Twelve PAH compounds were detected in groundwater samples, but only naphthalene in MW-3D and benzo[a] anthracene, benzo[k]fluoranthene, and benzo[a]pyrene in RW-1 were reported at concentrations exceeding cleanup levels (Figure 6.2). The highest total PAH concentrations occurred at MW-3D (577 μg/L) recovery well RW-1 (441 μg/L), and recovery well RW-7 (50 μg/L).

While total PAH concentrations in MW-3D have recently been below 500 μ g/L, higher concentrations are not atypical over the full sampling history of the well. Spring 2018 PAH concentrations in RW-1 are a historic high since remediation pumping ended.

Total PAH values for shallow and deep wells are shown in red and blue, respectively, on Figure 6.2. The spatial distributions of individual PAH parameter data are not typically amenable to isopleth mapping; however, Figure 6.3 is an isopleth map of acenaphthene based on a limited dataset for deep wells. Acenaphthene distribution in groundwater is consistent with fluoranthene mapped in the fall of 2017 (FTN 2018). Despite exceedances of site cleanup levels and high total PAH concentrations in MW-3D and RW-1, concentrations are slightly lower than the previous sampling event for many PAH compounds, and generally consistent with historical observations.

6.3 Carbazole

Though not a PAH compound composed solely of hydrogen and carbon atoms, carbazole ($C_{12}H_9N$) has been included for analysis at the site due to its use in creosote mixtures. Carbazole was detected in MW-3S (2.89 μ g/L), and RW-1 (15.6 μ g/L) during the current monitoring event (Table 6.2), which is consistent with historical data (Appendix E, Table E.1). There is no established site cleanup level for carbazole or applicable USEPA (May 2018) RSL.

6.4 Other SVOCs

Detected SVOCs contained in laboratory reports but not listed with site-specific groundwater monitoring constituents included:

- Dibenzofuran was detected in 6 of 29 analyzed samples and exceeded the tapwater screening level of 0.79 μg/L in MW-3S (2.95 μg/L), MW-3D (108 μg/L), MW-20S (0.95), RW-1 (106 μg/L), and RW-7 (14.1 μg/L), coinciding with locations where concentrations of site-related PAHs are highest. Dibenzofuran is commonly associated with wood preserving activities.
- 2-Methylnaphthalene exceeded its tapwater screening level of 3.6 μg/L in MW-3D (136 μg/L). 2-Methylnaphthalene is commonly associated with wood preserving activities.
- Benzyl alcohol was reported at low concentrations in eight groundwater samples.
 Typical uses of this compound are not related to wood treatment processes, and it is unlikely that detections of this compound are site-related. There is no USEPA (May 2018) screening level for benzyl alcohol.
- 1,3-Dichlorobenzene was detected in ten groundwater samples. Typical uses of this compound are not related to wood treatment processes, and it is unlikely that detections of this compound are site-related. There is no USEPA (May 2018) screening level for 1,3-dichlorobenzene.
- 4-Nitrophenol and 4-bromophenylphenyl ether were detected in MW-8S (0.81 μg/L) and MW-3S (4.37 μg/L), respectively. Typical uses of these compounds are not related to wood treatment processes, and it is unlikely that detections of these compounds are site-related. There are no USEPA (May 2018) screening levels for 4-nitrophenol or 4-bromophenylphenyl ether.
- 2,3,4,6-tetrachlorophenol (TeCP) was detected in groundwater sample MW-3S (17.4 μg/L) and exceeded the USEPA (May 2018) screening level of 2.4 μg/L. TeCP is a PCP breakdown product, and it is also a component of some wood treatment chemical formulations. Historically, TeCP has not been considered an indication of PCP degradation.
- Three phthalate ester compounds; di-n-butyl phthalate, di-n-octyl phthalate, and bis(2-ethylhexyl)phthalate, were detected in groundwater samples. Bis(2-ethylhexyl)phthalate was detected in equipment blank samples, and di-n-butyl phthalate and bis(2-ethylhexyl)phthalate were detected in laboratory method blanks. Phthalate esters are considered common laboratory contaminants by USEPA. Their concentrations in groundwater samples were below the EPA RSLs for tapwater and do not affect analysis of groundwater data.

Figure 6.1. PCP concentration and temperature fluctuation pattern correlation in MW-3S.

Figure 6.2 PAHs and PCP in groundwater exceeding cleanup levels.

Figure 6.3 Acenaphthene distribution in unweathered shale.

7.0 INDICATIONS OF NATURAL ATTENUATION

MNA remediation relies on the capacity of the groundwater system to reduce contaminant concentrations. Attenuation processes can include biodegradation, dispersion, dilution, and adsorption of contaminants. The main processes affecting attenuation of PCP and PAH compounds are adsorption (in porous media) and biodegradation. PCP has been observed to degrade anaerobically by reductive dechlorination, a biologically mediated dismantling of the PCP molecule to ultimately produce chloride and carbon dioxide.

PAH compounds may degrade biologically both aerobically and anaerobically (Neuhaeuser et al. 2009). Compounds with low molecular weights (those with two and three rings) such as naphthalene, acenaphthene, acenaphthylene, anthracene, fluorene, fluoranthene, and phenanthrene degrade slowly; however, degradation of these compounds occurs more readily than the four-, five- and six-ring PAHs (pyrene, benzo(a)anthracene, chrysene, benzo(a)fluoranthene, benzo(a)pyrene, dibenzo(a,h)anthracene, benzo(g,h,i)perylene, and indeno(1,2,3)pyrene) (Davis and Evans 1964). In addition, the higher molecular weight PAH compounds are less water soluble and less volatile, and they are known to be persistent in the environment for longer periods.

This section discusses lines of evidence for degradation of organic contaminants in site groundwater, including general groundwater conditions, changes in groundwater geochemistry in the affected area, presence of degradation byproducts, and trends in contaminant concentrations. Table 7.1 contains a summary of MNA parameter data for the spring 2018 monitoring event.

7.1 General Groundwater Conditions

Field groundwater parameters can be used to evaluate conditions amenable to natural attenuation processes. During the spring 2018 groundwater monitoring event, favorable groundwater conditions for natural attenuation were observed in both shallow and deep TI zone wells.

Table 7.1. Summary of MNA parameters, OMP Superfund site, spring 2018.

			ction (P)	ygen	e as N	nese	nganese		а	ed (Fe2+)	(e3+)			ity [as	9	loi	henol	henol
	a	Hd	Oxygen Reduction Potential (ORP)	Dissolved Oxygen (DO)	Nitrate-Nitrite as N	Total Manganese	Dissolved Manganese	Total Iron	Dissolved Iron	Field Estimated Ferrous Iron (Fe2+)	Estimated Ferric Iron (Fe3+)	Sulfate	Chloride	Total Alkalinity [as CaCO3]	Total Organic Carbon	2-Chlorophenol	2,6-Dichlorophenol	2,4-Dichlorophenol
Well ID	Sampling Date	(SU)	(mVs)	⊖ ⊂ (mg/L)	Z (mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	田 庄 (mg/L)	∞ (mg/L)	(mg/L)	(mg/L)	(mg/L)	< (μg/L)	~i` (μg/L)	~i (μg/L)
MW-1S	4/25/2018	5.5	181	2.3	0.238	(IIIg/L)	(IIIg/L)	0.0229	(IIIg/L)	<0.5	n/a	2	43.4	21.2	<1	<0.2	<0.2	<0.2
MW-1D	4/25/2018	7.0	40	2.7	0.106			0.205		< 0.5	n/a	1	6.38	173	<1	< 0.2	<0.2	<0.2
MW-3S	4/26/2018	6.2	-176	1.0	< 0.05			5.80		2.0	3.80	854	435	510	8.73	<2	<2	<2
MW-3D	4/26/2018	6.8	-174	0.4	< 0.05			5.23		1.5	3.73	< 0.5	108	160	2.44	<2	<2	<2
MW-5S	4/25/2018	6.5	102	0.3	< 0.05			0.00931		< 0.5	n/a	29	35.1	184	<1	< 0.2	< 0.2	< 0.2
MW-8S	4/26/2018	5.6	-171	0.7	0.198			0.0634		< 0.5	n/a	261	74.6	57.1	1.16	< 0.2	< 0.2	< 0.2
MW-8D	4/26/2018	7.5	66	1.8	0.139			0.362		< 0.5		24	20.1	186	<1	< 0.2	< 0.2	< 0.2
MW-9S	4/24/2018	6.2	106	2.2	< 0.05				0.129	< 0.5	n/a	109	146	134	<1	< 0.2	< 0.2	< 0.2
MW-9D	4/24/2018	6.6	-15	1.1	< 0.05			2.48		1.5	0.98	2.4	139	183	<1	< 0.2	< 0.2	< 0.2
MW-10S	4/24/2018	6.2	92	1.4	< 0.05			0.0713		< 0.5	n/a	361	223	160	<1	< 0.2	< 0.2	< 0.2
MW-10D	4/24/2018	7.3	-104	0.9	< 0.05			1.22		1.0	0.22	3	51.9	217	<1	< 0.2	< 0.2	< 0.2
MW-12S	4/24/2018	5.6	131	0.5	0.0873			0.676		< 0.5	n/a	1.08	8.7	41.8	<1	< 0.2	< 0.2	< 0.2
MW-16S	4/24/2018	6.6	-129	0.8	0.0647			0.4		< 0.5	n/a	163	98.3	139	<1	< 0.2	< 0.2	< 0.2
MW-16D	4/24/2018	7.3	-170	0.8	< 0.05			2.4		< 0.5	n/a	102	62.5	111	15.8	< 0.2	< 0.2	< 0.2
MW-17S	4/25/2018	5.7	161	0.6	0.295			0.907		< 0.5	n/a	3	18.4	31.7	<1	< 0.2	< 0.2	< 0.2
MW-18S	4/26/2018	6.1	113	0.6	0.0941			0.0356		< 0.5	n/a	19	54.0	93.2	<1	< 0.2	< 0.2	< 0.2
MW-18D	4/26/2018	6.8	5	0.6	< 0.05			0.731		0.5	0.23	2	33.1	142	<1	< 0.2	< 0.2	< 0.2
MW-19S	4/25/2018	5.7	-136	0.6	< 0.05			0.109		< 0.5	n/a	38	133	88.7	<1	< 0.2	< 0.2	< 0.2
MW-19D	4/25/2018	6.3	-154	0.3	0.0662			2.64		1.5	1.14	51.8	89.1	104	<1	< 0.2	< 0.2	< 0.2
MW-20S	4/24/2018	6.4	-167	0.6	< 0.05				1.8	2.0	n/a	158	89.3	99.9	<1	< 0.2	< 0.2	< 0.2
MW-20D	4/24/2018	6.2	-145	1.5	0.0521			1.94		1.5	0.44	141	62.2	90.6	<1	< 0.2	< 0.2	< 0.2
MW-21S	4/23/2018	6.1	79	0.3	< 0.05			1.03		0.5	0.53	49	140	125	<1	< 0.2	< 0.2	< 0.2
MW-21D	4/23/2018	6.9	-41	0.5	< 0.05				0.893	1.0	n/a	< 0.5	83	173	<1	< 0.2	< 0.2	< 0.2
MW-22S	4/24/2018	6.1	-168	0.5	< 0.05			0.0672		NR	n/a	809	258	129	2.49	< 0.2	< 0.2	< 0.2
MW-22D	4/24/2018	6.9	-136	1.7	0.127			0.5		< 0.5	n/a	45	115	151	<1	< 0.2	< 0.2	< 0.2
MW-23	4/23/2018	6.9	-158	0.7	< 0.05			2.07		2.0	0.07	140	85.1	183	2.05	< 0.2	< 0.2	< 0.2
RW-1	4/25/2018	6.7	-185	0.2	< 0.05			0.0683		NR	n/a	78	191	250	2.73	<2	<2	<2
RW-2	NS															< 0.2	< 0.2	< 0.2
RW-3	NS															< 0.2	< 0.2	< 0.2
RW-4	NS															< 0.2	< 0.2	< 0.2
RW-5	NS															< 0.2	< 0.2	< 0.2
RW-6	4/25/2018	6.3	-129	0.4	< 0.05			1.64		0.5	1.14	28	106.0	144.0	1.2	< 0.2	< 0.2	< 0.2
RW-7	4/25/2018	6.8	-123	0.2	0.0734			5.80		2.5	3.30	6	130.0	263.0	1.3	<2	<2	<2
RW-8	NS															< 0.2	< 0.2	< 0.2
Neeley	4/26/2018	6.6	-65	0.3	< 0.05			12.0		1.5	10.50	2	18.7	90.5	<1	< 0.2	< 0.2	< 0.2

B = Analyte detected in associated field blank.

NS = Not sampled.

NR = Not recorded.

7.1.1 pH

Many anaerobic bacteria that facilitate natural attenuation of organic contaminants are sensitive to pH extremes, and microbial activity tends to be inhibited outside the pH range of 6.0 su to 8.5 su. Data for the sampling period show that groundwater pH at the site is generally within the optimal range for microbial activity, ranging from 5.5 su to 7.5 su. Groundwater pH values for five shallow monitoring wells (MW-1S, MW-8S, MW-12S, MW-17S, and MW-19S) were below 6.0 su but consistent with historical data for those wells.

7.1.2 ORP

Measurements of electric potential (Eh) of an aquifer may be used to provide insight into the mechanisms of biodegradation that may be occurring within a contaminant plume. While the electric potential of an aquifer is not directly measured, field ORP measurements may be converted to Eh by adding the electric potential of the silver chloride reference electrode (199 mV) to the reported value. The ORP of groundwater typically varies between -600mV and +600mV (Wiedermeier et al. 1999). Certain biochemical reactions will only occur under specific redox conditions. Aerobic biodegradation of organic contaminants generally occurs when ORP is greater than +150mV. Mildly reducing conditions (-150mV to +150mV) normally produce manganese, nitrate, and then iron reduction associated with bacterial activity. As the environment becomes increasingly reducing (<-400mV), biological degradation changes from iron reduction, to sulfate reduction, and then to methanogenesis (CO₂ reduction). Twenty-four of 25 wells sampled in the TI Zone during the spring 2018 sampling event had ORP measurements that indicated either mildly reducing conditions (15 wells) or moderately reducing conditions (9 wells) which are ideal for iron reduction. Two shallow wells, including one background well, reported ORP measurements indicating aerobic conditions MW-1S (181 mV) and MW-17S (161 mV). Shallow wells MW-5S (102mV), MW-12S (131 mV), and MW-18S (113 mV), had ORP measurements high enough to suggest that iron reduction was not occurring in those locations. Low or non-detect results for nitrate, however, may still indicate that other reductive processes are occurring in these wells.

7.1.3 DO

Aerobic degradation of hydrocarbon contaminants, including PAHs, requires DO levels greater than 1 mg/L in groundwater. In this case, oxygen is the electron acceptor, while the hydrocarbon is the electron donor. DO levels below 1 mg/L indicate that oxygen is depleted and conditions are favorable for anaerobic degradation while oxygen in concentrations less than about 0.5 mg/L is optimal (Wiedermeier et al., 1999). Nineteen of 25 wells sampled in the TI zone showed DO less than 1 mg/L, further indicating favorable conditions for anaerobic biodegradation.

7.1.4 TOC

TOC can be used as a measure of organic hydrocarbons present in site groundwater that function as electron donors in anaerobic degradation processes. TOC was detected during the current monitoring event at concentrations as high as 15.8 mg/L; however, TOC detections were not reported for samples from most wells, and higher TOC values do not correlate to higher PAH totals. Wiedemeier, et al., (1999) also suggests that TOC concentrations less than 20 mg/L are not sufficient to sustainably drive degradation processes. It is not clear how accurately TOC results characterize the potential for natural attenuation at the site.

7.2 Groundwater Geochemistry Changes

Under anaerobic conditions, organic contaminants are metabolized by microorganisms in the absence of oxygen. Compounds other than oxygen act as electron acceptors in contaminant oxidation. In general, rates of anaerobic biodegradation follow an order of favorable electron acceptor availability, with nitrate (NO₃) first, followed by manganese (Mn+4), ferric iron (Fe ³⁺), and sulfate (SO₄ ²⁻). Thus, electron acceptor concentrations below background in groundwater contaminated by organics suggest biologically mediated degradation processes are occurring. Generation products of electron acceptor reduction include dissolved ferrous iron (Fe²⁺), sulfide, methane (CH₄), chloride, and an increase in alkalinity. Complete biodegradation of hydrocarbons will result in the formation of CO₂, or CH₄ in the process of methanogenesis. Sulfide and methane analyses were not conducted during the spring 2018 sampling event. Decreased

concentrations of electron acceptors and corresponding increased concentrations of metabolic by-products compared to background provide indirect evidence for degradation.

7.2.1 Nitrate

Nitrate was not detected in 16 of 25 groundwater samples collected in the TI Zone. While nitrate generally occurs at low concentrations in the Ouachita Mountains aquifer (Kresse, et. al, 2014), non-detect nitrate concentrations could indicate that nitrate has been largely consumed during either ongoing or previous anaerobic reduction at the site. It is not clear to what degree lack of detections are the result of natural attenuation processes, nor is it clear to what degree the regular application of fertilizer called for in the site O&M plan (ADEQ 2011b) affects nitrate concentrations at wells where nitrate was detected in groundwater.

7.2.2 Manganese

Microbes utilize manganese +4 as an electron acceptor and generate dissolved manganese +2 as a metabolic by-product of anaerobic degradation. An increase in total manganese in samples from wells with low turbidity (low particulate fraction) or dissolved manganese results may indicate manganese reduction. While manganese has previously been evaluated with respect to natural attenuation, due to a change in laboratory reporting procedures, manganese results were not included in the lab report for the spring 2018 groundwater sampling event.

7.2.3 Ferric Iron

Where DO, nitrate, and manganese +4 are depleted, microbes utilize ferric iron (Fe3+) as an electron acceptor and generate dissolved ferrous iron (Fe2+) as a metabolic byproduct. Concentrations of ferric iron were calculated by subtracting estimated field observations for ferrous iron from laboratory results for total iron. Field kits used to estimate ferrous iron do not provide the level of accuracy needed to compare the data with laboratory analyses, and in some cases historically, ferrous iron values have been greater than total iron, making it difficult to evaluate the data. Iron was detected in all 25 sampled wells in the TI Zone. Ferric iron was

detected at concentrations greater than estimated ferrous iron in five of the 11 wells in the TI Zone where the two could be compared. Low concentrations of ferric iron within the TI Zone is a strong indicator of ongoing reduction processes

7.2.4 Sulfate

Low levels of sulfate relative to background would be expected under sulfate reducing conditions. Spring 2018 sulfate levels were elevated in the TI Zone compared to background and no significant reduction in sulfate concentrations have been observed compared to historical data. Therefore, sulfate is likely not a terminal electron acceptor in the biodegradation process at this site.

7.3 Degradation By-Products

7.3.1 PCP Daughter Products

PCP has been shown to degrade anaerobically by reductive dechlorination. During reductive dechlorination of PCP, chlorine atoms, acting as electron acceptors, are removed from the PCP molecule, and replaced by hydrogen, producing first tetrachlorophenol (TeCP), followed by trichlorophenol (TCP), dichlorophenol (DCP), and chlorophenol (CP). Because TeCP and TCP can occur in the original wood-treating chemical, presence of dichlorophenol and chlorophenol are generally considered better indicators of degradation.

PCP degradation breakdown products currently being analyzed at the site are 2-chlorophenol (2-CP), 2,6-dichlorophenol (2,6-DCP), and 2,4-dichlorophenol (2,4-DCP). Detectable concentrations of 2,4-DCP were reported in two wells during the spring 2017 monitoring event and four wells in fall 2017 monitoring event. Historically, 2,4-DCP is typically found in at least one well on site during monitoring events; however, 2,4-DCP concentrations appear to be decreasing across the site with time, potentially as a product of degradation processes (Appendix E, Table E.2). No PCP breakdown products were detected during the current monitoring event.

7.3.2 Chloride

Chloride is released as a by-product of PCP and PCP daughter product dechlorination, and increased concentrations compared to background typically indicate contaminant degradation. All deep wells inside the TI Zone had chloride concentrations greater than background well MW-1D (6.38 mg/L). All shallow wells inside the TI Zone showed chloride concentrations greater than background well MW-12S (8.70 mg/L), and all but MW-17S (18.4 mg/L) showed concentrations greater than background well MW-1S (43.4 mg/L). This data indicates dechlorination is occurring in the TI Zone. The highest chloride concentration was observed in the data for MW-3S (435 mg/L), where PCP is regularly detected.

7.3.3 Alkalinity

An increase in alkalinity is brought about by the production of carbon dioxide during biodegradation of organic carbon. All shallow wells have greater alkalinity concentrations than upgradient well MW-1S (21.2 mg/L), and all but MW-17S (31.7 mg/L) have a greater alkalinity concentration than upgradient well MW-12S (41.8 mg/L). The highest observed alkalinity concentration was at MW-3S (510 m/L). Alkalinity is also high at RW-1 (250 mg/L) where total PAHs were high (441 ug/L). The co-occurrence of increased chlorides and generally higher-than-background alkalinities suggests biological activity is occurring within the TI Zone.

7.3.4 Ferrous Iron

When microbes utilize ferric iron (Fe3+) as an electron acceptor, dissolved ferrous iron (Fe2+) is generated as a metabolic byproduct. While field estimated ferrous iron values are difficult to use in conjunction with laboratory results for total iron (Section 7.2.3), comparisons between ferrous iron values can be useful.

Ferrous iron was not detected (<0.5 mg/L) in either shallow background well MW-1S or MW-12S. Four shallow wells reported detectable (≥0.5 mg/L) ferrous iron concentrations, including 2.0 mg/L at MW-3S, the only well where PCP is regularly detected. Ferrous iron concentrations in deep wells, with the exceptions non-detect results at MW-08D, MW-16D, and MW-22D, are greater than ferrous iron in background well MW-1D (<0.5 mg/L).

Low background concentrations make evaluating iron reduction difficult; however, where both ferrous and ferric iron were present, ferric iron concentrations were less than ferrous iron concentrations at six wells, strongly indicating reduction. The detection of ferrous iron in 13 of the 25 sampled wells in the TI zone suggests that iron reduction is occurring in both shallow and deep groundwater zones. Additionally, at locations where ferrous iron was detected, nitrate concentrations were reported as either non-detect or just above the detection limit. Nitrate was detected at nine of the fourteen wells where ferrous iron was not detected, including all background wells. This is consistent with the general progression of redox reactions and another strong indicator that iron reduction is ongoing in the TI Zone.

7.4 Trends in Contaminant Concentrations

Contaminant plumes subject to natural attenuation can expand, remain stable, or shrink. These responses are shown by trends in contaminant concentrations over time (Wiedemeier et al., 1999). There were no statistical analyses conducted for this report to identify statistically significant trends in the data. Observations regarding data trends are based on a review of the data and selected time series graphs, discussed and presented below. Site cleanup levels are presented on time-series graphs as a red line, where applicable.

7.4.1 PCP Concentration Trends

Historically, PCP has been observed in MW-3S, MW-3D, MW-16S, MS-17S, and MW-20S, and all recovery wells except RW-5 and RW-6 (Appendix E Table E.1). The majority of PCP detections occurred during the operation of the pump and treat system. Since the pump and treat system was deactivated in 2006, a significant reduction in PCP concentrations in monitoring wells has been observed. Since 2011, PCP has been below reporting limits at all well locations, except for MW-3S, where it has been consistently detected, and concentrations have been relatively stable (Figure 7.1).

7.4.2 PAH Concentration Trends

Since 2006, when the pump and treat system was deactivated, there has been an overall reduction in PAH concentrations in site groundwater. Time series plots for PAH compounds that exceeded clean-up levels at specific well locations during the reporting period appear to show either decreasing trends or generally stable concentrations over time.

Figure 7.2 contains time series graphs for MW-3D showing qualitative decreasing trends for naphthalene and total PAHs.

Figure 7.3 shows time series graphs for benzo[a]anthracene, benzo[k]fluoranthene, benzo[a]pyrene, and total PAHs in RW-1. Concentrations typically remain below site clean-up levels, but occasional spikes produce exceedances.

Figure 7.1 Time series graph for PCP in MW-3S.

Figure 7.2 Time series graphs for MW-3D.

Figure 7.3 Time series graphs for RW-1.

Figure 7.3 Time series graphs for RW-1 (continued).

8.0 MAINTENANCE TASKS

No maintenance tasks were requested or performed during the spring 2018 monitoring event.

9.0 SUMMARY AND CONCLUSIONS

The Amended ROD dated April 2006 specified MNA as the remedy for the OMP Superfund site. The objective of this Groundwater Monitoring Report is to evaluate groundwater data to determine the effectiveness of MNA as the site remedy. This report specifically addresses the groundwater sampling results for the spring 2018 sampling event.

PCP and PAHs occur in OMP site groundwater in the area where lagoons were used in the former wood treating operation (and within the TI Zone), and NAPL was observed in one monitoring well (MW-3D) and two recovery wells (RW-1 and RW-07), indicating a source of these contaminants is present at the site. PCP was observed in one monitoring well, MW-3S (799 μ g/L), and this concentration exceeded the cleanup level of 1 μ g/L. The highest total PAH concentrations were observed in recovery well RW-1 (441 μ g/L), and deep monitoring well MW-3D (577 μ g/L). Concentrations of one or more PAHs were reported in samples from seven wells completed within the TI Zone. Of the twelve PAH compounds detected, four were reported at concentrations exceeding cleanup levels: naphthalene, benzo[a]anthracene, benzo[k]fluoranthene, and benzo[a]pyrene.

The primary processes affecting attenuation of PCP and PAH compounds at the OMP site are adsorption to aquifer materials (in porous media) and biodegradation. Significant reductions in PCP and PAH concentrations have been observed since August 2006 when groundwater recovery and treatment was suspended. There are no apparent increasing trends for contaminants with cleanup levels. Most appear to be relatively stable (e.g. PCP in MW-3S) or decreasing in concentration (e.g. naphthalene in MW-3D), where elevated above cleanup levels. Except for notable detections in MW-3S, MW-3D, and RW-1, occurrences and concentrations of site contaminants are generally fewer and reduced or stable as compared to the previous monitoring event. Evidence for biological degradation of organic compounds in site groundwater in the current data is generally consistent with past observations and includes the following:

- 1. General groundwater conditions for pH (5.5 7.5 su), DO (anaerobic), and ORP (generally mildly to moderately reducing) are all conducive to biodegradation activities.
- 2. Changes in electron acceptor (nitrate and ferric iron) concentrations across the site indicate biodegradation processes are contributing to natural attenuation at the site.
- 3. The presence of degradation by-products (chloride, alkalinity, and ferrous iron) suggest natural attenuation of PCP and PAHs is occurring at the site.
- 4. Continuing decreasing trends were observed for naphthalene and total PAHs in MW-3D while total PAHs in RW-1 and PCP in MW-3S are stable.

The groundwater monitoring program at OMP is intended to ensure that contaminants are not migrating beyond the TI Zone at concentrations above the cleanup goals. As discussed in previous site reports, fractured bedrock presents a very complicated hydrogeologic setting in which to monitor contaminant movement and natural attenuation processes, as migration is affected by fracture geometry in addition to hydraulic gradients. During the current monitoring event, PCP and PAHs were not observed in monitoring wells downgradient from the TI Zone; nonetheless, site conditions prevent stating with certainty that contamination is contained within the TI Zone.

10.0 RECOMMENDATIONS

Based on the results of the current monitoring event, FTN recommends the following actions to improve the OMP groundwater monitoring program:

- 1. Install a secure well cap on the Neeley residential well, and perform any repairs needed to allow such installation, to prevent entry of foreign materials and ensure the representativeness of groundwater samples collected from the well.
- 2. Use a downhole video camera to observe and characterize the obstruction in the Neeley residential well. Remove obstruction or determine approach for removal, if possible.
- 3. Increase regular vegetation management within the perimeter of steel protective bollards around monitoring installations, including removal of saplings, in order to facilitate access to installations and prevent possible future damage to monitoring installations.
- 4. Consider implementing a pest control strategy to control fire ant mounding at the site.
- 5. Consider converting recovery wells to stick-up completions to ensure regular access for groundwater level measurements and sample collection during monitoring events. Current recovery well completion configurations are susceptible to flooding, which frequently prevents sample collection during monitoring events.
- 6. Specifically request reporting of manganese analysis results on Chain-of-Custody documentation in the future, so manganese results can be used as part of MNA evaluations.
- 7. Use downhole video camera to investigate potential well casing obstruction in P-4D.

11.0 SELECTED REFERENCES

- ADEQ. 1999. Five Year Review, Old Midland Products Site. May 1999.
- ADEQ. 2006. Five Year Review, Old Midland Products Site. March 2006.
- ADEQ. 2011a. Third-Five Year Review, Old Midland Products Site. March 2011.
- ADEQ. 2011b. Operation and Maintenance Procedures Plan, Old Midland Products Site, Ola, Oklahoma. February 2011.
- ADEQ. 2017. Letter request to EPA for change to Operations and Maintenance Procedures Plan for Old Midland Products Site, Ola, Arkansas. March 22, 2017.
- ADPC&E. 1985. Final Work Plan for Old Midland Products Company, Yell County, Arkansas, Remedial Investigation/Feasibility Study. September, 1985.
- CDM Smith Inc. 2013. Old Midland Spring 2013 Groundwater Monitoring Report. August 2013.
- CDM Smith Inc. 2013. Old Midland Fall 2012 Groundwater Monitoring Report. February 2013.
- Freeze, R.A. and Cherry, J.A. 1979. Groundwater, Englewood Cliffs, New Jersey, Prentice-Hall, 604 p.
- FTN. 2014a. Fall 2013 Semi-Annual Groundwater Monitoring Report, Old Midland Products Superfund Site, Ola, Arkansas. EPA ID:ARD980745665. AFIN: 75-00049, January 14, 2014.
- FTN. 2014b. Spring 2014 Semi-Annual Groundwater Monitoring Report, Old Midland Products Superfund Site, Ola, Arkansas. EPA ID:ARD980745665. AFIN: 75-00049, June 13, 2014.
- FTN. 2014c. Fall 2014 Semi-Annual Groundwater Monitoring Report, Old Midland Products Superfund Site, Ola, Arkansas. EPA ID:ARD980745665. AFIN: 75-00049, December 19, 2014.
- FTN. 2015. Spring 2015 Semi-Annual Groundwater Monitoring Report, Old Midland Products Superfund Site, Ola, Arkansas. EPA ID:ARD980745665. AFIN: 75-00049, May 28, 2015.
- FTN. 2016a. Fall 2015 Semi-Annual Groundwater Monitoring Report, Old Midland Products Superfund Site, Ola, Arkansas. EPA ID:ARD980745665. AFIN: 75-00049, January 13, 2016.
- FTN. 2016b. Spring 2016 Semi-Annual Groundwater Monitoring Report, Old Midland Products Superfund Site, Ola, Arkansas. EPA ID:ARD980745665. AFIN: 75-00049, June 14, 2016.
- FTN. 2017a. Fall 2016 Semi-Annual Groundwater Monitoring Report, Old Midland Products Superfund Site, Ola, Arkansas. EPA ID:ARD980745665. AFIN: 75-00049, February 7, 2017.
- FTN. 2017b. Spring 2017 Semi-Annual Groundwater Monitoring Report, Old Midland Products Superfund Site, Ola, Arkansas. EPA ID ARD980745665. AFIN: 75-00049, October 26, 2017.

- FTN. 2018. Fall 2017 Semi-Annual Groundwater Monitoring Report, Old Midland Products Superfund Site, Ola, Arkansas. EPA ID ARD980745665. AFIN: 75-00049, March 6, 2018.
- Haley, B.R., Stone, C.G., Hanson, W.D., Clark, J.W. 2006. Geologic Map of the Ouachita Mountain Region and a Portion of the Arkansas Valley Region in Arkansas (DGM-OMR-001). Arkansas Geological Commission, scale 1:125,000.
- Kresse, T.M., Hays, P.D., Merriman, K.R., Gillip, J.A., Fugitt, D.T., Spellman, J.L., Nottmeier, A.M., Westerman, D.A., Blackstock, J.M., and Battreal, J.L., 2014, Aquifers of Arkansas—Protection, management, and hydrologic and geochemical characteristics of groundwater resources in Arkansas: U.S. Geological Survey Scientific Investigations Report 2014–5149, 334 p., http://dx.doi.org/10.3133/sir20145149.
- McFarland, J.D. 2004. Stratigraphic summary of Arkansas, Arkansas Geological Commission Information Circular 36, 38 p.
- Neuhauer, E.F., Ripp, J.A., Azzolina, N.A., Madsen, E.L., Mauro, D.M., and T. Taylor. 2009. Monitored natural attenuation of manufactured gas plant tar mono- and polycyclic aromatic hydrocarbons in ground water: a 14-year study; Ground Water Monitoring & Remediation, V. 29, No. 3. Summer 2009, p 66-76.
- Puls, R.W. and M.J. Barcelona, 1996. Groundwater Issue Paper: Low-Flow (Minimal Drawdown) Groundwater Sampling Procedures. USEPA, EPA/540/S-95/504, 12 pp.
- USEPA. 1988. Record of Decision, Old Midland Products, USEPA, . March 24, 1988.
- USEPA. 2006. Superfund Record of Decision Amendment, Old Midland Products, Yell County, Arkansas (draft). February 2006.
- USEPA. 2007. Monitored Natural Attenuation of Inorganic Contaminants in Ground Water, Volume 2, Assessment for Non-Radionuclides Including Arsenic, Cadmium, Chromium, Copper, Lead, Nickel, Nitrate, Perchlorate, and Selenium, National Risk Management Research Laboratory. October 2007. (EPA/600/R-07/140).
- USEPA. 2013. Old Midland Products Superfund Site, Ola, Yell County, Arkansas, EPA ID No. ARD0980745665, Site ID 0600216, September 2013.
- USEPA. 2018. USEPA Regional Screening Levels. May, 2018. https://semspub.epa.gov/src/document/HQ/197235
- Wiedemeier, T. H., Rifai, H. S., Newell, C. J. and Wilson, J. T. 1999. Natural Attenuation of Fuels and Chlorinated Solvents in the Subsurface. John Wiley & Sons, Inc., Hoboken, NJ, USA.

Field Sampling Documentation

OLD MIDLAND OLA, ARKANSAS

1H2018 GROUNDWATER SAMPLING

R03013-0020-032

APRIL 23-27, 2018

Site Location:	Onf		Date:	1-23-15
	: 03013-0020-032		Page	of 3
0922 Am	ve un site. EWS of read	In there. Jin him you	leaded al	1 equipment
20.1007	A. Wenthe could c	lady		I I
	lucus RW-x wells.			
0945 R1	U-8 fall. May be ab	it to bail and		
0948 R	Wa7 Fall. Just over	well top. May be abit to be	il out. Fi	r unls
D950 R	vergrowing 1001.	- Flood just our]	CIC	
0952 RI	W-5 Vaul Aller to	sound suifage Lock lord	00.	Second lake
12	orper o mi able to disc	so letel	Sum ppeu	serour ling
0954 R	W-4 Poult Gell to 30	of Other ground wifey		
0956 R	W-3 UNULL full to a	bent b radies below gran	ad surfuc	
0958 R	W-7 VanH full to :	about 4 Meling over top.	of well	***
1153	Attempt to bail Ru-6	w 5 sal broket. Van	1+ refi 1/3	over top is
171.4	appar 30 seconds	S	F 3.3 6	
1240		EWA with 5 Gal buch		
<i>)</i>	just alma JOC in appear	1-2 MMutes. Well a	my be ar	Krien - (Estal
1215 1	IN WE GAT MAY GET & G	ample depending on worth	v 1147 F	the days.
1315 AG	with refills in 2 30 5	il 5 Gal Bucket Re	Mari 2	10 GM I
	who EB-Z (part w			
	alibare meters			
	om samply			
	OH 914			
	THE STATE OF THE S	10		
	- Hharry	N		

Site Locatio	n: OMP				Date: 4/74/18
Project Nun	nber: 03013-0	020-037	Initials: <	1514	Page 7 of 3
0700	Buy ice to	- sample,			
0725	Anie or got	, ,			
0721	Begin call	Irahy			
C810	Ban Sin				
1350	Jiks Conny	g gitt to	prek ul Sam	de	
1410	Im Con	no off gitt	l /	1 -	
1700	Take EB-	6 (see fre			
1708	Munune	purge note	(28 Ga)	m PURGE	5 hyp Dmm)
1720	Cleur	Staging	aveal lag to	lease for	a day.
1740	15/t x 1	EW CHAI	H /		
		- 00			
		1/25/18			
715	Acrive 11	Str. West	ner cul (SA	F) 1.1 /	1134 1 60.
143	Rain aran	Acen.	NAV CHO!	1 00/40	119/ 1/ 60-
1720	Callbrate				
804	Ben M Sa	/			
350	Unabi to	relate RW	-7 walt du to	fore aut	Mounds blocker;
		+ handle.	16		, ,,,,,,
U CO		on six to p	rch in sample bette	ly & AT	V
1431		Off 354 to	ADE a lab		
530		8 end of or	les (see RW-)	fidd g	hed)
545	CROSET	•	/		/
	-11	10 th	The second second		
	U	y r-L			
					- In the second
şk					

Site Location: OLD MADIA, P		Date: 47617
Project Number: 03013-0020-032	Initials: Ash	Page 3 of 3
Cow Bu ree for Sunda		
CAIC Store on got a Clark	, I coul sus (414)	71) navala
UTIS Calibrate metas	'/'	
0718 Beyn Jampling		
1000 Tyler Wright (ADO		
	c saugh Neely Wyll	
15H EW9 + Tylar back	as 6577	(v *
1130 Agus setting up in	RW-8 A 1744 G	
	cut PW-8. Vaguers &	. 11
1155 Ton funding out	and we backed &	esistatic pump.
	to just sky RWS 9.	my ne count
pump the ingth on		
	no of day blands) see	MW-035 for
1400 Dyng Dune and	.1	
10105 Jim Craly on 51		
	ughe	
	wo for	
1430 Clay up staying		
1500 CAR Side		
A V		
11/20/14		
- Vullet 1 a		
		T

Site Locati	ion: OM	P					Date: 4	123/2018
Project Nu	mber: 0	3013-002	U-032		Initials:	WS	Page \	of H
0914 A	mive !	onsite, v	neet,	with Jin	n Chaig (J.	AC)		
0	vercast	-,58°F,	und	W 6 mor)			
0935	MCOD	IEW 11	vells .	with A)H	see 41H	notes -	for acc	ess issues
¥	Photogra	applied	large +	fire aut r	rounds 4	unkept	regeta	tion
1018	Begir	taking	water	levels, p	hotograph v	vell issu	લ	
1313 1	omple	te way			(50.40)		4 1 1 1 1	
1335	Duect	egu	privent	garus	(EB-1) E	y pour	ing out	THEOL
	Waster	over d	econn	ed water	level m	eferi (n	JWA# 1/	NWA43
12.15	into so	myre o	ontain	ers	- calila-	L'on	/	
1430					r calibro	याजा		
	Set ur		Aur-2	7				
1549	Set v	Tolonia.	MW-2	Dukil	e filling	MAN-71	5 Latte	C
1610	Collec		mplice		DUP DUP			7
1735	Collec		pmen	1 1	(EB-3	adei		ample of
1122	the d		T			Her th	to the	ough clear
	Silico				ver deco			ver meter
	CNWA		JWA#		sample			
1740	urload				truck'			
1815	LOCK	aak i	offrite					
1820	Pick	wp a	dditio	nal ice	for Jampi	e cool	UT	
							/	
						/	*,	
					10-			
				NL	N /			
				NO	YIAA			
			Also	Vill	00			
		- · ·	MAN	MAC				
			1	n				
			4	6 				
		/						
	_/							
	/				ř			
				4				

Site Loca	tion: DMP			Date: 412418
	umber: 03013-0020	1-137	Initials: EWS	Page 2 of 4
0655	Dick up ico for	or scumple	codoss	
0704	Avrive onsite Begin 1514 tur	clear, caln	1,50°F	9
0720	Begin YSI attur	bidity met	ir calibration	
0800	complete cali	bration, load	d side by side	
0875	Set up on Mn	1-125	0.0 14. 12.5	
1020	collect applic	the sample	- 90	
10 10	Set up on M	10010/ 1-100	-10	
1404	Sign off on C	OCS & have	over sample	
1412	JAC diste			
1424	Set up on Mu	N-105/MW-	100	
1718	Collect com	prient bla	rue EB-5 by pu	mping distilled
	wester through	n deconno	d dec new de	an poly of
	sulcone tuo	ing over a	econned waster !	ever musen
1720	VINTARD SICK-IN	- cd 0 d 100	sample contained thick	(1)
1737	Lock gate 101	Picite,	4 Truck	
1820	Pick we cool	ers for say	mples for tomo	MAN
10 20	THE UP LINE	00 101 200	in the total	1,500
				/
			/	
			MM	
		(X)	Spr. Jolg	
		790		
		1		
	P	NA NA	· · ·	
	و	N. V.		
	/			*

Cita Lacations (ch. 10)		Detail 11/20 11 9
Site Location: OMP Project Number: 03013 - ∞20 - 032	Initials: EVVS	Date: 4/25/18 Page 3' of 4
Oless Pick up ice for soundle coders		rage 3 of 4
0707 Amile onlife clear, calm, 50	OF.	
0717 Camprate 1514 turbidity	meter	
	d side-by-side	
0805 Set up on MW-SS	, , , , , , ,	
0925 Unload side-by-ride		
0935 Set up on MW-15 MW	1-1D	
	AC onsite for s	ide-by-sided
sampe pickup		
1435 JAC' offsite.	4 150-77 101	munama distilla
	k (EB-7) by	pumping distilled
deconned water level in	refers (NWA#18	NWA#8 Into jour
1540 Lock gate , offsite	TOO CHOWN I	roov, c) me jus
July July 1		
¥		
*		
	all I	
17		
CX/N	6/0	
N.	<i>-</i> 1 0	
A CONTRACTOR OF THE CONTRACTOR	Υ	
e W. X		
000		
	V	

Cita I aga	4: ON AVO		Date: 4/26/2019
	tion: OMP umber: 03013-0020 - 032	Initials: EWS	Page 4 of 4
0655	Pick up ice for samples	minus. 0003	Tugo 1 or 1
0700	Arrive Onsite, 50°F. W Mir	d 4 mph, over	AA
0713	Calibrate ISI a turbicuty	id 4 mph, overco	
0741	complete calibration	2000	
0750	set up of MM-1821 MM-		
0957	ADED (Tyler Wright) on	2146	
107	OH SHE WAYN T. ANNOWS.	to sample Neels	ey well
1216	Onsite, set up at MW-	8D/ MMA-80	U
1257	Me charle to make	in amole con	lov .
1420	Complect government by	ank FB-9 b	y Dumping
1110	distilled water through	1 clean tubine	over We meter
	Collect equipment by distilled water through into Sample jars)
	Desi Tibili I care Filos	ving across are	a while filling
1.140	Sample jars		
1430	DAC OHSITE	لمرام عصرونا ماما	The laws
1438	Dump decon water i	ino orano, prio	rograph Quants
1000	Wire part, off site		
			٧
	*		
		N	
		(M)	
	AND TO	1010	
		, IV	
	- 1/2	,	
	a Mula de la companya		
/			
/			
/			

Date/Time:	1346	4-23-18
Prepared By:	ASH	
Location:	OMP	
Project #:	03013-00	120-037

Instrument Type	Instrument ID	Parameter	Standard (su)	Units	Temp. of Standard (degrees C)	Reading Prior to Calibration	Calibrated	Post Calibration Reading	Co	omments
MIPRU PLUS	5	Cond	0	uS/cm	19,5	3.1	Y (N)		to av	
		Cond	447	uS/cm	19,4	453.8	(y) N	OFPH.	7617946	AUG 18
		pН	7	su	123	6-90	(Y) N	7,03	76H158	A4619
		pН	4)10	su	19,0	3,94	(Y) N	400	2C1+050	: Augla
		DO	750,5	mm/Hg	20.2	8. ZE mg/	N	9/11 mg/1		
		Temp		Degrees C	/	/	(N)	N/A		
		ORP	223	nv	20,1	225,3	(Y)N	277.7	8 613 608	101/8
MICRU TPL	15	Turbidity	1000	NTU	N/A	963.1	C) N	9955	71203	DECIG
		Turbidity	10.0	NTU	N/A	10.69	Ø N	10,05	61243	1) 6018
		Turbidity	0,02	NTU	N/A	0,43	(Y) N	0,01	7110)	1019
		Turbidity		NTU	N/A		YN			, ,

Comments:

Notes:

- 1. Specific Conductivity Calibration: Calibrate first to zero using air, then to standard using standard solution.
- 2. pH Calibration (pH Method: EPA 150.1)
- 3. DO Calibration: Use 100% air saturation method. Use pressure in mm/Hg as standard to calibrate in DO% saturation. Record readings in mg/l.
- Temperature Calibration: No calibration is necessary. Record temperature of standard using thermometer while in calibration cup.
 Then record sonde temperature reading.

Precision and accuracy targets are commonly based on relative percent differences. Precision is either based on a relative percent difference between replicates (analytical precision) or duplicate samples (method precision) as follows:

Relative Percent Difference (RPD) = 100 * (rep1 - rep2)/(rep1 + rep2)/2

The standard deviation of the average of a group of replicate (or duplicate) pairs represents the precision for a measurement parameter. For accuracy, percent difference is determined relative to a known or target value and is as follows:

Percent Difference = 100 * (observed - target)/target

Date/Time: 4/23/2018 1345

Location: OMP 1H2018

Project #: 030(3-0020-028 032

Instrument Type	Instrument ID	Parameter	Standard (su)	Units	Temp. of Standard (degrees C)	Reading Prior to Calibration	Calibrated	Post Calibration Reading	Coi	mments
49 Po Plus	#4	Cond	0	uS/cm	20.4	1.2	YN		to air	
,	•	Cond	414	uS/cm	10.2	417.9	(Y) N	414.D	Maria	8GC304
		pН	7,62	su	10.5	7.18	® N	7.02	Feb20	8GB386
		pН	(4) 10	su	10.D	4.00	(Y) N	4.00	Jan 20	8GA 190
		DO	749.8	mm/Hg	19.3	@9.58 mg/	(Y) N	9.04 mg/	TOO WO	vter
		Temp		Degrees C	20.1	\$ 20	N	N/A	Factory C	neck
		ORP	223	mV	20.0	219.2	(Y) N	223,0	Nov 180	8GB608
MICHTIPA	世口	Turbidity	iDOO	NTU	N/A	1021.	(Y) N	1007	May 19	70503
-		Turbidity	[0.0]	NTU	N/A	10.34	√ N	9.96	May 18	7050
		Turbidity	0.02	NTU	N/A	0.51	Y N	0.02	Maria	705
		Turbidity		NTU	N/A		YN		10	

Comments:

Notes:

- 1. Specific Conductivity Calibration: Calibrate first to zero using air, then to standard using standard solution.
- 2. pH Calibration (pH Method: EPA 150.1)
- 3. DO Calibration: Use 100% air saturation method. Use pressure in mm/Hg as standard to calibrate in DO% saturation. Record readings in mg/l.
- Temperature Calibration: No calibration is necessary. Record temperature of standard using thermometer while in calibration cup.
 Then record sonde temperature reading.

Precision and accuracy targets are commonly based on relative percent differences. Precision is either based on a relative percent difference between replicates (analytical precision) or duplicate samples (method precision) as follows:

Relative Percent Difference (RPD) = 100 * (rep1 - rep2)/(rep1 + rep2)/2

The standard deviation of the average of a group of replicate (or duplicate) pairs represents the precision for a measurement parameter. For accuracy, percent difference is determined relative to a known or target value and is as follows:

Percent Difference = 100 * (observed - target)/target

0721	4-24-8
ASI	
OMP	
	ASIX

Project #: 03013 -0020-082

Instrument Type	Instrument ID	Parameter	Standard (su)	Units	Temp. of Standard (degrees C)	Reading Prior to Calibration	Calibrated	Post Calibration Reading	Comments
YYIPRU	5	Cond	0	uS/cm	116	2.1	Y (M)		to an
Plus		Cond	447	uS/cm	12.1	450,0	C) N	4420	76H946 Aug 19
		рН	7	su	[21]	7.11	(Y) N	7.05	7617158 Aus 19
		рН	(4)10	su	13.0	4.08	Ø N	4,00	7617056 A4619
		DO	753.8	mm/Hg	10.5	10,63 mg/	Ø N	9.67 mg/l	
		Temp	13,5	Degrees C	13.6	10	(N)	N/A	factory char
		ORP	227	πV	13.3	230,5	Ø N		86B608 NOV/18
MICROTPW	5	Turbidity	low	NTU	N/A	959,1	QN	1000	SGREOS NOUMS
		Turbidity	10-0	NTU	N/A	9.92	YN	9-93	61743 DEC18
		Turbidity	0.02	NTU	N/A	0.23	Y) N	0.01	71101 Navig
		Turbidity		NTU	N/A		YN		

Notes:

Comments:

- 1. Specific Conductivity Calibration: Calibrate first to zero using air, then to standard using standard solution.
- 2. pH Calibration (pH Method: EPA 150.1)
- 3. DO Calibration: Use 100% air saturation method. Use pressure in mm/Hg as standard to calibrate in DO% saturation. Record readings in mg/l.
- 4. Temperature Calibration: No calibration is necessary. Record temperature of standard using thermometer while in calibration cup. Then record sonde temperature reading.

Precision and accuracy targets are commonly based on relative percent differences. Precision is either based on a relative percent difference between replicates (analytical precision) or duplicate samples (method precision) as follows:

Relative Percent Difference (RPD) = 100 * (rep1 - rep2)/(rep1 + rep2)/2

The standard deviation of the average of a group of replicate (or duplicate) pairs represents the precision for a measurement parameter. For accuracy, percent difference is determined relative to a known or target value and is as follows:

Percent Difference = 100 * (observed - target)/target

71703 DECK

Prepared By: EVVS

Project #: 03013 - 0020 - 03 Z

Instrument Type	Instrument ID	Parameter Cond	Standard (su)	Units uS/cm	Temp. of Standard (degrees C)	Reading Prior to Calibration	Calibrated Y N	Post Calibration Reading	Comments	
									to our	
		Cond	369	uS/cm	12.6	402.0	⟨Y⟩ N	369.0	Mar19	8GC364
		рН	7,04	su	13.2	7.08	Ø N	7.04	Feb20	89384
		рН	4 / 10	su	12.9	4.03	Ø N	4.00	Jan 20	86A190
		DO	753.2	mm/Hg	15.5	10.32 mg/	Ø N	9.12 mg/t	tap mater	
		Temp		Degrees C	13.0	13	N	N/A	factory d	
		OKP	227	mV	12.9	234.6	CY) N	227.0	Nov18	89B608
MichiPM	#6	Turbidity	1000	NTU	N/A	1005	Ŷ N	991.1	May 19	70503
		Turbidity	10.0	NTU	N/A	9.82	N N	10.01	May 18	70521
		Turbidity	0.02	NTU	N/A	0.00	Y N	0.01	May 19	70501
		Turbidity		NTU	N/A		YN			

Comments:

Notes:

- 1. Specific Conductivity Calibration: Calibrate first to zero using air, then to standard using standard solution.
- 2. pH Calibration (pH Method: EPA 150.1)
- 3. DO Calibration: Use 100% air saturation method. Use pressure in mm/Hg as standard to calibrate in DO% saturation. Record readings in mg/l.
- Temperature Calibration: No calibration is necessary. Record temperature of standard using thermometer while in calibration cup.
 Then record sonde temperature reading.

Precision and accuracy targets are commonly based on relative percent differences. Precision is either based on a relative percent difference between replicates (analytical precision) or duplicate samples (method precision) as follows:

Relative Percent Difference (RPD) = 100 * (rep1 - rep2)/(rep1 + rep2)/2

The standard deviation of the average of a group of replicate (or duplicate) pairs represents the precision for a measurement parameter. For accuracy, percent difference is determined relative to a known or target value and is as follows:

Percent Difference = 100 * (observed - target)/target

Date/Time:	0719	4/25/18
Prepared By:	ASIX	
Location:	OMP	
Droinet #1	03 13 -	60000

Instrument Type	Instrument ID	Parameter	Standard (su)	Units	Temp. of Standard (degrees C)	Reading Prior to Calibration	Calibrated	Post Calibration Reading	Comments
152 PRU PLUS	5	Cond	0	uS/cm	13.7	0.6	Y 🔇		to air
		Cond	447	uS/cm	13.7	4014,5	(Y) N	447.1	7614946 AUG 18
		рН	7	su	14,0	703	(Y) N	7.05	704198 Aug 19
		pН	(<u>4</u>)/10	su	14,4	4,04	(Y) N	4,00	76HOSG RUEKI
		DO	754.2	mm/Hg	18.4	9.79 mg/l	(P) N	4,37 mg/l	
		Temp	12	Degrees C	16-8	2/	(N)	N/A	factor, this
		ORP	227	NV	14:1	258.5	(Y) N	2220	86B/08 Non 18
15igu Thu	5	Turbidity	1400	NTU	N/A	976.7	CK N	947,9	712e3 1) EC 19
		Turbidity	1000	NTU	N/A	1.83	(P) N	10,00	151243 1200 18
		Turbidity	002	NTU	N/A	0,28	(Y) N	0.02	71101 Na 19
		Turbidity		NTU	N/A		Y/ N		

Comments:

Notes:

- 1. Specific Conductivity Calibration: Calibrate first to zero using air, then to standard using standard solution.
- 2. pH Calibration (pH Method: EPA 150.1)
- 3. DO Calibration: Use 100% air saturation method. Use pressure in mm/Hg as standard to calibrate in DO% saturation. Record readings in mg/l.
- 4. Temperature Calibration: No calibration is necessary. Record temperature of standard using thermometer while in calibration cup. Then record sonde temperature reading.

Precision and accuracy targets are commonly based on relative percent differences. Precision is either based on a relative percent difference between replicates (analytical precision) or duplicate samples (method precision) as follows:

Relative Percent Difference (RPD) = 100 * (rep1 - rep2)/(rep1 + rep2)/2

The standard deviation of the average of a group of replicate (or duplicate) pairs represents the precision for a measurement parameter. For accuracy, percent difference is determined relative to a known or target value and is as follows:

Percent Difference = 100 * (observed - target)/target

Date/Time: 04/25/2018 0717

Prepared By: EWS

Location: EVA 9 OMP

Project #: 03013-0020-032

Instrument Type	Instrument ID	Parameter	Standard (su)	Units	Temp. of Standard (degrees C)	Reading Prior to Calibration	Calibrated	Post Calibration Reading	Comments
4SI Pro Plus	#4	Cond	0	uS/cm	11.0	2.4	Y (N)	_	to air
		Cond	300	uS/cm	12.4	400.9	(Y) N	369.0	Mar19 8GC364
		рН	7,04	su	15.2	6.99	(Y) N	7.04	Feb20 8618386
		pН	(4)/ 10	su	15,4	3.95	⊗ N	4.00	Jan 20 & GA190
		DO	753.6	mm/Hg	15.1	10.34 mg/	(Y) N	9.97 mg/	tab water
		Temp	15.0	Degrees C		15'	N	N/A	factory check
		ORP	227	mV	15.0	224.0	Y) N	227.0	Nov 18 8 GB608
MICHOTPW	#60	Turbidity	1000	NTU	N/A	1000	Y N	1094	May 19 70503
		Turbidity	i0.0	NTU	N/A	9.99	(Y) N	9.53	May 18 70521
		Turbidity	0.02	NTU	N/A	0.07	(Y) N	0.02	May 19 70501
		Turbidity		NTU	N/A		YN		

Comments:

Notes:

- 1. Specific Conductivity Calibration: Calibrate first to zero using air, then to standard using standard solution.
- 2. pH Calibration (pH Method: EPA 150.1)
- 3. DO Calibration: Use 100% air saturation method. Use pressure in mm/Hg as standard to calibrate in DO% saturation. Record readings in mg/l.
- 4. Temperature Calibration: No calibration is necessary. Record temperature of standard using thermometer while in calibration cup. Then record sonde temperature reading.

Precision and accuracy targets are commonly based on relative percent differences. Precision is either based on a relative percent difference between replicates (analytical precision) or duplicate samples (method precision) as follows:

Relative Percent Difference (RPD) = 100 * (rep1 - rep2)/(rep1 + rep2)/2

The standard deviation of the average of a group of replicate (or duplicate) pairs represents the precision for a measurement parameter. For accuracy, percent difference is determined relative to a known or target value and is as follows:

Percent Difference = 100 * (observed - target)/target

Date/Time: _	4/26/18	0715
Prepared By:	ASH	
Location:	CMP	
Desiret #	12.3-1121-11	200

Instrument Type	Instrument ID	Parameter	Standard (su)	Units	Temp. of Standard (degrees C)	Reading Prior to Calibration	Calibrated	Post Calibration Reading	Com	nments
>> Preury	5	Cond	0	uS/cm	11.7	2.4	Y (N)		train	. 8
	· ·	Cond	447	uS/cm	14.9	426.6	(P) N	4467	8GC 304	MARIA
		pН	7	su	13/3	702	(M)	7.00	7GH158	A46/19
		pН	(4) 10	su	14.5	3,95	(Y) N	4-00	864190	JANRO
		DO	751.0	mm/Hg	131	9,79 mg/	Ø N	10,40 mg/l		
		Temp	125	Degrees C	126		N	N/A	factory c	heck
		URP	U27	m	125	225-1	(Y) N	20,0	8 GB GOY	Nov 18
MILIPUTPW	7	Turbidity	lac	NTU	N/A	1059	(A) N	1000	71703	DEC19
		Turbidity	111,0	NTU	N/A	9.95	() N	998	61743	DEC 18
		Turbidity	200	NTU	N/A	(101)	(9) N	0.06	71101	NW19
		Turbidity		NTU	N/A		ΥN			

Comments:

Notes:

- 1. Specific Conductivity Calibration: Calibrate first to zero using air, then to standard using standard solution.
- 2. pH Calibration (pH Method: EPA 150.1)
- 3. DO Calibration: Use 100% air saturation method. Use pressure in mm/Hg as standard to calibrate in DO% saturation. Record readings in mg/l.
- Temperature Calibration: No calibration is necessary. Record temperature of standard using thermometer while in calibration cup.
 Then record sonde temperature reading.

Precision and accuracy targets are commonly based on relative percent differences. Precision is either based on a relative percent difference between replicates (analytical precision) or duplicate samples (method precision) as follows:

Relative Percent Difference (RPD) = 100 * (rep1 - rep2)/(rep1 + rep2)/2

The standard deviation of the average of a group of replicate (or duplicate) pairs represents the precision for a measurement parameter. For accuracy, percent difference is determined relative to a known or target value and is as follows:

Percent Difference = 100 * (observed - target)/target

Not altrace

Date/Time: 04/26/2018 07/3

Prepared By: EWS

Location: 0MP

Project #: 030/3-0020-082

Instrument Type	Instrument ID	Parameter	Standard (su)	Units	Temp. of Standard (degrees C)	Reading Prior to Calibration	Calibrated	Post Calibration Reading	Com	nments
YST PO Plus	#4	Cond	0	uS/cm	11.7	0.6	Y (N)		to air	
. (1	1	Cond	369.0	uS/cm	14.8	389.5	(Y) N	369.0	May 19	8G(304
		pН	7,04	su	14.6	7,05	Y) N	7.04	Feb20	8 GB384
		pН	(4)/ 10 °	su	14.8	4.01	(P)N	4,00	Jan 20	8 GA190
		DO	750.6	mm/Hg	13.2	10.81 mg/	(Y) N	10.32 mon	tap was	ex
		Temp		Degrees C	14.9	15	N	N/A	factory	check
		0/2/2	227	mV	14.9	227.1	(Ŷ) N	227.0	Nov 18	8GBIOTT
MICHOTPW	#6	Turbidity	1000	NTU	N/A	1100	Ø N	972.9	May19	70503
		Turbidity	10.0	NTU	N/A	9.05	Ø N	10.26	May 18	70921
		Turbidity	0.02	NTU	N/A	0.00	(Ŷ) N	0.17	6104/19	70501
		Turbidity		NTU	N/A		YN			

Comments:

Notes:

- 1. Specific Conductivity Calibration: Calibrate first to zero using air, then to standard using standard solution.
- 2. pH Calibration (pH Method: EPA 150.1)
- 3. DO Calibration: Use 100% air saturation method. Use pressure in mm/Hg as standard to calibrate in DO% saturation. Record readings in mg/l.
- Temperature Calibration: No calibration is necessary. Record temperature of standard using thermometer while in calibration cup.
 Then record sonde temperature reading.

Precision and accuracy targets are commonly based on relative percent differences. Precision is either based on a relative percent difference between replicates (analytical precision) or duplicate samples (method precision) as follows:

Relative Percent Difference (RPD) = 100 * (rep1 - rep2)/(rep1 + rep2)/2

The standard deviation of the average of a group of replicate (or duplicate) pairs represents the precision for a measurement parameter. For accuracy, percent difference is determined relative to a known or target value and is as follows:

Percent Difference = 100 * (observed - target)/target

Project Nan	ne:	Pro	ject Number:		Investiga	tor:			
OLD MII	AND.	()3	013-0020-03	7	ASI.	3		Page \of_Z	
Weather Co			suring Device:			L			
_			•						
CLEAR,	60%	1 1/1	NA#4						
Well ID	Date	Time +	Depth to + Water (feet below RP)		Damages/Repairs				
MW-175	4/23/18	1036	3.24	Damaged bo	uipment	☐ Damaged TOC ☐ Damaged lock ☑ Un-kept vegetation		Lacks visibility treen the Lacks access ants around See gw sample record well	
MW-185		1046	3.42	Damaged working Damaged bo	ollards uipment	☐ Damaged TOC ☐ Damaged lock ☐ Un-kept vegetation		Lacks visibility Lacks access See gw sample record	
MW-181)		1049	5.21	Damaged bo	uipment	Damaged TOC Damaged lock Un-kept vegetation		Lacks visibility Lacks access See gw sample record	
MU-23 MW-160		1059	7.49	Damaged wo	ollards uipment	Damaged TOC Damaged lock Un-kept vegetation		Lacks visibility Lacks access See gw sample record	
MW-160		801)	7.53	Damaged bo	uipment	Damaged TOC Damaged lock Un-kept vegetation		Lacks visibility Lacks access See gw sample record	
MW-165		1201	6.41	Damaged wo	ollards uipment	Damaged TOC Damaged lock Un-kept vegetation		Lacks visibility Lacks access See gw sample record	
MW-205		1214	31.22	Damaged wo	llards uipment	Damaged TOC Damaged lock Un-kept vegetation		Lacks visibility Great studys Lacks access on Probe tip See gw sample record	
MW-20D		1126	6.66	Damaged we Damaged bo Damaged eq	ollards uipment	Damaged TOC Damaged lock Un-kept vegetation		Lacks visibility Lacks access See gw sample record	
MW-195		1134	10.46	Damaged wo Damaged bo Damaged eq	llards uipment	☐ Damaged TOC ☐ Damaged lock ☐ Un-kept vegetation		Lacks visibility Lacks access See gw sample record	
RW-41		1154	VAULT FLOODED	Damaged wo	llards uipment	Damaged TOC Damaged lock Un-kept vegetation		Lacks visibility Lacks access See gw sample record	
MW-225		1207	7.78	Damaged bo	uipment	☐ Damaged TOC ☐ Damaged lock ☐ Un-kept vegetation		Lacks visibility Lacks access See gw sample record	
Rw-5		1155	VAULT FLOODED	☐ Damaged wo ☐ Damaged bo ☐ Damaged eq	llards	Damaged TOC Damaged lock ++ Un-kept vegetation		Lacks visibility Fire Lacks access ants See gw sample record	
Rw-3		1157	VAULT FLOODED	☐ Damaged bo ☐ Damaged eq		☐ Damaged TOC ☐ Damaged lock ☐ Un-kept vegetation		Lacks visibility Lacks access See gw sample record	
RW-6		1153	VAULT FLOODED	Damaged wo	llards	☐ Damaged TOC ☐ Damaged lock ☐ Un-kept vegetation		Lacks visibility Lacks access See gw sample record	
Mw-1910		1222	5,43		ell pad/casing	☐ Damaged TOC ☐ Damaged lock ☑ Un-kept vegetation		Lacks visibility Lacks access See gw sample record	

RP = Reference Point TOC = Top of Casing gw = groundwater

+ transcribed by EWS on 5/1/2018

++ balbock HAIP BROKEN ON ONE SIDE OF VAULT LID

rroject Nar	ne:		1	Proj	ect Number:	Investigator:					2 2		
OUD MI	DLAN	17		()3	013-0070-0	37		A511				Page Z of Z	
Weather Co					suring Device:			7 1 7					
		, iii			VA# 4								
CLEAR,	60 3			NA	VA#7								
			+		† Depth to								
Well ID	Da	ate	Time	e	Water (feet				Ι	Damages/Repairs			
					below RP)					9			
				-	,								
			1000 000	_	6.38		Damaged we	I pad/casing		Damaged TOC		Lacks visibility	
MW-35	14/2	3/18	123	12			Damaged bol	lards		Damaged lock		Lacks access	
/1W - 25		710			24.11		Damaged equ	ipment		Un-kept vegetation		See gw sample record	
	1		000		VAULT	님	Damaged we			Damaged TOC		Lacks visibility	
RW-2	1		095	8	PLUDED	님	Damaged bol		님	Damaged lock		Lacks access	
						井	Damaged equ		님	Un-kept vegetation		See gw sample record	
'			بلتصنا	~ 1	VAULT	H	Damaged we		H	Damaged TOC		Lacks visibility	
RW-7	1		124		FLOODED		Damaged bol Damaged equ	P 4 4		Damaged lock Un-kept vegetation		Lacks access See gw sample record	
				_		Ħ	Damaged we			Damaged TOC	H	Lacks visibility VISIBLE	Sheets
RW-1			124	Z	0.06		Damaged bol	1.70		Damaged lock		Lacks access in well	and
1100 1			121	0	28,95		Damaged equ			Un-kept vegetation		See gw sample record va	uut
					4.14		Damaged we			Damaged TOC		Lacks visibility	
MW-30	1		1301	0			Damaged bol			Damaged lock		Lacks access	
Mw-31)			, ,		38.55		Damaged equ	ipment		Un-kept vegetation		See gw sample record	
					VAULT		Damaged we			Damaged TOC		Lacks visibility	
Rw-8			094	9	FLUCDED		Damaged bol			Damaged lock		Lacks access	
1(00 0					7	님	Damaged equ		N		片	See gw sample record	
		\	1110	,	5.47	H	Damaged we			Damaged TOC		Lacks visibility	
MW-221)	1	ا را	1118		42,22	H	Damaged bol			Damaged lock	H	Lacks access	
. 1	,				7 76166	౼	Damaged equipment Damaged we			Un-kept vegetation Damaged TOC	H	See gw sample record Lacks visibility	
										Damaged lock		Lacks access	
							Damaged equ			Un-kept vegetation		See gw sample record	
							Damaged we			Damaged TOC		Lacks visibility	
							Damaged bol	lards		Damaged lock		Lacks access	
							Damaged equ	~		Un-kept vegetation		See gw sample record	
						닏	Damaged we			Damaged TOC		Lacks visibility	
							Damaged bol		님			Lacks access	
						님	Damaged equ				片	See gw sample record	
						H	Damaged we Damaged bol			Damaged TOC Damaged lock		Lacks visibility Lacks access	
							Damaged equ			Un-kept vegetation		See gw sample record	
					-		Damaged we			Damaged TOC	ō	Lacks visibility	İ
										Damaged lock		Lacks access	
							Damaged equ			Un-kept vegetation		See gw sample record	
										Damaged TOC		Lacks visibility	
										Damaged lock		Lacks access	
										Un-kept vegetation	Ц	See gw sample record	
						님	_			Damaged TOC	닏	Lacks visibility	
							_			Damaged lock		Lacks access	
						님	Damaged equ		님	Un-kept vegetation	무	See gw sample record	
										Damaged TOC Damaged lock		Lacks visibility Lacks access	
						H	Damaged equ					See gw sample record	
Notes:							Danaged eqt	pinent		On Rept regetation		See 64 sample record	Į

RP = Reference Point TOC = Top of Casing gw = groundwater + transcribed by EWI on 5/1/2018

Project Na		y	1 '	ject Number: 13-0020 - 03	2	Investiga	itor:		Page 1 of 2
Weather C			-	suring Device:	-	EWS		-	1 4 6 1 01
overcast		, light	W IM	VA# I/NW	A#3	TD: To	tal Depth		
Well ID	D	ate	Time	Depth to Water (feet below RP)	10 = 70	tal Debth	Damages/Repairs		,
P-035	4/2	13/18	1028	1.00 Tp: 20.81			Damaged TOC Damaged lock Un-kept vegetation		Lacks visibility Lacks access See gw sample record
P-03D		}	1030	3.70	☐ Damaged w ☐ Damaged b ☐ Damaged e	ell pad/casing ollards	Damaged TOC Damaged lock Un-kept vegetation		Lacks visibility Lacks access See gw sample record
P-02S			1040	4.07	Damaged w Damaged b Damaged e		☐ Damaged TOC ☐ Damaged lock ☐ Un-kept vegetation		Lacks visibility Lacks access See gw sample record
P-02D			1042	35.60	Damaged b	quipment	Damaged TOC Damaged lock Un-kept vegetation		Lacks visibility SEFT Lacks access BUTTOM See gw sample record
WMOIS			1055	11.10	Damaged b	quipment	Damaged TOC FIRE Damaged lock Un-kept vegetation		Lacks visibility Lacks access See gw sample record
MW-DID		,	1059	3.89	Damaged b	quipment	Damaged TOC Damaged lock Un-kept vegetation		Lacks visibility THEE Lacks access See gw sample record
P-085		4	1108	13.55	Damaged b	quipment	Damaged TOC Damaged lock Un-kept vegetation Damaged TOC		Lacks visibility NEED Lacks access WEEP H
P-675			1113	1.44	Damaged b	quipment	Damaged lock Un-kept vegetation		Lacks visibility SEFT Lacks access Bettom See gw sample record
MW-125			1111	24.88	Damaged b	quipment	Damaged TOC Damaged lock Un-kept vegetation Damaged TOC		Lacks visibility SOFT Lacks access Bollom See gw sample record Lacks visibility
P-055	16		1123	ARTESIAN 14.08	Damaged b	Control of the second of the s	Damaged ToC Damaged lock Un-kept vegetation Damaged TOC		Lacks visibility Lacks access See gw sample record Lacks visibility
P-05D			1127	ANTESIAN 40.80	Damaged b	ollards quipment	☐ Damaged lock ☐ Un-kept vegetation		Lacks access See gw sample record
MW-55			1141	20.50	Damaged b	quipment	Damaged TOC FILE Damaged lock AND Un-kept vegetation		Lacks visibility NEED Lacks access WEEP to See gw sample record
P-045			1150	4.90	Damaged be	quipment	Damaged TOC Damaged lock Un-kept vegetation Damaged TOC		Lacks visibility SOFT Lacks access Bollom See gw sample record
P-04D			1154	4.74	Damaged be	quipment	☐ Damaged lock☐ Un-kept vegetation		Lacks visibility Lacks access See gw sample record
MW-2	IS .		1204	5.06	☐ Damaged w ☐ Damaged b ☐ Damaged e		Damaged TOC SOFT Damaged lock BITDM Un-kept vegetation		Lacks visibility NEED Lacks access PAINT See gw sample record

Notes: RP = Reference Point TOC = Top of Casing gw = groundwater

* Water in protective steel caving, needs weephole ** water flowing out of protective steel caving over lock (see photo)

roject Nai			ject Number: 013-602D - D	Investiga EWS		Page 2 of 2
Weather Co	onditions:	Me	asuring Device:		Total Depth	1000
Well ID	Date	Time	Depth to Water (feet below RP)	1	Damages/Repairs	
MW-21D	4/23/18	1208	4.50 TD:46.95	Damaged well pad/casing Damaged bollards Damaged equipment		Lacks visibility NEED Lacks access PAINT See gw sample record
P-065		1220	5.72	Damaged well pad/casing Damaged bollards Damaged equipment		Lacks visibility Lacks access See gw sample record
P-OVED		1224	3.31	☐ Damaged well pad/casing ☐ Damaged bollards ☐ Damaged equipment		Lacks visibility Lacks access See gw sample record
MW-095		1233	5.32 20.30 3.75	Damaged well pad/casing	Damaged TOC Damaged lock Coff of Un-kept vegetation	Lacks visibility
MW-09D		1237	3.75	Damaged well pad/casing Damaged bollards Damaged equipment	Damaged TOC SOFF	Lacks visibility Lacks access See gw sample record
MW.105		1246	1.70	Damaged well pad/casing Damaged bollards Damaged equipment	☐ Damaged TOC ☐	Lacks visibility Lacks access See gw sample record
MW-10D		1250	2.11	Damaged well pad/casing Damaged bollards Damaged equipment	Damaged TOC STOFT	Lacks visibility Lacks access See gw sample record
MW-85		1302	5.31	☐ Damaged well pad/casing ☐ Damaged bollards ☐ Damaged equipment	☐ Damaged TOC [Lacks visibility Lacks access See gw sample record
WM-8D	1	1304	6.74	Damaged well pad/casing	☐ Damaged TOC ☐	Lacks visibility Lacks access See gw sample record
1				☐ Damaged well pad/casing ☐ Damaged bollards ☐ Damaged equipment	☐ Damaged TOC ☐	Lacks visibility Lacks access See gw sample record
	T. 0			☐ Damaged well pad/casing ☐ Damaged bollards ☐ Damaged equipment	☐ Damaged TOC	Lacks visibility Lacks access See gw sample record
			jii	☐ Damaged well pad/casing ☐ Damaged bollards ☐ Damaged equipment	part p	Lacks visibility Lacks access See gw sample record
		×		☐ Damaged well pad/casing ☐ Damaged bollards ☐ Damaged equipment	☐ Damaged TOC ☐ Damaged lock ☐	Lacks visibility Lacks access See gw sample record
		1		☐ Damaged well pad/casing ☐ Damaged bollards ☐ Damaged equipment	☐ Damaged TOC ☐	Lacks visibility Lacks access See gw sample record
)	12		4	Damaged well pad/casing Damaged bollards Damaged equipment	Damaged TOC Damaged lock	Lacks visibility Lacks access See gw sample record
Notes: RP = Reference Poin TOC = Top of Casin gw = groundwater		r standi PL Detec	ny/flowing Hed	abund well		

Groundwater Sampling Record Facility: OMP Sampler: FW) oject Number: 03013 - 0010 - 032 FTN Associates, Ltd Date: 04 **Site Description** Type: Monitoring Well Temporary Well Extraction Well Production Well Dewatering Well Borehole Other 60 Air Temp (°F): Wind: SW Weather: Dunnath Well Locked? ☐ Yes ☐ No Total Depth (ft) 19.15 Remarks: Unit rain while filling bottles Water Level Data Measuring point description: Water level Meter Make/Model No. Serial No. (Optional): MWAH Mark/notch on TOC North rim of TOC Pre-purge During Purge After Pre-purge Remarks Other: initial confirmation purging end sampling 0940 0.30 Time ("24:00" hr) 055 1013 Depth to Water (ft) 5.45 544 Date (mm/dd/yy) 64/23/18 LNAPL Thickness (ft) (If present) DNAPL Thickness (ft) (If present) Note: Record "S" in Remarks Column if sheen is observed. Field Data Unit or Serial No: Instrument Make/Model No: Pump description: Bailer description: 131 BU YM ✓ Peristaltic ☐ Disposable polyethylene #10 MICHOTPH Bladder (dedicated / portable) ☐ Disposable Teflon ☐ Submersible ☐ Disposable PVC Purge depth (ft): Well goes dry during purging: Yes No Casing vol. (gal): = [total depth (feet) - depth to water (feet)] • [well ID (inches)²] • 0.0408 (where applicable) Time ("24:00" hr) 10:30 Remarks Purge vol. (gal) Purge rate (mL/min) 20 6.14 5.52 5.55 5.53 5.57 pH (su) Temp. (°C) 15 5 16.6 Spec. cond. (µS/cm) D.O. (mg/L) ORP (mV) Turbidity (NTU) 0.95 Color/tint Clear Odor Nove Sample Data

Sample ID	Date	Time	# Containers	# Filtered	Remarks
MW-1S	04/25/18	1038	4	Ø	1x1L amber; 1x1L platic; 1x125mc
*	1				plattic; 1x40mc glass
					J.

Sampler's Name (print): Furabeth, St.	ndebaker	Sampler Signature:	Olyphalala
1.01.	100 1		-04

Facility: OMP				T	Site ID:	Mai-	ID	Sample	er: FM	/\			
oject Number: 03	013-002	1-0	32	1	Date: ()			Junipa	UV	40		FTN As	sociates, Ltd
	017 001	<u> </u>				400	10 1						
Site Description													
Type: Monitoring W		orary W					ction Wel	l De			orehole [
Weather: Ught ro		_			np (°F):	51				Wind: V			
Well Locked? Yes	s □ No	Total	Depth (f			Damag	ge/repair	s neede	d: WN	cept v	exta	tion	
Remarks:				40	4.00					•	0		
			24		S 1/44 /4	1			-				
Water Level Data			Fe2t	et	o mg	IL							
Measuring point descr		Wa	ater level	Mete	r Make/l	Model N	No.		Serial N	lo. (Optio	onal):		
Mark/notch on TO			MA		D-0	- 1	Duning	_	Durana	1 4	fter		
Other:			re-purge initial		Pre-purg onfirmati		During purging		Purge end		pling	Re	marks
Time ("24:00" hr)			059		047		1115	1	147		00		
Depth to Water (ft)			,89	_	1.12		4.70	1	1.78		78		
Date (mm/dd/yy)			1124/18	_	41251	18 -			1.10		7		
LNAPL Thickness (ft)			1 1 10		11								
DNAPL Thickness (ft		۱.		1									
Note: Record "S" in Remark	ks Column if si	neen is ob	oserved.										
Field Data										19			
Instrument Make/Mod	lel No: U	Init or S	Serial No:				p descri			H		scription:	
151 Ho Al	" –		#4				Peristalt Bladder		ted / por	table)		osable po osable Te	lyethylene
TANCHALL A			-4				Submer		ited / por	uoic)		osable PV	
Purge depth (ft):	~35	~47	1.5		Well g	oes dry	during p	ourging:	□ Y∈	s 🗹 N	0		
Casing vol. (gal):					= [total	depth (f	eet) – der	oth to wa	ter (feet)]	• [well ID	(inches)	²] • 0.0408	
(where applicable) Time ("24:00" hr)	1000	100 1	4×0 1	115			1177	1101	1135	11201	1143 R		1
	1057 1	1021	110 1	115	1120	1123	1121	1131	1132	1131	11424	ematks/	
Purge vol. (gal) Purge rate (mL/min)	120 -	- 20 1	60 -		3	35						~.5	
pH (su)	120 -			07	6.94		7.00	7 01	701	7.00	7.01	7~	
	1 1/						7.00		1.0		1.01	7.00	
Temp. (°C) Spec. cond. (μS/cm)	286.8 2	N. 20	54 15	2.3	15.1	15.2	167	15,5	15,2	1876	2077	287.71	
D.O. (mg/L)	11222	300	071	12	221	2.93	770	2.67	2.63	2.94	2 1.0	2.68	
ORP (mV)	51100	18.01	36.4 13	0.5	108.D	987	74.0	70.9	00.7	50.8	43.1	39.5	
Turbidity (NTU)	7 11 0			1916		1.001	1,04	0.98	-	1.36	0.99	0.82	
Color/tint	Clear -	ופשיי	Ture U	140	LOL	(10)	1107	0.10	100	11.70	8011	0.12	
Odor	100												-
Odol	None.											1	
Sample Data													
Sample ID	Date	Tin	ne #	Con	tainers	# F:	iltered			R	emarks		
MW-ID	04/125/18	IIL	19	4		1	0	IXIL	amhe	V:IXI	L plast	ic; 1x	15ml.
1	1.110									10 ml			
1								7	-1-1		7		
			***	V		- di-					-0		
Sampler's Name (print): Elizer	neth	Stude	bal	ur		Samp	ler Sign	ature:	tall	L ST	Tushba	h
			0,						-		00		

Facility: OLD M	IDLAW	10			Site ID: /	1w-035	Sample	er: As	14	
oject Number: (13013 -	0070	-032		Date: 4	176118				FTN Associates, Ltd
Site Description			. 1							
Type: Monitoring	Well TT	empora	ary Well	Extraction	on Well	Production We	ıll Dev	vatering W	ell Borehole	Other
Weather: CLeu					mp (°F):	50				
Well Locked?		1	Total Det	oth (ft) V		Damage/repai	rs needed	1: .1.	Wind: ~ 1 Ung	
Domarka	7 Z								M VIGHTIV	7
Water Level Data			1							
Measuring point des			Water	evel Mete	er Make/M	odel No.		Serial No	o. (Optional):	
Mark/notch on T			- D		144	1 p :		D	1 40	
North rim of TO	C		Pre-priniti		Pre-purge onfirmation	During n purging		Purge end	After sampling	Remarks
Time ("24:00" hr)			123		1810	0433		847	1127	
Depth to Water (ft)			6.3		6.38	6.76		6.76	6.73	
Date (mm/dd/yy)			4/23		1/26/15			J- 75	 	
LNAPL Thickness (f			MONE							4
DNAPL Thickness (1) Note: Record "S" in Rema			NONE						-	
Field Data Instrument Make/Mo		Uni	t or Seria	1 No:		Pump descr				escription:
MILLOW				5		☐ Bladder		ted / porta	ıble) 🗌 Disp	osable Teflon
						Submer			A	oosable PVC
Purge depth (ft):		~27	1.5		Well goo	es dry during	purging:	∏ Yes	No	
Casing vol. (gal): (where applicable)						epth (feet) – de	pth to wat	er (feet)] •	[well ID (inches)	²] • 0.0408
Time ("24:00" hr)	0816	083	6083	6 0841		7			P	Remarks
Purge vol. (gal)					1.2				*	
Purge rate (mL/min)	30	_	_		4_					
pH (su)	6.09	6.1	7 6-18	6.19	6.19					
Temp. (°C)	13.8	13.0	1 14.3	14.5	14.7					
Spec. cond. (µS/cm)				7 3458						
D.O. (mg/L)	0.84	1.14		3 6,95						
ORP (mV)	-164,2			5-175.5						
Turbidity (NTU)	20,39				3,42					
Color/tint	CLEAR				->					
Odor	YES.		_		->					
Samula Data	-de-contract	A	- 16-			- 1				
Sample Data Sample ID	Date	-1	Time	# Con	tainers	# Filtered	T	5	Remarks	
MW-035	4/26/	_		4	taniers	# Printered			Remarks	
EB-10	1/20/	170	1340	4		0	1 11 1403	14 H Z	1 Con Maria	a. 1 11 1
- 15 - 10	+		15-10						of NWA AU	
)				-			1	THUT	M. J. T. C.	7
Sampler's Name (prin	nt): A1	Ex	HAMI	***		Samo	ler Signa	ture:	11. Alun	

Facility: OLD M	DOL AA	1)			Site ID	: Mu	-03 D	Samp	ler: A5	14	
oject Number:		1)			Date:	1/20	118				FTN Associates, Ltd
								*			
Site Description				-							
Type: Monitoring W			Well L								
Weather: Partly	Clary	- 1			emp (°F):		55		. I V	Vind: ≈ 5,	7 4
Well Locked? Yes				th (ft) 3	8,55	Dam	age/repai	rs need	ed:		trim ve getita
Remarks:	-15		1								
	100/	4									
Water Level Data											
Measuring point descri			Water le		er Make/		No.		Serial No	o. (Optional):	
► Mark/notch on TO North rim of TOC		-	Pre-pu		Pre-pur		During		Purge	After	
Other:			initia		onfirmat		purging		end	sampling	Remarks
Time ("24:00" hr)			1300		0857	_	0943		0925	0946	
Depth to Water (ft)			4,14		4,19		1.25		4,29	4,34	
Date (mm/dd/yy)			4/23/	1 .	81/22/	16				3	
LNAPL Thickness (ft) (If presen		YES		retor i	mil	net mea	some +	Licknes, b.	play	
DNAPL Thickness (ft	The second second	THE RESERVE TO THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COL		٥	E prod	ust in	probe :	ip at	the gam.	play	
Note: Record "S" in Remar	rks Column	if sheen	s observed	1.			•			0	
Field Data											
Instrument Make/Mod		Unit	or <u>Serial</u>	No:		Pu	ımp descr	iption:		Bailer	lescription:
YSI PRU A			5			=	Peristal				posable polyethylene
MICHO	710		5				Bladder Submer		ated / porta		sposable Teflon sposable PVC
Purge depth (ft):			33	-	Well	roes di			: TYes		posable i ve
Casing vol. (gal):		~	77							-	22 00400
(where applicable)				_	= [tota	l depth	(feet) – de	pth to w	ater (feet)]	[well ID (inche	
Time ("24:00" hr)	0901	0901	0911	0916	0921	0924					Remarks
Purge vol. (gal)						~.0					
Purge rate (mL/min)	140			+	_		>				
pH (su)	6.90	6.82	182	631	673	6.7	7				
Temp. (°C)	15.0				15,4	15,4					
Spec. cond. (µS/cm)	743	698	694	690	184	684	1				
D.O. (mg/L)		0.43	0,41	0.36	,	03	ь				
ORP (mV)	-165,4				174,8						
Turbidity (NTU)				4,16		197					
Color/tint	CLEAR					->					
Odor	YES		-			-	>				
	-		- 11								
Sample Data											
Sample ID	Date		Time	# Co	ntainers	#	Filtered			Remark	8
MW-03D	4/26/1	80	176	0			0				
1											
								*******			/
Sampler's Name (prin	t): A	LEX	HA	MLIN	i i		Samp	ler Sign	nature:	ller Plu	1

Facility: OMP					Site ID	:MV	N-55	Samp	ler: EW	S		
oject Number: 02	013-0	20-	032		Date:	041	25/18					FTN Associates, Ltd
						1	1					
Site Description												
Type: Monitoring								ell De	ewatering		-	Other
Weather: Scatt		1000)		emp (°F):				1 1.1.	Wind: (aim	
Well Locked? Ye		10	tal Dep	th (ft)	0.50	Da	mage/repa	irs need	ed: 1000	& tire	COULT 1	mound near S side
Remarks: Ayea all	Lessibe	10 211	ne-no	1- Mau	brug	au	e to w	er w	ruutto	WIF C	eck	0-00
			25-	's n	nol.							
Water Level Data			e 2to		71				_			
Measuring point desc		'			ter Make/	Mod	el No.		Serial N	No. (Opti	onal):	
Mark/notch on To			NW/ Pre-pu		Pre-purg	oe.	Durin	o	Purge	T A	fter	
Other:			initi		confirmat		purgin	_	end		pling	Remarks
Time ("24:00" hr)			114	1	08810		0832) (151	00	112	
Depth to Water (ft)			4,6	-	4,70		4.82		4.84		89	
Date (mm/dd/yy)		C	4123	118	04/125/					_	->	N.
LNAPL Thickness (f			Vory		1 /							
DNAPL Thickness (f Note: Record "S" in Rema			101ce			_						
Note. Record 5 III Reina	uks Cotumn i	I SHECH IS	ODSCIVE	u.								
Field Data												
Instrument Make/Mo		Unit o	r Serial	No:		F	ump desc]		escription:
1SI Pro P	<u>\(\) \(\)</u>	井し				1	✓ Perista ✓ Bladde		ated / por	table)		oosable polyethylene oosable Teflon
MICKOTT	/ •			× 1	1		Subme	The second of the second	atea / por	idolo)		osable PVC
Purge depth (ft):	V18				Well	goes	dry during	purging	: TY	es N	О	
Casing vol. (gal): (where applicable)					= [tota	l dept	th (feet) - d	epth to w	ater (feet)]	• [well II	(inches)	o ²] • 0.0408
Time ("24:00" hr)	0819	0824	082	1 0831	0833	08	36 0839	1084	10845	0848	10851	Remarks
Purge vol. (gal)										0 .0	1.8	
Purge rate (mL/min)	100	-									K	
pH (su)	6.36	6.34	6.35	0.40	10.42	10.U	13 6.44	10.46	6,44	6.45	6,45	,
Temp. (°C)	15,0	15,0	15,0		15.1	15	2 15.2	15.3	15,4	15.4	15.41	
Spec. cond. $(\mu S/cm)$	455.3	439.1	439:	3 439.	4429.0	440	0.5 440.	2 440.4	14404	440.c	440.9	
D.O. (mg/L)	1,32	0.64	0.4	10.4	2 0.37	0.2	5 1 0.34	0.32	0.31	0.29	0.29	
ORP (mV)	166.8	1319	120.	2115.1	0 111.5	109	1.8101.	1104.0	1104.0	(O)	102.4	
Turbidity (NTU)		4.64	-	1.91	1.87	2,4	13 1,104	2.37		1.601	1.39	
Color/tint	Clear										-	
Odor	Nove				-			- V			-	
Sample Data	& black	Livinge	notes	d fin	65						1	
Sample ID	Date	1	Time	# Co	ntainers	T	# Filtered	T		F	Remarks	
MW-55	04/15/1		153	4			0	1v1	a malas sa			16; 1x125mL
Inter On	Mali	n A	ريو	,			V		tici IX			
								hin	10 C (X	1010	7100	NO .
)				127								
Sampler's Name (prin	at) et lia	11.014	n (1	110012	1621	-	Sam	plas Sign	nature: 6	N.D. H	11 .000	dale

T		_			C'A- ID	. 44.	0.0	C	1	1511	
Facility: Own Mai				===		: MW-		Samp	ler:	4514	FTN Associates, Ltd
oject Number: C	3013-0	16 20	-0.5c		Date:	4-20	78				FIN Associates, Ltd
Site Description											
Type: Monitoring W	ell 🔲 Te	mporar	y Well	Extracti	on Well	Prod	uction We	11 🔲 D	ewatering W	ell 🔲 Borehole	Other
Weather: C(au)	4			Air Te	mp (°F):		62		V	Wind: Sme	9
Well Locked? Yes		Т	otal Dep	th (ft) 2	2.42		age/repair	rs need	ed:	Nant	
Remarks:	t= 0										
16		m7/1									
Water Level Data											
Measuring point descr	iption:	T	Water le	evel Mete	er Make	/Model	No.		Serial No	o. (Optional):	
Mark/notch on TO					MA	· #)					
North rim of TOC ☐ Other:			Pre-pu		Pre-pur		During		Purge	After	Remarks
			initia	-	onfirma	tion	purging		end	sampling	
Time ("24:00" hr)			1307				1233		1246	1322	
Depth to Water (ft) Date (mm/dd/yy)			5.31		5,35	110	5,46		5,46	5,48	
LNAPL Thickness (ft)	(If present	t)	4/23/		1/ 60/	10-				*	
DNAPL Thickness (ft)	(If presen	t)									
Note: Record "S" in Remark	cs Column	if sheen	is observed	1.							
Field Data											
Instrument Make/Mod	el No:	Unit	or Serial	No:		Pu	mp descri	ption:		Bailer d	escription:
191 PRU	Plus	_		5			Peristal				posable polyethylene
MICROT	10	_		-5		-	Bladder Submer		ated / porta		posable Teflon posable PVC
Purge depth (ft):	~1	7			Well	goes de	y during j		· [Ves	No No	posable F V C
Casing vol. (gal):	701	-								-70	21 0.0400
(where applicable)						il depth	(feet) – de	pth to w	ater (feet)] •	[well ID (inches)"] • 0.0408
Time ("24:00" hr)	1219	122	1 1220	1 1234	1239.	2/3	1245]	Remarks
Purge vol. (gal)				·		1017	~.5				
Purge rate (mL/min)	80	65	 	-			\rightarrow				
pH (su)	5,74	5.68	5.65	5,64	5.65	5.68					
Temp. (°C)	160	15.0	1 150	18,9	15-8	15,4	16.0				
Spec. cond. (µS/cm)	898	895	894		891	888	888				
D.O. (mg/L)	141	1,05	0.90	0.77	0.10	0.76	0.68				
ORP (mV)	-157,3	164,	3 -165.0			170,7					
Turbidity (NTU)	1,27		7.16	3.18	HIMO	210	224				
Color/tint	CLESON				-	_	>				
Odor	NOVE					-	->				
					5.42						
Sample Data				770 0000				T			
Sample ID	Date		Time		ntainers	#]	Filtered			Remarks	
MW-85	4/20,		247	L	`		0				
IDW-1	4/201	18	410	L			0				*
										All Ari	
Sampler's Name (print): AL	EX	1+	AMLIN			Samp	ler Sign	nature:	al Men	

Facility: OMP				Site ID	Mh	1-80	Sample	r: FN	15			
oject Number: 03013-	0020	-D32		Date:	1.00		-	UIV		- 1	FTN Associa	ates, Ltd
0/01					1	113						
Site Description				-								
Type: Monitoring Well	Tempor	ary Well		-			1 Dev				Other	
Weather: OVERCAST				Γemp (°F):					Wind: V		mph	
Well Locked? Yes N	0	Total D	epth (ft)_	44.28	Dam	age/repair	rs needed	1: Nor	R, U	neep	ot vyeta	tion
Remarks:										,	V	
				1 t x	^	400		_				× ×
Water Level Data			t	ezt:	U	mg/L				1.60	y.	
Measuring point description:		Water	level M	eter Make/	Model	No.		Serial N	lo. (Optic	nal):		
Mark/notch on TOC North rim of TOC			WAT	Pre-purg		During		Purge	Λ.4	ter	2	
Other:			purge tial	confirmat		purging		end	sam		Remar	ks
Time ("24:00" hr)		130		1157		1233		303	-	14		
Depth to Water (ft)		-	16	6.72	,	7,21		7,31	1	50		
Date (mm/dd/yy)		104/2	3/18	04/26/						-3		
LNAPL Thickness (ft) (If pres		NUM	21	-1	1							
DNAPL Thickness (ft) (If pre Note: Record "S" in Remarks Colum		No							-	-		
Note: Record S in Remarks Colum	m II snec	n is obser	vea.									
Field Data												
Instrument Make/Model No:	Un	t or Ser	al No:			mp descri Peristalt			B		escription:	
TIT FOR PLUS		# 10			2	The state of the s		ted / port	table)		oosable polyetl oosable Teflon	
- Walan Aa		-				Submer			į		oosable PVC	
Purge depth (ft):	, 40)		Well g	oes dr	y during p	ourging:	□ Ye	s 🗹 No)		
Casing vol. (gal):	1,6,6,7			= [total	depth ((feet) – de	oth to wat	ter (feet)]	• [well ID	(inches)) ²] • 0.0408	
(where applicable) Time ("24:00" hr)	8 121	3 121	8 122	3 1228	1233	1138	1243	1248	1253	1125	2m43603	
Purge vol. (gal)	100	3 14	• 177	3(14)	1677	100	1673	100	1270	1100	14,4	
Purge rate (mL/min) 30				_	_					-	1	
		3070	9 7.5	8 7.57	TC	700	7.52	7,51	7.51	7,5	1751	
Temp. (°C)		0 19	1 18	2 18.0		16.4	16.6	171	17 1		0 16.8	
Spec. cond. (µS/cm) 377	7 38	338		1.3 305,6	284		-	3/2.3	2×2/		6 382.1	
D.O. (mg/L) 3.2	770		D 2.L	11111	2.00		2.28	1 17	1.90	113	7 137	
ORP (mV) 101	3 83		4 65	SING 3	104.	564.10	v5.01	104.1	104.1	104.	8 65.6	
Turbidity (NTU) 8.2	1.0	-	-	-	6.9		e.79		6.64	5.3	-	
Color/tint Clea	_	e 1/C	5 1.4	1 (3)	0. 1	1 1.10	W. II	1/:0-1	WIW 1	10.9	100	
Odor Nov											1	
[6/10)	~[
Sample Data												
Sample ID Da	te	Time	# C	ontainers	#]	Filtered			R	emarks		
MW-8D 04/2	6/18	1305		4		Ø	IXIL	ambe	rilxil	plast	16: 14612	5ml
	•	1				1	platic	: 1x4	D'AL a	ass		
ER-9 042	0/18	1420		4		Ø	101-19	silic	one to	bing	NWATIN	UWA#8
			7.1	i .			, ,			0		
Sampler's Name (print): EU	tabel	h J	udlba	Nelr		Samp	ler Signa	ature:	XIN	The	toblah	

Facility: OMP		Site ID: N	1W-95	Sampler:	.WJ	
bject Number: 03013-0020-	-032	Date: OU				FTN Associates, Ltd
Site Description			7 - 1			
Type: Monitoring Well Temporary	y Well Extracti	on Well F	Production Wel	l Dewaterir	ng Well Borehole	Other
Weather: (Lear		mp (°F): (0			Wind: Calm	
	otal Depth (ft) 2			rs needed: Mr		
Remarks: Well accessible by	side-bu-si	de onu	1 due t	o creeks		40
	, ,					
Water Level Data	ezt: 0 mg	IL				
Measuring point description: Mark/notch on TOC	Water level Mete	er Make/Mo	odel No.	Seria	ıl No. (Optional):	
North rim of TOC	Pre-purge	Pre-purge	During	Purge		Remarks
Other:	. 40	onfirmation	1 0 0		sampling	Kemarks
Time ("24:00" hr)		022	1054	113-	1255	
Depth to Water (ft)	5,32	5.40	6.07	6.3	1 7.dp	
Date (mm/dd/yy) LNAPL Thickness (ft) (If present)	01-123118 C	4/24/18	الما الما الما الما الما الما الما الما	auim der	pite flow-rate	
DNAPL Thickness (ft) (If present)		of 20 v	m corum	mily ces	PIEC FLOOD MAIN	
Note: Record "S" in Remarks Column if sheen i		or po	110411			
Field Data						
Instrument Make/Model No: Unit	or Serial No:		Pump descri			escription:
Instrument Make/Model No: Unit of	#4		Peristal			posable polyethylene
PAICOTPA	# 6		☐ Submer	(dedicated / p		oosable Teflon oosable PVC
Purge depth (ft): ~15		Well goe	s dry during p		Yes No	JOSEPH T
Casing vol. (gal): (where applicable)					et)] • [well ID (inches))2] • 0.0408
Time ("24:00" hr) 1032 1039	1046 1061	11021	110 1118	1120 113		Remarks
Purge vol. (gal)	0 10 10	11000	110 1110	1100 113 Ne		
Purge rate (mL/min) 25 20					> MIVI	vice arips
pH (su) 0.7 0.10	(01) 6.12	10.170	15 6.15	10.15 10.1	5	
Temp. (°C) 17.4 18.7	21.4 22.3	22.012	3.2 24.1	14.9 25	1	
Spec. cond. (μS/cm) 818 814	820 821	8248		821 82	5	
D.O. (mg/L) 2.70 2.55	2.43 2.25		59 2.76	2,21 2,2	O	
ORP (mV) 137.1 113.0	99 199 1	149 11	09 104 1	104.6106		
Turbidity (NTU) 1093 45.71	147.88 47.08	1171720		35.88 38.9		
Color/tint Clear light	1	171112	170 5115	20100 701	>	
Odor New -	Come				5	
* Suspended	fm 15				-	
Sample Data				1		
		ntainers	# Filtered		Remarks	
MW-95 04/24/18 1	135 4			1x1L am	per; IXIL plai	Stic, 1x125ml
1 1	1				40 ml glass	
\					J	
	. 0 106				Pr. III &	tal.
Sampler's Name (print): Flight	n studiua	WY	Samp	ler Signature	Jake Judy	lali

Facility: DMP				-	Site ID	: M	W-9D	Samp	ler: EW	1	
bject Number:	3013-1)	07.0-	037_		Date: [24118	Jump	TOTAL COR)	FTN Associates, Ltd
-	, ,										
Site Description	W II Clar		XX7 11 1		*** 11 7		1 ***			"FD 117	
Type: Monitoring	Well Te	emporar	y Well			_		п Пр			Other
Weather: Clear	DN-	T	atal Da		Temp (°F):	-		1		Vind: Calm	
Well Locked? Y	The second secon				4290		mage/repai			L	
Remarks: Will o	ICCC 34 IBA	e m) siac	- by s:	ace an	~	aux 10	area	0		
			-15	0:1	5 mg/	,					
Water Level Data				W.		211	LIN		T.C. 1137	(0 (1)	
Measuring point des Mark/notch on T			Water I NWA		eter Make/	/Mod	lel No.		Serial No	. (Optional):	
North rim of TO			Pre-pi		Pre-pur	ge	During		Purge	After	D 1
Other:			initi		confirmat		purging	9 10	end	sampling	Remarks
Time ("24:00" hr)			1237		1141		1206		1218	1334	
Depth to Water (ft)			3.75	ó.	3.81		4.09		4.10	4.13	
Date (mm/dd/yy)			04/22		04/24/	18.					
LNAPL Thickness (DNAPL Thickness (Non	_							
Note: Record "S" in Rem			is observe								
Field Data Instrument Make/Mo	Jal Mar	T T_:4	an Canin	l NI.		T	D J			D-:1 4-	
- SI Pro P		Unit	or Seria	I No:		- 1	Pump descr Peristal				escription: oosable polyethylene
Micrott	VV		#6	Y					ated / portal		osable Teflon
			,	_,			☐ Submer	sible		☐ Disp	osable PVC
	37				Well g	goes	dry during	purging	g: [Yes	No No	
Casing vol. (gal): (where applicable)					= [tota	ıl depi	th (feet) - de	pth to w	ater (feet)] •	well ID (inches)	²] • 0.0408
Time ("24:00" hr)	1149	115	1120	2/120	0 1212	121	8			F	Remarks
Purge vol. (gal)		1132				100	2			with vice	avins
Purge rate (mL/min)	35						3			<u> </u>	J. P
pH (su)	10.102	6.55	10.5	00.5	76,58	10.9	8c				*
Temp. (°C)	18.0	19.2	215	120	229	23	3			-	
Spec. cond. (µS/cm)	673	Levex	670	level	1000	6	0				
D.O. (mg/L)	1.164	0.98	0.90	11,0		1.1					
ORP (mV)	-9.4	-125	-13.0	1-13:	2-13.4	-14	,5				
Turbidity (NTU)	16.80	5.4	14.8	17.9	17.62	_					
Color/tint	Clear					-	7				
Odor	NOW	1				-	>				
Comple D. (
Sample Data Sample ID	Date		Time	# C	ontainers	-	# Filtered			Remarks	
MW-9D	1 .		1120		L		r K	Juli	Ambal.		Wilding 4
עור־עען יי	04/29	10	LW		T	+	y	IXIL	WILDER	IN IL PIQUE	ic) 1x125 mt
						-		plan	C/ 1×401	nt glass	
)——										-	
Sampler's Name (pri	nt): tilio	0/00/	A Ch	idela	Elcor		Samn	ler Sign	nature: O	July Stud	Jahra
- Traine (pri	EVI (WAY	VI (III	MAN	MILL		Jamp	TOT DIE	A	WILLY CHANGE	Malina

Site Description Type:	Facility: DMP					Site ID:	MW.	105	Sampl	er: ‡W.	5	
Site Description Type: Monitoring Well Temporary Well Extraction Well Production Well Dewatering Well Borchole Other Weather: (20)		5013-	0020	1-03	2			•		Cov		FTN Associates, Ltd
Type: Monitoring Well Temporary Well							4	1				
Weather: Clay	7	Vall DTa	mnorar	v Well [TExtracti	on Well F	7 Produ	tion We	11	watering We	il 🖂 Borehole [Other
Well Locked?		ven [] le	inporar	y Well [tion we	п Пре			
Water Level Data		e 🗆 No	Т	otal Den			Dama	re/renai:	rs neede	d: 110 km	at 100 eta-	han
Water Level Data	Remarks: \\/\0\/\	a Ctalor	livol	MINNI	$\Omega M\Omega$	HeN- ON	N AC	PIGE	Flu 1	h Cido	10) Siele	()01)
Mask fin to the forc	Memaras. AACM 11	it stort	virgi	r outi ni	y	NOT, OF	y ac	JUINI	Q M	11 2100	ry-sruc	
Mask finish on TOC	Water Level Data			F	p2+ s	() mg	IL					
Disposable PVC Pre-purge Pre-purge Purging Purge After Sampling Remarks	Measuring point desc			Water le	evel Met		•	lo.		Serial No	. (Optional):	
Other:			-			D		Daning		Dunga	A A	
Time ("24-00" hr)										-		Remarks
Depth to Water (ft)							1					
Date (mm/dd/yy)						- 1				1		
DNAPL Thickness (ft) (If present)	Date (mm/dd/yy)				118 1		K -		_		7	
Note: Record "S" in Remarks Column if sheen is observed.	LNAPL Thickness (ft)	Non	e e	11						
Field Data Instrument, Make/Model No:		- Contract of the Contract of										
Casing vol. (gal) Casi	Note: Record "S" in Remai	rks Column	ii sneen	is observe	1,							
Peristatic Disposable polyethylene Disposable polyethylene Disposable reflon Disposable PVC Purge depth (ft): Well goes dry during purging: Yes No No No No No No No N	Field Data								K 41			
Bladder (dedicated / portable) Disposable Teflon Disposable PVC	Instrument Make/Moo	del No:	Unit	or Serial	No:							
Submersible Disposable PVC										ited / nortal		
Casing vol. (gal): where applicable) Time ("24.00" hr)	, , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, •		4					11.	nod / portuc		
Containers Filtered Filter	Purge depth (ft):	~15				Well g	oes dry	during 1	purging:	∐ Yes	No	
Where applicable) Purge vol. (gal) Purge rate (mL/min) 55 Permp. (°C) 185 17.7 19.3 10.0 10.5 10.9 10.19 Pope. cond. (μS/cm) 1282 17.0 17.0 12.08 17.05 17.04	Casing vol. (gal):					= [total	depth (f	eet) – de	pth to wa	ter (feet)] •	well ID (inches)	²] • 0.0408
Purge vol. (gal) Purge rate (mL/min) 55 Purge rate (mL/min) 50 Purge		ISS	1200	lino	11002					Т		
Purge rate (mL/min) 55 —		1050	(05	plan	1005	LUCU	100	WIL		-		
OH (su) OH		55									MANT MA	grups
Temp. (°C)			1011	1 io 1/	fo 10	11010	10 10	10.10		-		
Spec. cond. (µS/cm) 1282 1770 170 1208 1205 1204 12			0.10				200	20.19	10.19	+		
D.O. (mg/L) 3.58 1.36 1.40 1.36 1.38 1.35 1.35 DRP (mV) Vol.3 82 16 83.0 83.5 87.9 89.4 90.4 92.0 Turbidity (NTU) Color/tint Clear Color/tint Clear Color-tint Color-tint Clear Color-tint Clear Color-tint Color-tint Color-tint		120	111	1								
DRP (mV)		258	121			1205	100		_	-		
Turbidity (NTU)			-	-	_	070	0011	001	-			
Color/tint Clear Dodor Nove Sample Data Sample ID Date Time # Containers # Filtered Remarks NW-105 04/24/18 1010 4 9 1×1 amber: 1×1 plastic; 1×125 mL plastic; 1×40 mc glass Poly 4 silicone tuding: NWA#1; NWA#8						412	3100	5 100				
Sample Data Sample ID Date Time # Containers # Filtered Remarks MW-105 04/24/18 1010 4 9 1×125mL Platic, 1×40 mc glass Poly 4 silicone tuding: NWA#1; NWA#8				71-10	4.01	9.15	300	2.04	7:00			
Sample Data Sample ID Date Time # Containers # Filtered Remarks MW-105 04/24/18 1016 4 9 1×1L amber; 1×1L plastic; 1×125 mL Plastic, 1×40 mc glass Poly 4 silicone tuking; NWA#1; NWA#8		1 1										
Sample ID Date Time # Containers # Filtered Remarks MW-105 04/24/18 16/6 4 9 1x1L amber; 1x1L plathic; 1x125mL plathic; 1x40 mL glass Poly & Silicone tuding; NWA#1; NWA#8	Odol	MOROS							7			
EB-5 04/24/18 16/6 4 9 1x1c amber; 1x1c plastic; 1x125mc plastic; 1x40 mc glass EB-5 04/24/18 17/18 4 poly 4 silicone turing; NWA#1; NWA#8	Sample Data			-								
EB-5 04/24/18 1718 4 poly & silicone tuking; NWA#1; NWA#8		Date			# Co	ntainers	# F	iltered			Remarks	
EB-5 104/24/18 1718 4 P poly & silicone tuning; NWA#1; NWA#8	MW-101	04/24,	18	10/10	4		9	5				
	CD C	Mila	.6	7.0		t		*		C, IXU	10 mc glas	1
Complex's Name (print); Ellisal all Chadala Vale	16-5	4/14/	11 1	118		1	1	2	DOM	of Silvicon	u tuang; n	JWA+1; NWA+B
Sampler's Name (print): Which the Sampler Signature: Salith Auch and Sampler Signature:	Sampler's Name (prin	t): Eliu	about	h Sh	rdela	ler		Samp	ler Sign	ature:	alth St	Tollak

Facility: DMP		Site ID: N	W-10D	Sampler: EW	12	
pject Number: 030 3 - 5020	0-032	Date: 4	24/18			FTN Associates, Ltd
Site Description						
Type: Monitoring Well Tempora	ry Well Extract	ion Well 🔲 I	Production Wel	Dewatering \	Well Borehole	Other
Weather: Clear	Air T	emp (°F):	18		Wind: COUM	
Well Locked? Yes No	Total Depth (ft) 3	7.30 1	Damage/repair	rs needed: UNI	out vegeta	tion
Well Locked? Yes No Remarks: Water flowing s	landing ar	bund in	ell, once	y accessible	ce by side	-by-side
Water Level Data	Fe?	to m	9/1		*	
Measuring point description:	Water level Met			Serial N	No. (Optional):	
Mark/notch on TOC	NWAHI					
North rim of TOC	Pre-purge	Pre-purge	During		After	Remarks
Other:		confirmation	4 0 0	end (530)	sampling	
Time ("24:00" hr)	1250	1429	1452		1709	
Depth to Water (ft) Date (mm/dd/yy)		2.13	2,45	2.45	2.80	
LNAPL Thickness (ft) (If present)	None	14/21/10			1	
DNAPL Thickness (ft) (If present)	None					
Note: Record "S" in Remarks Column if sheet	is observed.			4)		
Field Data						
Instrument Make/Model No: Unit	or Serial No:		Pump descri	ption:		scription:
431 WO PIOS #	6		Peristal	tic (dedicated / por		osable polyethylene osable Teflon
MICHALL	0		Submer			osable PVC
Purge depth (ft): ~32		Well goe	s dry during p	ourging: TY	es No	
Casing vol. (gal): (where applicable)		= [total de	epth (feet) - dep	pth to water (feet)]	• [well ID (inches)	²] • 0.0408
Time ("24:00" hr) 1437 144	12 1447 1451	145710	106 1513	1518 1514	1530 1530 R	lemarks
Purge vol. (gal)			100 1010	1010 1011	N.4	with vice
Purge rate (mL/min) 35 —		20 -	-> 30	15 -		grips
pH (su) 7.63 7.24	+ 7.23 7.29		.29 7.30		7 32 7 30	JANPA
Temp. (°C) 17.4 20.	1 20.7 21.2	- 11.41	2.1021.10	20.7 21.5	7.32 7.32	
	8 500.4500.	349994	09.105001	902 1 499.0	502.0 501.0	
D.O. (mg/L) 2.03 0.8		A	07 0.85		0.78 0.88	
ORP (mV) -111.7-115.	1 /			-119.10-103.0		
Turbidity (NTU) 31.12.12.1	2213.54 [6.24	110.5516	53 14.30		5, 25 15.42	
Color/tint Clear Cle			1 11.70			
Odor Nove -						
Loupende	d fines					
Sample Data						
Sample ID Date		ntainers	# Filtered		Remarks	
MW-10D 04/24/18	1538 4		Ø	IXIL amber	; IXIL plast	C; 1 x 125 mc
					40 mc grass	
				,	J	
					- 1 - 1 - 0	× 1.
Sampler's Name (print): FUZADER	1 Atudella la	O.V	Samp	ler Signature:رحم	Jalil Kirdi	truh_

Facility: OMP					Site ID:	MW-	-125	Sample	er: EW	J		
oject Number: 03	013-00	20	-032		Date:	84/20	1/18					FTN Associates, Ltd
Site Description							1					
Type: Monitoring W	ell Temp	orary	Well	Extraction	on Well	Produc	ction Wel	l Dev	watering V	Vell 🗍 B	orehole [Other
Weather: Clear			Ī		mp (°F):	57				Wind: S		
Well Locked? Yes	No No	Tot	tal Depth	(ft) 2	1.88	Dama	ge/repair	rs neede	d: Now			
Remarks: Area onl	y access	ible	my sid	le-by	-side	due t	o cree	K		-		
									-1			
Water Level Data	Fe	1	0 mg	1								
Measuring point descr		N	Vater lev		er Make/I	Model N	No.		Serial N	o. (Option	onal):	
Mark/notch on TO	C	1	Pre-purg		Pre-purg	e	During	-	Purge	I A	fter	
Other:			initial		onfirmati		purging		end		pling	Remarks
Time ("24:00" hr)			1117	(0827		0851		999	091		
Depth to Water (ft)			2.16		2.17		1.30	1	.32	2.	37	
Date (mm/dd/yy)		0	4123	Y C	M 24	18 .			_		\rightarrow	
LNAPL Thickness (ft) DNAPL Thickness (ft		-			. ,							
Note: Record "S" in Remark	10.1	heen is	observed	_								
47		14 m T. 11 m										
Field Data	al No. I	Init or	Coriol N	Jos		Dun	np descri	ntion			Poiler de	escription:
Instrument Make/Mod	el No.	TO	Serial N	NO:			Peristalt			'		oosable polyethylene
MICROTPIN		#1				16	Bladder	(dedica	ted / port	able)	☐ Disp	osable Teflon
1							Submer					oosable PVC
	219				 		during p			-		
Casing vol. (gal): (where applicable)					=[total	depth (f	eet) – dep	pth to wa	ter (feet)]	• [well ID	(inches)	o ²] • 0.0408
Time ("24:00" hr)	0835 0	840	0845	0848	0851	0854	0857	0900	0903	0906	F	Remarks
Purge vol. (gal)				9-10						2.8		
Purge rate (mL/min)	110 1	10	85	->	100					-		
pH (su)	5.975	58	5,50	5,56	550	5.54	554	555	5.55	5,55		
Temp. (°C)		5.1	15.4	15.4	15.3		15,4	15.4		15.4		
Spec. cond. (µS/cm)	129.10	17.7	95.0	94.9		94.5		94.6	94.6	94.10		
D.O. (mg/L)	180 0	.73	0.75	0.67	10	0.50		0.51	0.50	050		
ORP (mV)	139.513	91.8	139.60	134.0	134.9	134.1	1345	131.6	130.7	130.5		
Turbidity (NTU)	31.93 17	1.53	6.71	4.33	4.06	4.00	13.68	3.12	3.63	257	4	
Color/tint	Clear		->	Clear			-			-,		
Odor	Nine-									->	1	
+ SUS	penaed	tine	SCHOOL	m)						7		
Sample Data Sample ID	Date	7	ime	# Ca-	tainers	#17	iltered			T	lemarks	
		_		# COII	namers	# 1	Mered	1.4 11	وتباريا			\\.20"
1.11/-172	04/24/11	1 0	108	4		1	0	1411	plastic		umb	er; 1x 125 ml plast
DUP-MW-12)	וונונונט	7 60	170	7		K	7	100		01615	House	alws: (x)cpialt
DOL LIMATES	Mall	10	14			X		1 × 17	5 ml 1)	altic.	will	glass (x 1c pialt
Sampler's Name (print): Eliza	108 H	N St	untol	palcer		Samp		P	talith	Stud	libali
, (F	- VY/W	1/2 1	4	WALL	WIN					- NA	Jones	- V ION -

Facility: Old /	11 dlane	d			Site ID	: MI	N-165	Sample	er: 🚹	514		
	3013-		-032		Date:	4-20	4-18					FTN Associates, Ltd
Site Description												
Type: Monitoring W	ell Te	трогагу	Well [Extracti	on Well [Prod	uction We	l De	watering	Well	Borehole [Other
Weather: Cle	iv			Air Te	mp (°F):		60			Wind:	5mg4	
Well Locked? Yes		То	tal Dept			N-	age/repair	rs neede	d: +(1)	u ve	getatr	
Remarks: 724;) = 14.11	,
Water Level Data												
Measuring point descr		1	Water le			Model	No.		Serial 1	No. (Op	tional):	
Mark/notch on TO North rim of TOC	С	-		VWA	#3 Pro 2011	-	Dumin	-	Д агио о		After	
Other:			Pre-pur initial		Pre-purg onfirmat		During purging		Purge end		mpling	Remarks
Time ("24:00" hr)			1201		0827		3849		120		47	
Depth to Water (ft)			6.41		6.6		6.67		.67		68	
Date (mm/dd/yy)		(1/23/1	8 4	1-24-1		- 07			- 0,	>	
LNAPL Thickness (ft))	None									
DNAPL Thickness (ft)			None								1	
Note: Record "S" in Remark	ts Column i	if sheen is	observed.									
Field Data												
Instrument Make/Mode		Unit o	r Serial 1	No:			mp descri				Bailer des	
Instrument Make/Mode ソクエ Pル P	45	Unit o	5	No:			Peristal	ic	. 17	. 11	☐ Dispe	osable polyethylene
Instrument Make/Mode	45	Unit o		No:			Peristali Bladder	ic (dedica	ted / por	table)	☐ Dispe	osable polyethylene osable Teflon
Instrument Make/Mod YII PRO PU MICROTPO	45		5	No:	Wells		Peristali Bladder Submer	ic (dedica sible			☐ Dispe	osable polyethylene
Instrument Make/Mode ソウエ PRU PU ノー バエ CRル アアン Purge depth (ft):	45	Unit o	5	No:		goes dr	Peristali Bladder Submer y during p	ic (dedica sible ourging:	Y	es 🗾	☐ Dispo ☐ Dispo ☐ Dispo	osable polyethylene osable Teflon osable PVC
Instrument Make/Mode y 1 Pro Por Purge depth (ft): Casing vol. (gal): (where applicable)	,	~13	5		= [total	goes dry	Peristali Bladder Submer y during p	cic (dedica sible ourging:	ter (feet)	es Z	Dispo	osable polyethylene osable Teflon osable PVC
Instrument Make/Mode Y 1 Pro Por Purge depth (ft): Casing vol. (gal): (where applicable)	45	~13	5			goes dr	Peristali Bladder Submer y during p	cic (dedica sible ourging:	ter (feet)	es Z	☐ Dispo ☐ Dispo ☐ Dispo	osable polyethylene osable Teflon osable PVC
Purge depth (ft): Casing vol. (gal): (where applicable) Fime ("24:00" hr)	,	~13	5		= [total	goes dry	Peristali Bladder Submer y during p	cic (dedica sible ourging:	ter (feet)	es Z	Dispo	osable polyethylene osable Teflon osable PVC
Purge depth (ft): Casing vol. (gal): (where applicable) Time ("24:00" hr) Purge vol. (gal)	,	~13	5		= [total	goes dry	Peristali Bladder Submer y during p	dedica (dedica sible ourging: oth to wa	ter (feet)	es Z	Dispo	osable polyethylene osable Teflon osable PVC
Purge depth (ft): Casing vol. (gal): (where applicable) Fine ("24:00" hr) Purge rate (mL/min)	0836	~13	5	0853	= [total	goes dry	Peristali Bladder Submer y during p (feet) – dep	cic (dedica sible ourging:	ter (feet)	es Z	Dispo	osable polyethylene osable Teflon osable PVC
Purge depth (ft): Casing vol. (gal): (where applicable) Time ("24:00" hr) Purge vol. (gal) Purge rate (mL/min) pH (su)	0836	~23 08 43 	5 5 0848 6.55	0853	= [total	goes dry	Peristali Bladder Submer y during p (feet) – dep	dedica (dedica sible ourging: oth to wa	ter (feet)	es [] : [well] : C916	Dispo	osable polyethylene osable Teflon osable PVC
Purge depth (ft): Casing vol. (gal): (where applicable) Fime ("24:00" hr) Purge vol. (gal) Purge rate (mL/min) pH (su) Femp. (°C)	0836 95 6.57	~23 08 43 	0848	0853	= [total 085.7	goes dry	Peristali Bladder Submer y during p (feet) – dep	ic (dedica sible burging: oth to wa 0910	(J.6)	es	Dispo	osable polyethylene osable Teflon osable PVC
Purge depth (ft): Casing vol. (gal): (where applicable) Time ("24:00" hr) Purge vol. (gal) Purge rate (mL/min) pH (su) Temp. (°C) Spec. cond. (µS/cm)	0836 95 6.57	08 43 08 50	0848	0853 6.53 16.5	= [total 0857 6.54 16.6	goes dr. 1 depth (Peristali Bladder Submer y during p (feet) – dep 0909	ic (dedica sible burging: oth to wa 0910	(J.4) (J.4) (J.4) (J.7) (J.7)	es / : [well] : [wel	Dispo	osable polyethylene osable Teflon osable PVC
Purge depth (ft): Casing vol. (gal): (where applicable) Purge vol. (gal) Purge rate (mL/min) pH (su) Pemp. (°C) Spec. cond. (µS/cm) D.O. (mg/L)	0636 95 6.57 16.0 962	-23 0843 - 6.50 16.1 967	0848 6.55 16.3 969	0853 6.53 16.5 963	= [total 0%57 6.54 16.6	goes dr. depth (Peristali Bladder Submer y during p (feet) – dep 0909 6.59 17.0 0935	dedica sible ourging: oth to wa 0910 lb.9 0973 l.07	(J.4) (J.4) (J.4) (J.7) (J.7)	C916	Dispo	osable polyethylene osable Teflon osable PVC
	0636 95 6.57 16.0 962 2.73	-23 0843 -6,50 16,1 967 1.38 -121.3	5 5 5 0848 6.55 16.3 969 1.16	0853 6,53 16.5 963 1,10	= [total 0%5.7 6.54 16.6 1,02	Goes dr. depth (0900) 6,56 16,9 950 1,00	Peristali Bladder Submer y during p (feet) – dep 0909 1.59 17.0 0935	dedica sible ourging: oth to wa look of 10 lb.9 lb.9 lb.9 lb.9 lb.9 lb.9 lb.9 lb.9	[] Y ter (feet)] (A13 (.0) (7.0 (917 (989	C916 C916 C916 C916 C916 C916 C916 C916	Dispo	osable polyethylene osable Teflon osable PVC
Instrument Make/Mode YIT PRO PU Purge depth (ft): Casing vol. (gal): (where applicable) Time ("24:00" hr) Purge vol. (gal) Purge rate (mL/min) pH (su) Temp. (°C) Spec. cond. (µS/cm) D.O. (mg/L) ORP (mV)	0636 95 6.57 16.0 962 2.73	-23 0843 -6,50 16,1 967 1.38 -121.3	0848 6.55 16.3 969	0853 6,53 16.5 963 1,10	= [total 0%5.7 6.54 16.6 955 1,02 -114,9	Goes dr. depth (1000000000000000000000000000000000000	Peristali Bladder Submer y during p (feet) – dep 0909 6.59 17.0 0935 1.07	dedica sible ourging: oth to wa look of 10 lb.9 lb.9 lb.9 lb.9 lb.9 lb.9 lb.9 lb.9	(J.6) (J.6) (J.7) (J.7) (J.7) (J.89 (J.89)	es / : [well] • [wel	Dispo Disp	osable polyethylene osable Teflon osable PVC
Instrument Make/Mode YHI PW PU Purge depth (ft): Casing vol. (gal): (where applicable) Time ("24:00" hr) Purge vol. (gal) Purge rate (mL/min) pH (su) Femp. (°C) Spec. cond. (µS/cm) D.O. (mg/L) ORP (mV) Turbidity (NTU) Color/tint	0636 95 16.0 962 2.73 723,7 24.10	-23 0843 -6,50 16,1 967 1.38 -121.3	5 5 5 0848 6.55 16.3 969 1.16	0853 6,53 16.5 963 1,10	= [total 0%5.7 6.54 16.6 955 1,02 -114,9	Goes dr. depth (1000000000000000000000000000000000000	Peristali Bladder Submer y during p (feet) – dep 0909 6.59 17.0 0935 1.07	dedica sible ourging: oth to wa look of 10 lb.9 lb.9 lb.9 lb.9 lb.9 lb.9 lb.9 lb.9	(J.6) (J.6) (J.7) (J.7) (J.7) (J.89 (J.89)	C916 C916 C916 C916 C916 C916 C916 C916	Dispo Disp	osable polyethylene osable Teflon osable PVC
Purge depth (ft): Casing vol. (gal): (where applicable) Purge vol. (gal) Purge rate (mL/min) (pH (su) Pemp. (°C) Spec. cond. (µS/cm) D.O. (mg/L) ORP (mV) Color/tint Odor	0636 95 6.57 16.0 962 2.73 -123.7 24.10 CLEAR	-23 0843 -6,50 16,1 967 1.38 -121.3	5 5 5 0848 6.55 16.3 969 1.16	0853 6,53 16.5 963 1,10	= [total 0%5.7 6.54 16.6 955 1,02 -114,9	Goes dr. depth (1000000000000000000000000000000000000	Peristali Bladder Submer y during p (feet) – dep 0909 6.59 17.0 0935 1.07	dedica sible ourging: oth to wa look of 10 lb.9 lb.9 lb.9 lb.9 lb.9 lb.9 lb.9 lb.9	(J.6) (J.6) (J.7) (J.7) (J.7) (J.89 (J.89)	C916 C916 C916 C916 C916 C916 C916 C916	Dispo Disp	osable polyethylene osable Teflon osable PVC
Purge depth (ft): Casing vol. (gal): (where applicable) Purge rate (mL/min) (pH (su) Pemp. (°C) Spec. cond. (µS/cm) D.O. (mg/L) ORP (mV) Purbidity (NTU) Color/tint Odor Sample Data	0636 95 6.57 16.0 962 2.73 -123.7 24.10 CLEAR NONE	08 43 	0848 6.55 16.3 969 1.16 -117.1	6,53 16.5 963 1.10 -116.1	= [total 0%5.7 6.54 16.6 955 1,02 -114,9 14,60	Goes dr. depth (1000000000000000000000000000000000000	Peristali Bladder Submer Submer during p (feet) – de 0909 17.0 0935 1.07 -173.3 24.13	dedica sible ourging: oth to wa look of 10 lb.9 lb.9 lb.9 lb.9 lb.9 lb.9 lb.9 lb.9	(J.6) (J.6) (J.7) (J.7) (J.7) (J.89 (J.89)	es / well - [well - [w	Dispo Disp	osable polyethylene osable Teflon osable PVC
Purge depth (ft): Casing vol. (gal): (where applicable) Purge vol. (gal) Purge rate (mL/min) Purge rate (mL/min) Ph (su) Femp. (°C) Spec. cond. (µS/cm) D.O. (mg/L) DRP (mV) Furbidity (NTU) Color/tint Odor Sample Data Sample ID	95 6.57 16.0 962 2.73 -123.7 24.10 CLEAR NOWE	08 43 08 43 6.50 16.1 96.7 1.38 -121.3 20.29	0848 6.55 16.3 969 1.16 -117.1	6.53 16.5 963 1.10 -116.1 15.4]	= [total 0%5.7 0.54 16.6 19.55 19.60 14.60	Goes dr. depth (1000000000000000000000000000000000000	Peristali Bladder Submer y during p (feet) – dep 0909 6.59 17.0 0935 1.07 -173.3 Z4.13	ic (dedica sible ourging: oth to wa look of 10 look of	(J.6) (J.6) (J.7)	es 7 : [well] C916 C916 C910 C900 C90	Dispo Disp	osable polyethylene osable Teflon osable PVC
Purge depth (ft): Casing vol. (gal): (where applicable) Purge vol. (gal) Purge rate (mL/min) pH (su) Pemp. (°C) Spec. cond. (µS/cm) D.O. (mg/L) ORP (mV) Turbidity (NTU) Color/tint Odor Sample Data Sample ID	0636 95 6.57 16.0 962 2.73 -123.7 24.10 CLEAR NONE	08 43 08 43 6.50 16.1 96.7 1.38 -121.3 20.29	0848 6.55 16.3 969 1.16 -117.1	6,53 16.5 963 1.10 -116.1	= [total 0%5.7 0.54 16.6 19.55 19.60 14.60	Goes dr. depth (1000000000000000000000000000000000000	Peristali Bladder Submer Submer during p (feet) – de 0909 17.0 0935 1.07 -173.3 24.13	ic (dedica sible ourging: oth to wa 0910 lb.9 G973 l.07 T78.0 ll.16	(1.6) (2.0) (1.7.0) (1.7.0) (1.7.0) (1.7.0) (1.7.0) (1.7.0) (1.7.0)	C916 C916 C916 C910 C910 C910 C910 C910 C910 C910 C910	Dispo Disp	osable polyethylene osable Teflon osable PVC
Instrument Make/Mode YII PW PU Purge depth (ft): Casing vol. (gal): (where applicable) Time ("24:00" hr) Purge vol. (gal) Purge rate (mL/min) pH (su) Temp. (°C) Spec. cond. (µS/cm) D.O. (mg/L) ORP (mV) Turbidity (NTU) Color/tint Odor Sample Data Sample ID	95 6.57 16.0 962 2.73 -123.7 24.10 CLEAR NOWE	08 43 	0848 6.55 16.3 969 1.16 -117.1	6.53 16.5 963 1.10 -116.1 15.4]	= [total 0%5.7 0.54 16.6 19.55 19.60 14.60	Goes dr. depth (1000000000000000000000000000000000000	Peristali Bladder Submer y during p (feet) – dep 0909 6.59 17.0 0935 1.07 -173.3 Z4.13	ic (dedica sible ourging: oth to wa of 10	(J.0) (J.0) (J.0) (J.0) (J.0) (J.0) (J.0) (J.0) (J.0)	6.62 17.1 0910 080 -1300 11.78	Disposition Dispos	osable polyethylene osable Teflon osable PVC

Facility: Old Min	972	10	A SHARE SEE SEE SEE		Site ID: 7	W-161)	Samp	ler: Ash	+		
Facility: Old MAN	3013-00	20-02	led		Date: 4-		<u> </u>	7171		FTN Associates, Ltd	
								÷			
Site Description											
Type: Monitoring V	Vell Te	emporar	y Well				il D				
Weather: Clen					mp (°F):	60		W	Vind: 5mg		
Well Locked? Ye	s 🗌 No	Т	otal Dept	h (ft)	Z.03 I	Damage/repai	rs need	ed: $+n$	~ 9/ASS		
Remarks:	20 04	11-									
10 . 0	To rug.										
Water Level Data	4										
Measuring point desc			Water le		er Make/Mo			Serial No	. (Optional):		
☐Mark/notch on TO ☐Morth rim of TOO		-	Pre-pu		レレル ゼ Pre-purge	During	.	Purge	After		
Other:	,		initia		onfirmation		-	end	sampling	Remarks	
Time ("24:00" hr)			1108		1924	0934		2946	1058		
Depth to Water (ft)											
Date (mm/dd/yy)											
LNAPL Thickness (ft			None						*		
DNAPL Thickness (f Note: Record "S" in Rema			is observed								
note. Record 5 in Rema	iks Column	II SHOOM	is obscived								
Field Data						-					
Instrument Make/Mod		Unit	or Serial	No:	-	Pump descr				escription: posable polyethylene	
MICRU TPW	5	-	5					ated / portal		oosable Teflon	
						Submer				oosable PVC	
Purge depth (ft):		35	4		Well goe	s dry during	purging	:	No		
Casing vol. (gal): (where applicable)					= [total de	epth (feet) - de	pth to w	ater (feet)] •	[well ID (inches]	02] = 0.0408	
Time ("24:00" hr)	0929	0935	Cano						I	Remarks	
Purge vol. (gal)				2.3							
Purge rate (mL/min)	70										
pH (su)	7,29	7,74	7.33	7,33							
Temp. (°C)	17,1	17,4	17.6	19.5							
Spec. cond. (µS/cm)	601	597	598	596				F1			
D.O. (mg/L)	1.66	0.39	0,75	0.79							
ORP (mV)	-159.7	-		-170,4							
Turbidity (NTU)	10,73	1255	11.96	16-11							
Color/tint	Clew	_		7							
Odor	Non5			1							
Sample Data											
Sample ID	Date		Time	# Cor	ntainers	# Filtered			Remarks		
MW-1617	4/241	14 0	1948	L		0	ILAN	der. IL du	nyc. 175 ml	plantic, your blen	
107	17.01			4			1	1 - [10]	100	1	
				((*))							
Sampler's Name (prin	t): A1	EV	HAMI	· . I		Samr	oler Sign	nature:	On Hank		

Facility: OMP oject Number: 03012 Site Description Type: Monitoring Well [Weather: Way Well Locked? Yes Remarks: Min why Water Level Data Measuring point description Mark/notch on TOC North rim of TOC	Tempor	Total Dept	Extra Air th (ft)	Date: (ction Well [Temp (°F):		duction Wel			ell 🔲 Borehol	
Site Description Type: Monitoring Well [Weather: Yes] Well Locked? Yes Remarks: Min white Water Level Data Measuring point description Mark/notch on TOC	Tempor	Total Dept	Extra Air th (ft)	ction Well [Temp (°F):] Proc	duction Wel	l □De			e Other
Type: Monitoring Well Weather: May Well Locked? Yes Remarks: Main white Water Level Data Measuring point description Mark/notch on TOC	No [filling	Total Dept	Air 'th (ft)_	Temp (°F):	52		l De			
Type: Monitoring Well Weather: May Well Locked? Yes Remarks: Main white Water Level Data Measuring point description Mark/notch on TOC	No [filling	Total Dept	Air 'th (ft)_	Temp (°F):	52		l De			
Weather: Yes Well Locked? Yes Remarks: Main white Water Level Data Measuring point description Mark/notch on TOC	No [filling	Total Dept	Air 'th (ft)_	Temp (°F):	52		. Пвс			
Well Locked? Yes Remarks: Main white Water Level Data Measuring point description Mark/notch on TOC	hillin	y bottles	th (ft)_			4		I V	Vind: (all	1
Water Level Data Measuring point descriptio Mark/notch on TOC	hillin	y bottles		05/10		nage/renair	e neede		U- (
Water Level Data Measuring point descriptio Mark/notch on TOC		,			1 2 4	nage/repair	s neede	u Unicu	h vegta	tron tree grow
Measuring point description Mark/notch on TOC		50						MACH	nd (see b	next to fire out
Measuring point description Mark/notch on TOC			21 .	no)	Ι.			11100	- WA L BACK TO	root j
Mark/notch on TOC				0 0	1					
		Water le	vel M	eter Make/	Mode	el No.		Serial No	. (Optional):	
I IIIOI III IIII OI I IOC		Pre-pu		Pre-purg	ne T	During		Purge	After	
Other:		initia		confirmat		purging		end	sampling	Remarks
Time ("24:00" hr)		1036		1344		1412		437	1521	
Depth to Water (ft)		3.20		3,40	-	3.72		3.72	3.84	
Date (mm/dd/yy)		4/23/		ज्मीडा।	8 -				0.0)
LNAPL Thickness (ft) (If pr		NUNE		10/10			*			*
DNAPL Thickness (ft) (If pa		<u> </u>								
Note: Record "S" in Remarks Col	mn if she	en is observed	l _e s							
Field Data										
Instrument Make/Model No	: Un	it or Serial	No:		P	ump descri	ption:		Bailer	description:
451 pro Plus		37.1			12	✓ Peristalt				isposable polyethylene
MICHTPW		* 10				_ Bladder_ Submers		ted / porta		isposable Teflon isposable PVC
Purge depth (ft):	125			Wells	roes d	lry during p		☐ Yes		isposable F v C
Casing vol. (gal):	v 15									2
(where applicable)				= [total	l depth	n (feet) – dep	oth to wa	ter (feet)] •	[well ID (inch	es) ²] • 0.0408
Time ("24:00" hr)	9 14	24 140°	1141	2 1417	142	111425	1929	14331	437	Remarks
Purge vol. (gal)				7 11					N.10	
Purge rate (mL/min)	5	>	50	-			*******		>	
	75,	14 5,105	50	45,08	Q-7	0 5.70	5.69	5.00	5.69	with vie grips
Temp. (°C) 14	4	3 142	14.	3 14.4	iu		14.5	14.7	14.81	July July
Spec. cond. (µS/cm)		1 119.8	118	41181	117	51174	117.2	117.0	17.0	
	60.	87 084	07	70.85	0.7	15 0.71	0 08	0.64	0.04	
	.0 lu	23 109 2	11.0	2 1 100 4	1105	51037	1036	Noi O I	6011	
Turbidity (NTU) 13.		11/2.94	11.2	7 1336	10.1	1 15.74	1470	12.824	2.63	
	ar	11 (2(1)	1112	1 17174	TU.I	1 10/11	11.6	16.00	12.00	
Odor V			-	===						
Odor	NY -		<u></u>			_			/1	
Sample Data										į.
Sample ID I	ate	Time	# C	ontainers	#	Filtered			Remar	ks
MW-175 041	5/18	1439		4		0	IVI	amb	or' I x II	plastic : 1x125ml
11.1	4			-		7	Dlast		HOML O	
08-7 041	1535		ü		Ø				4: NWA#1, NWA#	
) - 1	10	1000	-			~	try	-1140	AS TOWN	J. 10001.
Sampler's Name (print):	inah	Ma C	nadi	Walter		Samn	ler Sion	ature: 🖺	alella XI	notyali

Facility: DMP						Site ID:	MV	N-1	XS I	Sampl	er: EW			
oject Number: 05	013-00	20-0	32			Date: 0					0.10			FTN Associates, L
	000						+		LV L					
Site Description								_						1 EU
Type: Monitoring			y Well	_					ion Wel	l De				Other
Weather: Scatter						np (°F):							Calm	
Well Locked? Y	es No	T	otal Dej	oth (ft)	u	25	Dar	mage	e/repair	s neede	d: None	/		
Remarks:	ot record	e d												
MIL DE	et record	eur -		0.h	_	100/01							_	
Water Level Data			te	210	U	(m)	L				W			
Measuring point des					leter	Make/I	Mode	el No	0.		Serial No	. (Opti	onal):	
Mark/notch on T		-	NW		П		. 1		During		Dungs	Ι	fter	
Other:	C		Pre-p			re-purg			During ourging		Purge end	CHAN	ipling	Remarks
Time ("24:00" hr)			641		-	155		0			834	-	23	
Depth to Water (ft)			3.4			.34			170		3.71	_	.81	
Date (mm/dd/yy)		-	4/07			1201	18		110)	141	
LNAPL Thickness (ft) (If presen	t)	mo	e	5-1	1001	, N						7	
DNAPL Thickness (NON											
Note: Record "S" in Rem	arks Column	if sheen	is observe	ed.										
Field Data														
Instrument Make/Mo	odel No:	Unit	or Seria	l No:			P	umr	descri	ption:		T	Bailer de	escription:
7SI ProPL	LU	Ħ	4				Į	ΖÊ	eristalt	ic			☐ Disp	osable polyethylene
MicroTPL	Ň		b				[ited / portal	ble)		oosable Teflon
2 1 1 (0)	10.1				_	177 11			ubmer		(F) X7			posable PVC
Purge depth (ft):	~2			-	-	Well g	oes o	iry d	luring p	ourging:	Yes Yes	N V	ło	
Casing vol. (gal): (where applicable)		la comp				= [total	depth	h (fe	et) – dep	oth to wa	iter (feet)] •	[well II	O (inches)	0.0408
Time ("24:00" hr)	0802	080	180	108	17	0822	087	27	0830	0833	0830		R	Remarks
Purge vol. (gal)											N5			
Purge rate (mL/min)	115	35			>	55		-			->	1.	uith	vice antior
oH (su)	6.0	100E	(0.0	1 6.0	9	6,10	(0.)	01	0.11	6.11	Ceill			111
Гетр. (°C)	14.0	_				4,5	-	_	14.6		14.7			
Spec. cond. (µS/cm)	3169	-	-	031	- 1-1	317.2					316.4			
O.O. (mg/L)	1.70	0.10	10.70	10.					0.58		0.50			
ORP (mV)	140.8	170-	1118	2116	-	1144	112	5	113.0	11/1/10	112.6			T.
Turbidity (NTU)	647	3.83		6 1.1	-0 1	.52	15		2.11	1,20				
Color/tint	Clear		2.4	Pin	1	100	CIO		LILI	1120	NL			
Odor					_						3			*
AUI .	Nove										/			
Sample Data														
						ainers	#	Fil	tered			I	Remarks	
MW-185	04/26	18 6	0838		4			Q	Y	11/1	amper,	1411	Lolast	icily 125 ml
100	1	1,4	20 /0		-			-			C: 1x 4			
							\top			Pivol	1127	O PUCC	- Miso	
)					- e'	+		_						
ampler's Name (pri	nt): Elia	Marke	1 1/2	dola	010	0 1/2	-		Sampl	er Sion	ature:	July)	A.a.I	als
		NIXIV	1 1 11 1	ALLAN/	1447	x A		- 1	~	~~~~	170	WVVVV	TO ANALYSIS	IMV

Facility: OMP				*	Site ID	M	N-18D	Sampl	er: EW	1		-	
oject Number: 07	0013-00	20-	032		Date: ()	14	0118	Бинр	CV 4	O .		FTN Ass	sociates, Ltd
	01.					11-	110						
Site Description	Wall Clar			TF-stee of	: Wall [□ D	4 337-1	U CD.		W-11 🖂 D	b-al- F	7.04h	
Type: Monitoring					emp (°F):		54	п Пре	watering				
Weather: Cotto		2000		oth (ft)			nage/repair	re naada	d: A las	Wind: (am		
Remarks:	es 🔲 No		otal Dep	/III (II)	7 0) 0	Dan	nage/Tepan	is neede	a. Nor				
remans.													
W. A. I I D. A.				Lo2t	0.5	mg	1						
Water Level Data Measuring point des	cription:		Water 1	10	er Make/	- 6	1 No.		Serial N	No. (Opti	onal):		
Mark/notch on T	OC		NWA						2011411	(ори			
North rim of TO	C	-	Pre-pi		Pre-purg		During		Purge		fter	Re	marks
Other:		-	initi		confirmat		purging		end		pling		
Time ("24:00" hr)			1049		0840		09103		0123	09			
Depth to Water (ft)			5,21		5.19		5.3	> '	5.39	5.	47		
Date (mm/dd/yy) LNAPL Thickness (f	ft) (If nrasau	()	4/23/		याग्वा	1					7		
DNAPL Thickness (- June										
Note: Record "S" in Rem			is observe	d.									
Etala D. 4.													
Field Data Instrument Make/Mo	rdel No:	Unit	or Seria	No:		D,	ump descri	intion			Railer de	scription:	
4SI Pro F	100	Oint	#4	140.		Ī	Peristal			1.			yethylene
MicroTI	W		#16			1	Bladder	(dedica	ated / por	table)	☐ Disp	osable Te	flon
	-						Submer	-				osable PV	C
Purge depth (ft):	~30)			Well g	goes d	ry during p	purging	: □ Y€	es 🖊 N	0		
Casing vol. (gal): (where applicable)					= [tota	l depth	(feet) - de	pth to wa	iter (feet)]	• [well ID	(inches)	2] • 0.0408	
Γime ("24:00" hr)	0849	084	0850	10902	0905	1090	11190 %	0911	10917	09701	0923R	emarks	
Purge vol. (gal)		-		10.00	0 10.0	-	0	0 11	1	200	2.9		
Purge rate (mL/min)	120	95	, ~	-	+	_					\rightarrow	Kiri	nuce S
oH (su)				1 6.80	10.80	10.8	06.79	670	679	1078	1078	0 - ()	T VICE S
Гетр. (°C)	14.6	14.	714.5	14.5	14.10	14.1	0 14.6	lu. 7	14.10	14.4	14.7		
Spec. cond. (µS/cm)	300.1				301.7	14		10	301.8	2017	301.6		
D.O. (mg/L)	1.24	0.81		0.74	Δ-	0.75	2 0 0	0.102	- 0	0.98			
ORP (mV)	110.10		-	-				30 0	10.7	8.8	4.9	1	
Turbidity (NTU)	16.45		61110			9.3	4 8.92	971	8.15	8115	7.98	1	
Color/tint	Clear		Plato	10.1	11.10	1,5	19.15	1.0	0112	3113	11 10		
Odor		_									1	1	+
	Nove										1	-	
Sample Data													
Sample ID	# Co	ntainers	#	Filtered			R	emarks					
MW-18D	04/24	118 1	0925	L	1		Ø	1211	- oruni-	11 1/3	plathe	1 1×12	SmL
101/	100						7		IC, IX				J 11000
								KIN	MI IX	IV IV	910	.,,	
)				-									
Sampler's Name (prin	nt): [1]	who.	th It	ude ly	Wer		Samp	ler Sign	ature:	Maleta	ALIA	Waln	
	/ L/VI	WW.	/	WINIAM	VUVI / I		- P	- 0	11.00	/ X W/ U U U I V	/ 31 11/01/1	WALL DATE	

Partition Olive Mi	C-2 / A				Site ID:	10.0	Cample	A cı	1	
Facility: OLD MI			0		Site ID:		Sample	er: ASA	4	FTN Associates, L
oject Number: 0	5015-00	20-0	32		Date: 4/	29/12				FIN Associates, L
Site Description										
Type: Monitoring V	Vell Te	empora	y Well	Extracti	on Well 🔲	Production We	ll Dev	watering V	Vell Dorehole	Other
Weather: CLEAR				Air Te	mp (°F):	59	1		Wind: 5mgh	
Well Locked? Ye	s 🗌 No	T	otal Dept	h (ft) 2	6.87	Damage/repai	rs needed	d: Mar	TRIM VEG	ETATION
Remarks:								,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Fezt;	0.0	My	1							
Water Level Data		/								
Measuring point desc	ription:		Water le		er Make/M	odel No.		Serial N	lo. (Optional):	
Mark/notch on TO						#4	لبرحا			
North rim of TOC			Pre-pu		Pre-purge onfirmation	During		Purge	After	Remarks
			initia		Ontirmation	n purging		end	sampling	
Time ("24:00" hr)			1134			- 2-	_	909	1015	
Depth to Water (ft) Date (mm/dd/yy)		6.46 6.60 6.93 7.17 7.05								
LNAPL Thickness (fi	(If proson	1)	NONE	1						
DNAPL Thickness (f			NONE							
Note: Record "S" in Rema			is observed	-5)						,
E!-14 D-4-										
Field Data Instrument Make/Mod	del No:	Unit	or Serial	No:		Pump descr	intion:		Railer d	lescription:
YOI PEU P		Omt	5	140.		Peristal				posable polyethylene
MILLERY	W		5	Ŧ		☐ Bladde	r (dedica	ted / port	able) 🔲 Dis	posable Teflon
						☐ Submer				posable PVC
Purge depth (ft):		~22			Well go	es dry during	purging:	[□ Ye	s 🔄 No	
Casing vol. (gal): (where applicable)					= [total d	epth (feet) - de	pth to wat	ter (feet)]	• [well ID (inches	$(s)^2$] • 0.0408
Time ("24:00" hr)	0828	063	6 0848	0858	0908					Remarks
Purge vol. (gal)					~.2					
Purge rate (mL/min)	35	25	-	MR	30					
pH (su)	5-64	5,60		-	5.73					
Temp. (°C)	15.5	16-		16.3	17,5				7	
Spec. cond. (µS/cm)	652	657	-	650	650					
D.O. (mg/L)	100	0.9		+	0.63					
ORP (mV)	-1426	-132				0				
Turbidity (NTU)	6.13	5,43			5.95					
Color/tint		3,4	1 6.5	0,0 €	5.75		-			
Odor	CHEAR				- 3					
Oddi	NIME						<u></u>	,		
Sample Data										
Sample ID	# Cor	ntainers	# Filtered			Remarks	3			
Mw-195	0910	L		0	1 L Amb	w. IL Pu	when 176 ml P	lety 10 mt 647		
	4/25.		.,,			_		1 10 10	1. 1	1
)										
				-					/	
Sampler's Name (prin	nt): A1	120	HAM	.TA/		Samp	ler Signa	ture:	Waster-	11
	/ 11	/ L A	1 1 1 7 2 1 1	or don't lot		1	_	- //	IN W FUIL	

								-				
Facility: OLI) M		Site ID	: Mw.	-190	Sampl	er: AS	14					
oject Number: 0	3013-00	20-03	32		Date:	4/75	114					FTN Associates, Lt
Site Description												н
Type: Monitoring V	Well Te	mporar	y Well	Extraction	on Well [Produ	iction Wel	ll 🔲 De	watering V	Vell 🔲 Borel	iole 🗌	Other
Weather: CL	TUNY			Air Te	mp (°F):		して			Wind: 10	uph	
Well Locked? ☑ Ye	s 🗌 No	To	otal Dept	h (ft) 40	1.04	Dama	age/repair	rs neede	d: Tra	M VEGE	turzen	ν
Remarks: Ferri 1.5 m	9/2											
Water Level Data			XX-4- 1	-136.	37.1	N 11	> T		G 133	(0.1:	1):	
Measuring point desc			Water le	vel Mete	Make/	Model	No.		Serial N	lo. (Optiona	1):	
North rim of TOC			Pre-pur initia	rge	Pre-purg	ge	During purging		Purge end	After sampling		Remarks
Time ("24:00" hr)			122		0917		0979		945	1027		
Depth to Water (ft)												
Date (mm/dd/yy)			4/23		1/25/4		7,00	3	-71		0	
LNAPL Thickness (fi	Now											
DNAPL Thickness (f		-	NONE									
Note: Record "S" in Rema	rks Column	if sheen	is observed	•								
Field Data									-			
Purge depth (ft):	<i></i>	35	5		Well		Peristal Bladder Submer during p	dedica	ited / port	able)	Dispo	sable polyethylene sable Teflon sable PVC
Casing vol. (gal): (where applicable)		_	_			_	-	pth to wa	iter (feet)]	• [well ID (in	ches)2	0.0408
Time ("24:00" hr)	0921	0926	0931	0936	0939	0942					Re	marks
Purge vol. (gal)							12.6					
Purge rate (mL/min)	90						\rightarrow					
pH (su)	6,37	6.35	6.35	6.34	6.35	6.34	6.33					
Temp. (°C)	160	16.0	15.4	15.8	15,7	15.6	15.6					
Spec. cond. (µS/cm)	5709	570,7	1571,9	572.2	571,5	570,8	57.5					
D.O. (mg/L)	1,32	0.57	0.45	0.41	0.37	6.31	0.31					
ORP (mV)	-141,5	-147,5	144,2	-151,4	-157,5	153.7	-154,4					
Turbidity (NTU)	1492		1 14.35		14.93	1651	13.22					
Color/tint	Clean	-					+->					
Odor	NONE.						1					
Sample Data											15.	
Sample ID	# Con	tainers	#1	Filtered			Rem	arks				
MU-19D	4/25	118 0	1947	, ,	-1		O	IXILAN	ler STUCES	1x IL Playto	Anu	. 12750-2 Metals,
v 17									a tuc			,
)												i i
											_	
Sampler's Name (prin	it): All	EX	1-19ML	tn			Samp	ler Sign	ature: /	C. Plus	_	
			Division in the last of the la							Contract of the Contract of th	-	

-						- 0		D I V		
bject Number: O	MIDL	ANI)		Site ID:	MW-20.	Sa:	mpler: A	514	
oject Number: O	3013-0	ero	-037		Date: 4	124/13				FTN Associates, Ltd
Participant of the Control of the Co										
Site Description										
Type: Monitoring		mporar	y Well	1			Well _			
Weather: Su.					emp (°F):	79				mp 6
Well Locked? ☑Ye	s 🗆 No	T	otal Dept	h (ft) 3	1,27	Damage/re	pairs ne	eeded:	none	
Remarks:	2.0 m	7/1								
Water Level Data	,									
Measuring point desc	ription:		Water le	vel Met	er Make/N	Model No.		Serial No	. (Optional):	
Mark/notch on To		-		UWA					T	
North rim of TOC ☐ Other:	3		Pre-pui		Pre-purge confirmation		400	Purge end	After	Remarks
Time ("24:00" hr)		-		_					sampling	
Depth to Water (ft)		-	1210		478	150		1510	1641	
Date (mm/dd/yy)		-	6.74		6.84	7-11		7.11	7-07	
LNAPL Thickness (f	t) (If present	t)	Nove		4/0-1/1	9-			<i>D</i>	
DNAPL Thickness (f	t) (If presen	t)	1							
Note: Record "S" in Rema	rks Column	if sheen	is observed							
Field Data	*									
Instrument Make/Mo	del No:	Unit	or Serial	No:		Pump de	scriptio	on:	Bailer de	escription:
YGI PRO	PLUS		5			Peris			☐ Disp	osable polyethylene
1 Meno	TPW		5		-			edicated / portal		oosable Teflon
D 1 1 (0)					T		nersible			osable PVC
Purge depth (ft):	.~ 2	.0			_	oes dry duri			⊠ No	
Casing vol. (gal): (where applicable)		,				depth (feet) -	depth to	o water (feet)] •	[well ID (inches)	o ²] • 0.0408
Time ("24:00" hr)	1441	145	1 501	1509	1509				R	Remarks
Purge vol. (gal)			1-2		~.3					
Purge rate (mL/min)	40				7					
pH (su)	633	6,25	6 6.38	640	6.40					
Temp. (°C)	20,9	24,6			25-1					
Spec. cond. (µS/cm)	781	769		767	764					
D.O. (mg/L)			0.65		0.58					
ORP (mV)			7-1630		7 -1620					
Turbidity (NTU)	1904				1079					
Color/tint	Clary		11000		()					
Odor	1'es			-	-					
	Sucet,	13451	mi-like			9				
Sample Data	,	7	,, c							
Sample ID	Date		Time	# Co	ntainers	# Filtere	d		Remarks	
MW-705		4	1	IL	Amler, IL Plu	also 125 nd Phats	or, Home Ghrs			
	4/24/		512		-1			1	The Land	1
1										
Sampler's Name (prin	nt): A11	~~	LANGE	Tax		Sa	mpler S	Signature:	110, 00	1-

Facility: GLD	MD a		T	Site ID.	M. 20	Sampl	or: A		
	MEDLAND	1 10-			MU-201)	Samp	ler: Ash	/	FTN Associates, Ltd
bject Number: O	3013-002	0-037		Date: 4	124/18				FIN Associates, Ltd
Site Description									
Type: Monitoring	Well Tempor	ary Well [Extraction	on Well	Production We	il \square De	watering W	ell Borehole	Other
Weather: Clear				mp (°F):	79			Vind: 10m	
Well Locked?	es 🗆 No	Total Dep			Damage/repai	irs neede			-1
Domarke		<u>-</u>		<u> </u>	8				9
F2731.5	79/2								
	7		(4)						
Water Level Data		Water 1	aval Mata	- Males/Nf	dal Na		Coriol No	(Ontional)	
Measuring point desc Mark/notch on To		water	ever Mete	r Make/M	odel No.		Serial No	o. (Optional):	
North rim of TOC		Pre-pı		Pre-purge	During	g	Purge	After	D1 -
Other:		initi		onfirmation	n purgin	g	end	sampling	Remarks
Time ("24:00" hr)		112		1517	1988	1	543	1620	
Depth to Water (ft)		6.66	,	4/2011	6.91	(197	6.96	
Date (mm/dd/yy)		6/2	1/19	4/22/1	8			->	
LNAPL Thickness (f		New							
DNAPL Thickness (f Note: Record "S" in Rema									
tion. Record o mitchia	aks Column II show	11 15 0030110							
Field Data									
Instrument Make/Mo		it or Serial	No:		Pump descr				scription:
MICRUTE	1~	5			Peristal Bladde		ated / porta		osable polyethylene osable Teflon
2 7 12 (100 11					Subme		atou / porta		osable PVC
Purge depth (ft):	723	4		Well goe	s dry during	purging	: [☐ Yes	No No	
Casing vol. (gal): (where applicable)				= [total de	epth (feet) – de	pth to wa	ater (feet)] •	[well ID (inches)	²] • 0.0408
Time ("24:00" hr)	1522 15	271537	2 1537	1542				R	temarks
Purge vol. (gal)				2.4					
Purge rate (mL/min)	90 70	3 —		-					
pH (su)	6,43 6,9		6,18	6.21					
Temp. (°C)	21,621			2-1-0					
Spec. cond. (µS/cm)	642 64			634					
D.O. (mg/L)	2.63 18			1,47					
ORP (mV)	148,2 44		5-143,1						
Turbidity (NTU)		14 20,4							
Color/tint	1 Cle			-3					
Odor	V SUM		NONE					V	
	11.						4		
Sample Data	5lig 4+	suecteds							
Sample ID	Date	# Con	tainers	# Filtered			Remarks		
MW-2017	2017 4/24/19 1545 6				0	IL Ar	160, IL Plans	41, 123 AL Plankie	, 40ml 6/19)
EB-6	1	1700	L		0	End a			A3 2 NWA #4 2
)									silicons turing
			91			1 1	J*	1	2
Sampler's Name (prin	it): Alex	HAM	17.42		Samı	oler Sign	nature: /	71 100	51.6

Facility: OMP					Site ID:	MW-	215	Sample	r: EW	J				
pject Number: 030	3-007	20-6	132		Date: O	1.4						FTN A	Associate	s, Ltd
Site Description						, ,								
Type: Monitoring Well	Temp	orary \	Well	Extracti	on Well] Produc	tion Wel	1 Dev	vatering \	Well 🔲 E	Borehole	Other		
Weather: Overcast		·		Air Te	mp (°F):	107				Wind:	P WU	MON		
Well Locked?] No	Tota	al Depth	(ft) 2	7.09	Damag	де/гераіг	s needed	New	is ba	int			
Remarks: Ponded wo	и	ijace	ht to	s we	U pad	, large	, pond	ed au	ea of	wat	er ap	proxin	nadely	8,
Water Level Data	Fert	: 0	,5 "	10 L										
Measuring point descripti	on:	W	ater lev	rel Mete	er Make/I	Model N	lo.		Serial N	lo. (Opti	ional):			
☐ Mark/notch on TOC☐ North rim of TOC		ļ	Pre-pur		Pre-purg	e T	During	7	Purge	A	fter			
Other:			initial		onfirmati		purging		end		pling		Remarks	
Time ("24:00" hr)			204	1	449	1	523		WHE	16	43			
Depth to Water (ft)			5.00		5,03		5,15		5.16	5.	20			
Date (mm/dd/yy)		04/23/18							-3					
	APL Thickness (ft) (If present) APL Thickness (ft) (If present) VOV													
DNAPL Thickness (ft) (If Note: Record "S" in Remarks C			_											
Field Data	.T. Y	T	01-13	τ		D	1				D - 31			_
Instrument Make/Model N	No: U	mit or	Serial I	NO:			ip descri Peristalt				Bailer de		n: polyethyl	ene
MONOTPA		#1	P			/		(dedicat	ed / por	table)		osable		
<i></i>							Submer					osable l	PVC	
	12				Well g	oes dry	during p	ourging:	(□ Y€	s Z N	1o			
Casing vol. (gal): (where applicable)					= [total	depth (f	eet) – dep	oth to wat	er (feet)]	• [well I]	D (inches) ²] • 0.04	108	
	15011	504	1509	1513	1518	1523	1528	1531	1534	1537	1540	15dalfy	1546	
Purge vol. (gal)		- 1			,		.,,		1-	-			~.8	
Purge rate (mL/min)	70 8	35			75	80							->1	
pH (su) 5	995.	Le T	5.87	6,89	15.95	6.05	6.09	6.08	6.07	6.04	6.04	6.05	6.05	
	0.5 11		16.4		16.4									
			v15					1068			608			
D.O. (mg/L) 2	.13 0.	109	0.68	0.55	0.44	0.47	0.47	0.42	0.38	0.37	0.36		0.33	
ORP (mV)	14.912	10.01	117.4	113.1	104.1	94.9	89.7			85.0	84.2	82.2	79.3	
Turbidity (NTU) 5	3.21 48	818	13.51	340	141.29			36,51					20.72	
Color/tint 4	Dition .		7	Clear									7	
	one.										ļ		->	
8	suspe	note	d fin	3	ale col		di-				with	na g	nps	
Sample Data														
Sample ID	Date 23 8	_	35	# Cor	ntainers	# F:	iltered				Remarks			
EB-1 04		1		Ø	IXI	L amba	V; IX	IL play	tic, 1x	40mlg1	as, ix			
MW-215 00		4	48		1	1 5	7	-	u pla		10	107	1 1-5	
DUP-MW-219 OU	123	8 16	10		1	V) .				10ml	glass.	1x125	mlph
1111111111	-15.1		11:	dala	. 1. 0.10		La		-plat			Tools		
Sampler's Name (print):	Eliza	nexv	UTV	(JUN)	MULY		Samp	ler Signa	ture:	tallet	OTH	Waln	/	

Facility: DMP		Site ID:	MW-	211)	Sample	er: EW	7				
pject Number: 03013-002	0-0	32		Date: 0	4/23	18					FTN Associates, Ltd
Site Description			•								
Type: Monitoring Well Tem	porary \	Well [Extraction	on Well [1 Produc	tion Wel	1 De	watering V	/ell □ B	orehole l	Other
Weather: Oversast	porury	TON [mp (°F):		TION WO	Пъс			Calm	
Well Locked? Yes No	Tota	al Depth	(ft) 4	0.95	Damas	re/repair	rs neede	d: Neec	15 mm	int	
Remarks: Ponded mater	idja	cent	to	vell o	ad, l	WK C	irca	of po	nded	wat	er approximately
Remarks: Ponded water of from N o	F'N	sell.		r		0		F			1.
Water Level Data		e21:									
Measuring point description:				r Make/N	Model N	lo.		Serial N	o. (Opti	onal):	
Mark/notch on TOC		AWE							1 .		
☐ North rim of TOC ☐ Other:		Pre-pur initial		Pre-purg		During purging		Purge end		fter pling	Remarks
Time ("24:00" hr)	_	1208		1552		wl5		030		18	
Depth to Water (ft)	-	4.54		4.45		1.85		1.80		12	
Date (mm/dd/yy)		4113	IX -	1193	_	1.4		1,5 4	-	->	
LNAPL Thickness (ft) (If present)		None)								X
DNAPL Thickness (ft) (If present)		Non	2								
Note: Record "S" in Remarks Column if	theen is	observed.									
Field Data											
	Juit or	Serial 1	No:			p descri					escription:
MICHOTPIN	中山	1		-		Peristalt Bladder		ted / porta	able)		oosable polyethylene oosable Teflon
- t-wovert VV	- 4	-				Submers		ica / port			osable PVC
Purge depth (ft): v 4				Well g	oes dry	during p	ourging:	□ Ye	KN	io .	
Casing vol. (gal):				= [total	depth (fe	eet) – der	oth to wa	ter (feet)]	[well II) (inches	o ²] • 0.0408
(where applicable) Time ("24:00" hr)	NV.	llain	امعلدا								
Time ("24:00" hr) Purge vol. (gal)	200	1610	כשו	1618	1021	1624	WLI	1030	COD	1030	Cemarks
	ω5									~.7	۵۵۸۸ مالترمه
		In O.C.	1. (1/1	1-02	1 01	1. (2) I	in QuO	in ar	1000	100	nith nice
				6.92		10.91	200	6.90			grips
Temp. (°C) 15.9 16.9 15.9 16	_			16.5	16.6	16.6	כישוו	$ C_iQ_i $		110,101	
			EIN C	502	Chai						
D.O. (mg/L) $ i_{\epsilon}QQ $	_		510.5	503	-		509.0	509.0	508,4	508,6	
13, 1112	102	0.61	510.5	0.58	0.56			509.0	508,4 0,47	508,6 0.46	
ORP (mV) 11.3 -7	2.3	34.0	0.59 -35,4	0.58	0.56 -38.5	509.1 0.53 -31.9	509.0 0.52 -41.4	509.0 0.50 -41.5	508,4 0,47 .40,9	508,6 0.46 40.8	
ORP (mV) 11.3 -7 Turbidity (NTU) 40.35 3	2.3	34.0	0.59 -35,4	0.58	0.56 -38.5	509.1 0.53 -31.9	509.0 0.52 -41.4	509.0	508,4 0,47 .40,9	508,6 0.46 40,8	
ORP (mV) 11.3 -7 Turbidity (NTU) 40.35 2 Color/tint Clear	2.3	34.0	0.59 -35,4	0.58	0.56 -38.5	509.1 0.53 -31.9	509.0 0.52 -41.4	509.0 0.50 -41.5	508,4 0,47 .40,9	508,6 0.46 40.8	
ORP (mV) Turbidity (NTU) Color/tint Odor Now	102 23 9.61	0.61 34.0 49.29	0,59 -35,4 48,98	0.58	0.56 -38.5	509.1 0.53 -31.9	509.0 0.52 -41.4	509.0 0.50 -41.5	508,4 0,47 .40,9	508,6 0.46 40.8	
ORP (mV) Turbidity (NTU) Color/tint Odor Nou *= Sur	102 23 9.61	0.61 34.0 49.29	0,59 -35,4 48,98	0.58	0.56 -38.5	509.1 0.53 -31.9	509.0 0.52 -41.4	509.0 0.50 -41.5	508,4 0,47 .40,9	508,6 0.46 40.8	
ORP (mV) Turbidity (NTU) Color/tint Odor Nou X = Sur	1.62 2.3 9.61 Deno	0.61 34.0 49.29	0.59 -35.4 48.98	0.58	0.56 -38.5 46.5)	509.1 0.53 -31.9	509.0 0.52 -41.4	509.0 0.50 -41.5	508,4 0,47 40,9 37,40	508,6 0.46 40.8	
ORP (mV) Turbidity (NTU) Color/tint Odor Sample Data Sample ID Date	162 2.3 9.61 Deho	0.61 34.0 49.29 ded fi	0.59 -35.4 48.98	0.58 -3e.9 47.61	0.56 -38.5 46.5)	509.1 0.53 -31.9 50.62	509.0 0.52 -41.4 -45.73	509.0 0.50 -41.5 49.90	508,4 0,47 .40,9 37,40	0.46 40.8 37.24	C. 1 x 125ml niwh
ORP (mV) Turbidity (NTU) Color/tint Odor Sample Data	162 2.3 9.61 Deho	0.61 34.0 49.29	0.59 -35.4 48.98	0.58 -3e.9 47.61	0.56 -38.5 46.5)	509.1 0.53 -31.9 50.62	509.0 0.52 41.4 45.73	509.0 0.50 -41.5 49.90	508,4 0,47 .40,9 37,40	0.46 40.8 37.24	C, 1 x 125mc plant
ORP (mV) Turbidity (NTU) Color/tint Odor Sample Data Sample ID Date MW-21D ORP (mV) 11.3-7 10.35-3 1	Pence Ti	0.61 34.0 49.29 ded fi	0.59 -35.4 48.98	0.58 -3e.9 47.61	0.56 -38.5 46.5) # Fi	509.1 0.53 -31.9 50.62	509.0 0.52 -41.4 45.73	509.0 0.50 -41.5 49.90 anher	508.4 0.47 40.9 37.40 F	0.46 40.8 37.24	- 5
ORP (mV) Turbidity (NTU) Color/tint Odor Sample Data Sample ID Date	Pence Ti	0.61 34.0 49.29 ded fi	0.551 -35,4 48,98 we) # Con	0.58 -3e.9 47.61	0.56 -38.5 46.5) # Fi	509.1 0.53 -39.9 50.62 Itered	509.0 0.52 -41.4 45.73 1x 1L 1x41	509.0 0.50 -41.5 49.90	508,4 0,47 40,9 37,40 12,1 12,1 12,1	0.46 40.8 37.24	C, 1 x 125mc pint

	MIDL	ANID			Site ID: ^	141-225	Sampl	er: ASI	J	
Facility: O(1)			032		Date:	1W-ZZS			,	FTN Associates, L
/										
Site Description										
Type: Monitoring		mporary	Well [ll De			
Weather: Cle					mp (°F):	79		Į V	Vind: Garpy	
Well Locked? ☑Ye	s No	To	tal Deptl	n (ft) Z	7,14 D	amage/repai	rs neede	d: .+	IM gass	
Remarks:									,	
Water Level Data										
Measuring point desc		1	Water lev	vel Mete	r Make/Mo	del No.		Serial No	o. (Optional):	
Mark/notch on TO		H						D	After	
Other:			Pre-pur initial		Pre-purge onfirmation	During purging		Purge end	sampling	Remarks
Time ("24:00" hr)			1707		ひてて	1239	1	249	1330	
Depth to Water (ft)			7.78		1.56	8-05		8.06	8,07	
Date (mm/dd/yy)			4/23/	18 4	-24-19-			706	0707	•
LNAPL Thickness (f		9	NW	=		"			*	
DNAPL Thickness (f	3		NAME							
Note: Record "S" in Rema	rks Column	if sheen is	observed.							
Field Data										
nstrument Make/Mo	del No:	Unit o	r Serial l	No:		Pump descr				escription:
MECRO MECRO	11.45	-	5			Peristal				posable polyethylene
) TIL CILO	11/~	÷	フ			☐ Bladder		ted / porta		posable Teflon posable PVC
Purge depth (ft):		22			Well goes	dry during		[Yes		posable i ve
		11			Wen Book	, dr , daring ,	P	4 1 200		
Casing vol. (gal):		Fr . 1 1	4 (C D L	. 41			21-00409			
	.,	,				pth (feet) – de	pth to wa		[well ID (inches)2]•0.0408
where applicable)	1278	1233	1238	1243	1246	pth (feet) – de	pth to wa		[well ID (inches) ²] • 0.0408 Remarks
(where applicable) Time ("24:00" hr)	1278	1233	1238	1243		oth (feet) – de	pth to wa		[well ID (inches	
Where applicable) Time ("24:00" hr) Purge vol. (gal)	1278	1233	1238	1243	1246	pth (feet) – de	pth to wa		[well ID (inches	
Casing vol. (gal): (where applicable) Time ("24:00" hr) Purge vol. (gal) Purge rate (mL/min) pH (su)			1238		1246	pth (feet) – de	pth to wa		[well ID (inches	
Purge vol. (gal) Purge rate (mL/min) PH (su)	60	5.12	6.08		1246	pth (feet) — de	pth to wa		[well ID (inches	
Where applicable) Fime ("24:00" hr) Purge vol. (gal) Purge rate (mL/min) pH (su) Femp. (°C)	60		6.08	6.09	1246	pth (feet) – de	pth to wa		[well ID (inches	
where applicable) Fime ("24:00" hr) Purge vol. (gal) Purge rate (mL/min) pH (su) Femp. (°C) Spec. cond. (µS/cm)	60 6.25 [9.1 2277	6.12	6.08	6.09	1246 2.3 6.10 19.4 2264	pth (feet) – de	pth to wa		[well ID (inches	
where applicable) Fime ("24:00" hr) Purge vol. (gal) Purge rate (mL/min) pH (su) Femp. (°C) Spec. cond. (µS/cm) D.O. (mg/L)	60 6.25 [7.1 2277 0.87	6.12 19,7 2279 0.81	6.08 14.0 2174 0.58	6.09 19.3 2269 0,49	1246 2.3 6.10 19.4 2264 0.48	pth (feet) – de	pth to wa		[well ID (inches	
Where applicable) Fime ("24:00" hr) Purge vol. (gal) Purge rate (mL/min) DH (su) Femp. (°C) Spec. cond. (µS/cm) D.O. (mg/L) DRP (mV)	60 6.25 [3.1 2277 0.87 -154.5	6.12 190,7 22.79 0.81 -1585	6.08 19.0 2174 0.58 -(12,8	6.09 19.3 2269 0,49 -116.7	1246 2.3 6.10 19,4 2264 0.48 168,2	pth (feet) – de	pth to wa		[well ID (inches	
(where applicable) Time ("24:00" hr) Purge vol. (gal) Purge rate (mL/min)	60 6.25 [7.1 2277 0.87	6.12 190,7 22.79 0.81 -1585	6.08 19.0 2174 0.58 -(12,8	6.09 19.3 2269 0,49	1246 2.3 6.10 19,4 2264 0.48 168,2	pth (feet) – de	pth to wa		[well ID (inches	
where applicable) Fime ("24:00" hr) Purge vol. (gal) Purge rate (mL/min) OH (su) Femp. (°C) Spec. cond. (µS/cm) O.O. (mg/L) DRP (mV) Furbidity (NTU) Color/tint	60 6.25 [7.1 2277 0.87 -154.5 4.02	6.12 190,7 22.79 0.81 -1585	6.08 19.0 2174 0.58 -(12,8	6.09 19.3 2269 0,49 -116.7	1246 2.3 6.10 19,4 2264 0.48 168,2	pth (feet) – de	pth to wa		[well ID (inches	
where applicable) Fime ("24:00" hr) Purge vol. (gal) Purge rate (mL/min) oH (su) Femp. (°C) Spec. cond. (µS/cm) O.O. (mg/L) ORP (mV) Furbidity (NTU) Color/tint	60 6.25 [3.1 2277 0.87 -154.5 4.02 acer	6.12 190,7 22.79 0.81 -1585	6.08 19.0 2174 0.58 -(12,8	6.09 19.3 2269 0,49 -116.7	1246 2.3 6.10 19,4 2264 0.48 168,2	pth (feet) – de	pth to wa		[well ID (inches	
where applicable) Fime ("24:00" hr) Purge vol. (gal) Purge rate (mL/min) OH (su) Femp. (°C) Spec. cond. (µS/cm) O.O. (mg/L) ORP (mV) Furbidity (NTU) Color/tint Odor	60 6.25 [7.1 2277 0.87 -154.5 4.02 CLEAR- NONE	6.12 18,7 2279 0.81 -158,5 4,16	6.08 19.0 2274 0.58 -162,8 2446	609 63,3 2269 0,49 -166.7 2,42	1246 2.3 6.10 19.4 2264 0.48 168.2 1208		pth to wa		[well ID (inches	Remarks
where applicable) Fime ("24:00" hr) Purge vol. (gal) Purge rate (mL/min) pH (su) Femp. (°C) Spec. cond. (µS/cm) D.O. (mg/L) DRP (mV) Furbidity (NTU) Color/tint Ddor Sample Data Sample ID	60 6.25 [3.1 2277 0.87 -154.5 4.02 acer	6.12 196.7 22.79 0.81 -156.5 4.16	6.08 18.0 2274 0.58 -112,8 2146	609 63,3 2269 0,49 -166.7 2,42	1246 2.3 6.10 19,4 2264 0.48 168,2	# Filtered		ter (feet)]	[well ID (inches	Remarks
where applicable) Fime ("24:00" hr) Purge vol. (gal) Purge rate (mL/min) OH (su) Femp. (°C) Spec. cond. (µS/cm) O.O. (mg/L) ORP (mV) Furbidity (NTU) Color/tint Odor	60 6.25 [7.1 2277 0.87 -154.5 4.02 CLEAR- NONE	6.12 190,7 22.79 0.81 -158,5 4.16	6.08 19.0 2274 0.58 -162,8 2446	609 63,3 2269 0,49 -166.7 2,42	1246 2.3 6.10 19.4 2264 0.48 168.2 17.09			ter (feet)]	[well ID (inches	Remarks
where applicable) Fime ("24:00" hr) Purge vol. (gal) Purge rate (mL/min) pH (su) Femp. (°C) Spec. cond. (µS/cm) D.O. (mg/L) DRP (mV) Furbidity (NTU) Color/tint Ddor Sample Data Sample ID	60 6.25 [7.1 2277 0.87 -154.5 4.02 CLEAR- NONE	6.12 190,7 22.79 0.81 -158,5 4.16	6.08 18.0 2274 0.58 -112,8 2146	6.09 19.3 2269 0,49 -166.7 2,42	1246 2.3 6.10 19.4 2264 0.48 168.2 17.09	# Filtered		ter (feet)]	[well ID (inches	Remarks
where applicable) Fime ("24:00" hr) Purge vol. (gal) Purge rate (mL/min) pH (su) Femp. (°C) Spec. cond. (µS/cm) D.O. (mg/L) ORP (mV) Furbidity (NTU) Color/tint Odor Sample Data Sample ID	60 6.25 [7.1 2277 0.87 -154.5 4.02 CLEAR- NONE	6.12 190,7 22.79 0.81 -158,5 4.16	6.08 18.0 2274 0.58 -112,8 2146	6.09 19.3 2269 0,49 -166.7 2,42	1246 2.3 6.10 19.4 2264 0.48 168.2 17.09	# Filtered		ter (feet)]	[well ID (inches	Remarks

Facility: Old /	Tidlano	/			Site ID:	: M	W-221)	Sam	pler: A514	,		×
	3013 -	1020	-037	2	Date:	4/	24/18					FTN Associates, Lt
							17.10					
Site Description												
Type: ☑Monitoring V		mporary	Well [Extraction	on Well	Pro			- 0		Borehole	Other
Weather: Clu	~				mp (°F):		72		V	Vind:	7~	کر م
Well Locked? 🏹 Ye				h (ft)니:	2,27	Dar	mage/repai	rs need	ded: trin	,	veset	la hia
Remarks: F2+	: O~		-			.,.						
16	- 02	7/										
Water Level Data												
Measuring point desc	ription:	1	Water le	vel Mete	er Make/	Mode	el No.		Serial No	. (Op	tional):	
Mark/notch on TO	DĈ			IWA	#4							
North rim of TOC)		Pre-pu		Pre-purg		During	20	Purge		After	Remarks
Other:			initia		onfirmat	ion	purging	3	end	_	mpling	
Time ("24:00" hr)			1118		1120		1156		1213	10	104	
Depth to Water (ft)			5,47		5,60		5-95		6.03	6.	15	
Date (mm/dd/yy)	X 65		4/23/		124/1	8 -				-		*
LNAPL Thickness (ft			van									
DNAPL Thickness (find Note: Record "S" in Remains.			observed									
Note: Record 5 III Remai	ks comin	ii siiceii ii	OUSCITCU	*								
Field Data												
Instrument Make/Moo	del No:	Unit o	r Serial	No:			ump descri					escription:
YOI PROP		-	5		2	ַן ן	Peristal					posable polyethylene
MICRU TR		-	5				☐ Bladder		cated / portal	ble)		posable Teflon posable PVC
Purge depth (ft):		37			Wello	TOPS C	dry during		g: Yes			posable i ve
Casing vol. (gal):	~	(1)			† - ·					-		2 -
(where applicable)					= [total	l deptl	h (feet) – de	pth to v	water (feet)] •	[well	ID (inches	0.0408
Time ("24:00" hr)	1124	1134	1144	1154	1204	121	2]	Remarks
Purge vol. (gal)			, de			1	3					
Purge rate (mL/min)	25						2					
pH (su)	6.64	6.61	6.79	1.97	6.85	681						
Temp. (°C)	19,4	21,6	22.1		22.7							
Spec. cond. (µS/cm)	721	725	7241		723	70	3					
D.O. (mg/L)	2.87			190	1,65							
ORP (mV)			-					-				
	-140.2			-135.				-			-	
Turbidity (NTU)	13,97	120	11.38	12.88	10-00	7.7	8					
Color/tint	at the											
Odor	NONE					1						2
Sample Data										ě:		
					itainers	#	# Filtered				Remarks)
MW-22D		215	4			0	ILA	yler, IL Pay	ky 17	Jack Plan	Me, 40Ml 6142	
/ 100 -01)	4/24/	10 1				-		1 - ///	100)	7	7/4-1-0	Y (- 190 Bin)
						+		-				
) 								L				
Sampler's Name (prin	it): A (FY I	d 1 a	. 7 . 1			Samr	ler Si	enature:	(11)	M.	

Facility: OMP					Site ID	: /	4W	-23	Sample	er: A	11		
ject Number: 03	013-002	20-03	32		Date:								FTN Associates, Ltd
Site Description													
Type: ☑Monitoring W	Vell □Te	emporar	y Well [Extract	ion Well [] Pr	oduc	tion Wel	l De				
Weather: Claudy				Air Te	emp (°F):		6	8			Wind:	O mpl	4
Well Locked? ☑ ¥es	s 🗌 No	Т	otal Dep	th (ft)57	2.30	Da	amag	e/repair	rs neede	d: 4,	Wind:	etatis	9
Remarks: Fe 34 = 2.	.0												
Water Level Data													
Measuring point descr			Water le		er Make/		lel N	0.		Serial 1	No. (Optio	nal):	
Mark/notch on TO		-	D.		ATHY		-	n :		D.	1 4	,	<u>\(\frac{1}{2}\)</u>
North rim of TOC Other:			Pre-pu initia		Pre-purg confirmat			During purging	9.4	Purge end		ter oling	Remarks
Time ("24:00" hr)	_		1059		455	1011	_	726		oz.	175	_	
Depth to Water (ft)		\neg	7.47		7.47			57		58	7.0	-	
Date (mm/dd/yy)			4-23		1.17		4.	,	-/-	39	7.0	'	
LNAPL Thickness (ft)		()	None										
DNAPL Thickness (ft)			None										
Note: Record "S" in Remark	ks Column	if sheen	is observed	1.									
Field Data													
Instrument Make/Mod		Unit	or Serial	No:				p descri					escription:
YSI PROPUS		-	- 4	2				Peristalt					osable polyethylene
MERROTEN		-		5				Bladder Submer		ted / por	table) [oosable Teflon oosable PVC
Purge depth (ft):	21	141			Well o	nes	_		20/11/20/20/20	ΠV	es 🛮 No		oosable 1 v C
Casing vol. (gal):		-(-)			-								21 - 0.0400
(where applicable)	· ·		_	-	= Ltotal								o ²] • 0.0408
Time ("24:00" hr)	1510	1520	1505	1530	1535	150	40	1545	1550	1555	1558		Remarks
Purge vol. (gal)											1.60	1600	
Purge rate (mL/min)	80	50	7			_							
pH (su)	6.79	6.86	6.89	692	6.94	6.	93	6.92	6.92	6.95	6,94	6.93	*
Temp. (°C)	17.4	18.2	18.9	19,2	17.8	17			14.4		17.7	17.9	
Spec. cond. (µS/cm)	866	882	884	888	895	87	79	877	877	878	870	873	
D.O. (mg/L)	3,51	156	2.19	2.01	1,85	1,0	12	1,08	0.86	0,8 D	0.70	0.71	
ORP (mV)	-104,1	-1379			-145,6	-15	3,0	-155.0	-1539	-156.5	-199,7	-158-	j
Turbidity (NTU)	5.13	7.67	9.29	4.62		3			41.37		3,44	3.06	•
Color/tint	CLEAR											->	H-9/L-
Odor	NUNE				4							1	*
Sample Data													
Sample ID	Date		Time	# Coı	ntainers		# Fil	ltered			R	emarks	
EB-2	4-23-	18 1	334	4			(0	PUST 1	la/L LA	1 NW	4 III	1
116-23	T		605	L	I		-	0					
DUP-10- 23	V		705	7		0		7 x 16 Angles, 12 L Plantes, 14 175 x L plantes 13440.					
										111/10	7.00	17 17779	1 100/100/00
Sampler's Name (print): ALE	× H	AnzIA	,				Samp	ler Signa	ature:	aler	Tank	•

Site ID: NEELEY Sampler: EW Sampler: EW Sampler: EW Determine Site Description	
Type: Monitoring Well Temporary Well Extraction Well Production Well Dewatering Well Borehole Other Levident Weather: Notation Well Production Well Dewatering Well Borehole Other Levident Wind: Cally Well Locked? Yes No Total Depth (ft) 9.15 Damage/repairs needed: Notation Corporates: Water Level Data Measuring point description: Mark/notch on TOC Mark/notch on TOC North rim of TOC Pre-purge Pre-purge During Purge After Remarks	iàl W
Type: Monitoring Well Temporary Well Extraction Well Production Well Dewatering Well Borehole Other Levident Weather: Now Air Temp (°F): 59°F Wind: Carp Well Locked? Yes No Total Depth (ft) 9.15 Damage/repairs needed: New North Carp Remarks: Water Level Data Measuring point description: Mark/notch on TOC Mark/notch on TOC North rim of TOC Pre-purge Pre-purge During Purge After Remarks	iàl W
Weather: Nowal Air Temp (°F): 59°F Wind: Calm Well Locked? Yes No Total Depth (ft) 9.15 Damage/repairs needed: Nowal No	
Well Locked? Yes No Total Depth (ft) 9.15 Damage/repairs needed: Nucl No. (Optional): Water Level Data Measuring point description: Mark/notch on TOC North rim of TOC Water level Meter Make/Model No. NWA **8 Pre-purge Pre-purge During Purge After Remarks	
Water Level Data Fe2t : 1.5 Mg	
Water Level Data Fe2t : 15 M Measuring point description: Mark/notch on TOC North rim of TOC Water level Meter Make/Model No. NWA ** Pre-purge Pre-purge During Purge After Remarks	
Measuring point description: Mark/notch on TOC North rim of TOC Water level Meter Make/Model No. NWA ** 8 Pre-purge Pre-purge During Purge After Remarks	
Measuring point description: Mark/notch on TOC North rim of TOC Water level Meter Make/Model No. North rim of TOC Pre-purge Pre-purge Pre-purge Pre-purge Pre-purge Pre-purge Purge After Remarks	
North rim of TOC Pre-purge Pre-purge During Purge After Remarks	-
North rim of TOC Pre-purge Pre-purge During Purge After Remarks	
	- 1
Unitial confirmation purging end sampling	$\overline{}$
Time ("24:00" hr) NIL 1041 1105 1119 135	
Depth to Water (ft) 0.89 0.92 1.01 1.05	
Date (mm/dd/yy) LNAPL Thickness (ft) (If present)	
DNAPL Thickness (ft) (If present) V NK: Not yecorded	
Note: Record "S" in Remarks Column if sheen is observed.	
Field Data	
Instrument Make/Model No: Unit or Serial No: Pump description: Bailer description:	
Peristallic Disposable polyethyle	ne
☐ Bladder (dedicated / portable) ☐ Disposable Teflon☐ Submersible ☐ Disposable PVC	- 1
Purge depth (ft): Well goes dry during purging: Yes No	\dashv
Casing vol. (gal): = [total depth (feet) – depth to water (feet)] • [well ID (inches) ²] • 0.0408	
where applicable)	
Time ("24:00" hr) 047 1052 1057 1107 1110 113 1110 119 Remarks	
Purge vol. (gal)	
Purge rate (mL/min) 135	
pH (su) 6.79 6.54 6.58 6.62 6.63 6.61 6.59 6.59 6.59	
Temp. (°C) 14.3 14.0 14.1 14.1 14.3 14.2 14.3 14.4	
Spec. cond. (μS/cm) 21, μ 257.9 208.1 208.4 208.6 208.6 208.1	
D.O. (mg/L) 2.06 0.48 0.39 0.33 0.44 0.27 0.46 0.26 0.26	
ORP (mV) -28,3 -512 -51,7 -63,5 -65,3 -63,9 64,4 -64,1 -65,1	
Turbidity (NTU) 96.4051.13 39.35 [7].69 29.69 [20.84] [1.16] [24.11] [72.69]	
Color/tint Clear > Clear	
Odor Sulfuy	
Sample Data	
Sample ID Date Time # Containers # Filtered Remarks	
NEELET 01/20/18 1120 4 18 INIC amber: 1 x1C partic; 1x125m	$\overline{}$
plastic; 1x 40 ml glass	
planto tx to the splan	
Sampler's Name (print): Elijabeth Studibally Sampler Signature: Clay W Cudlah	

	I DL AN	1/			Site ID:			Sampl	c1. //	312			
oject Number: 03013-420-633					Date:	: 4/15/18						FTN Associates, Lt	
Sit. Description													
Site Description Type: Monitoring V	Vell Cl.Te	mporent.	Well	Evtrantia	n Woll [7 Producti	on Wall	□De	watering 1	Wall 🖂 I	Doroholo	□ Oth	COMP.
		inporary	Well _		np (°F):		OII WEII	Пре		Wind:			cı
Weather: Slyl		Tm					, .	-			-	والمهد	
Well Locked? Ye	s No	To	tal Deptl	1 (ft)_Z	345	Damage	/repair	s neede	d: //	emove	fire	ant	raound
Remarks:			4										
				4									
Water Level Data													
feasuring point description: Mark/notch on TOC			Water lev		r Make/I 4 ⊯ 4	Model No).		Serial N	ional):			
North rim of TOC			Pre-pur		Pre-purg		During	T	Purge	I	After		n 1
Other:			initial		onfirmati		urging		end		npling		Remarks
Time ("24:00" hr)			1248		426		139	10	147	IU	58		
Depth to Water (ft)			0.06		0.30	0.	32	0	34	0.	34		
Date (mm/dd/yy)			123/19		1/25/						'		
LNAPL Thickness (fi			Heen						95				
DNAPL Thickness (f			NONE								1		
Note: Record "S" in Rema	rks Column	if sheen is	observed.										
Field Data							1						
Instrument Make/Moo	del No:	I Init o	r Serial l	No:		Dumn	descrip	ntion:			Bailer d	eccrin	tion:
		Omt O	i ocitat i	NO.		I Fullib	descri				Dallel u	cscrib	IOII.
								ic					
YSI PRU PLUS		-		5		₩ P	eristalti		ted / port	table)	☐ Dis	posabl	e polyethylene
				5		₽ P	eristalt ladder	(dedica	ted / port	table)	☐ Dis	posabl posabl	e polyethylene e Teflon
1 CERUTE		_		5	Well g	₽ P B □ S	eristalt ladder ubmers	(dedica			☐ Dis☐ Dis☐ Dis	posabl posabl	e polyethylene
Purge depth (ft): Casing vol. (gal):		~18		5		₽ P	eristalti ladder ubmers uring p	(dedica sible urging:	Ų Y€	es 🖄 N	☐ Dis ☐ Dis ☐ Dis	posabl posabl posabl	e polyethylene e Teflon e PVC
Purge depth (ft): Casing vol. (gal): (where applicable)		~/3			= [total	P B S	eristalti ladder ubmers uring p	(dedica sible urging:	Ų Y€	es 🔀 l	Dis	posabl posabl posabl s) ²] • 0. Remar	e polyethylene e Teflon e PVC 0408 ks
Purge depth (ft): Casing vol. (gal): (where applicable) Time ("24:00" hr)		~/8	1443	1446	= [total	P B S	eristalti ladder ubmers uring p	(dedica sible urging:	Ų Y€	es 🔀 l	Dis	posable posabl	e polyethylene e Teflon e PVC 0408 ks
Purge depth (ft): Casing vol. (gal): (where applicable) Time ("24:00" hr) Purge vol. (gal)		~\ \\			= [total	P B S	eristalti ladder ubmers uring p	(dedica sible urging:	Ų Y€	es 🔀 l	Dis	posabl posabl posabl s) ²] • 0. Remar	e polyethylene e Teflon e PVC 0408 ks
Purge depth (ft): Casing vol. (gal): (where applicable) Time ("24:00" hr) Purge vol. (gal) Purge rate (mL/min)	1433	1438	1443	1446	= [total	P B S	eristalti ladder ubmers uring p	(dedica sible urging:	Ų Y€	es 🔀 l	Dis	posabl posabl posabl s) ²] • 0. Remar	e polyethylene e Teflon e PVC 0408 ks
Purge depth (ft): Casing vol. (gal): (where applicable) Time ("24:00" hr) Purge vol. (gal) Purge rate (mL/min) pH (su)	1433 200 6,63	~\} 1438 165	1443	1446 1.70	= [total	P B S	eristalti ladder ubmers uring p	(dedica sible urging:	Ų Y€	es 🔀 l	Dis	posabl posabl posabl s) ²] • 0. Remar	e polyethylene e Teflon e PVC 0408 ks
Purge depth (ft): Casing vol. (gal): (where applicable) Time ("24:00" hr) Purge vol. (gal) Purge rate (mL/min) pH (su) Temp. (°C)	1433 200 6,63 15,6	1438 145 668 15.6	1443	1446 1.70 15.6	= [total	P B S	eristalti ladder ubmers uring p	(dedica sible urging:	Ų Y€	es 🔀 l	Dis	posabl posabl posabl s) ²] • 0. Remar	e polyethylene e Teflon e PVC 0408 ks
Purge depth (ft): Casing vol. (gal): (where applicable) Time ("24:00" hr) Purge vol. (gal) Purge rate (mL/min) pH (su) Temp. (°C) Spec. cond. (µS/cm)	1433 200 6,63 15,6	1438 145 668 15.6	1443 1570 151	1446 1.70 15.6 1201	= [total	P B S	eristalti ladder ubmers uring p	(dedica sible urging:	Ų Y€	es 🔀 l	Dis	posabl posabl posabl s) ²] • 0. Remar	e polyethylene e Teflon e PVC 0408 ks
Purge depth (ft): Casing vol. (gal): (where applicable) Time ("24:00" hr) Purge vol. (gal) Purge rate (mL/min) pH (su) Temp. (°C) Spec. cond. (µS/cm) D.O. (mg/L)	1433 200 6,63 15,6 1199 0,43	1438 165 668 15.6 1201	1443 1570 151 1202 0.20	1446 1.70 15.6 1201 0.70	= [total	P B S	eristalti ladder ubmers uring p	(dedica sible urging:	Ų Y€	es 🔀 l	Dis	posabl posabl posabl s) ²] • 0. Remar	e polyethylene e Teflon e PVC 0408 ks
Purge depth (ft): Casing vol. (gal): (where applicable) Time ("24:00" hr) Purge vol. (gal) Purge rate (mL/min) pH (su) Temp. (°C) Spec. cond. (µS/cm) D.O. (mg/L) ORP (mV)	1433 200 6,63 15,6 1199 0,43 -166,9	1438 145 668 15.6 1201 0.25 -1766	1443 15.4 1202 0.20 -1433	1446 1.70 15.6 1201 0.70 184.7	= [total	P B S	eristalti ladder ubmers uring p	(dedica sible urging:	Ų Y€	es 🔀 l	Dis	posabl posabl posabl s) ²] • 0. Remar	e polyethylene e Teflon e PVC 0408 ks
Purge depth (ft): Casing vol. (gal): (where applicable) Time ("24:00" hr) Purge vol. (gal) Purge rate (mL/min) pH (su) Temp. (°C) Spec. cond. (µS/cm) D.O. (mg/L) ORP (mV) Turbidity (NTU)	1433 200 6,63 15,6 1199 0,47 -166,9 0,71	1438 145 668 15.6 1201 0.25 -1766	1443 1570 151 1202 0.20	(446 1.70 1.70 15.6 (20) (3.20 181)	= [total	P B S	eristalti ladder ubmers uring p	(dedica sible urging:	Ų Y€	es 🔀 l	Dis	posabl posabl posabl s) ²] • 0. Remar	e polyethylene e Teflon e PVC 0408 ks
Purge depth (ft): Casing vol. (gal): (where applicable) Time ("24:00" hr) Purge vol. (gal) Purge rate (mL/min) pH (su) Temp. (°C) Spec. cond. (µS/cm) D.O. (mg/L) ORP (mV) Turbidity (NTU) Color/tint	1433 200 6,63 15,6 1199 0,43 -166,9 0,71 CXEAR	1438 145 668 15.6 1201 0.25 -1766	1443 15.4 1202 0.20 -1433	1446 1.70 15.6 1201 0.70 184.7	= [total	P B S	eristalti ladder ubmers uring p	(dedica sible urging:	Ų Y€	es 🔀 l	Dis	posabl posabl posabl s) ²] • 0. Remar	e polyethylene e Teflon e PVC 0408 ks
Purge depth (ft): Casing vol. (gal): (where applicable) Time ("24:00" hr) Purge vol. (gal) Purge rate (mL/min) pH (su) Temp. (°C) Spec. cond. (µS/cm) D.O. (mg/L) ORP (mV) Turbidity (NTU) Color/tint	1433 200 6,63 15,6 1199 0,47 -166,9 0,71	1438 145 668 15.6 1201 0.25 -1766	1443 15.4 1202 0.20 -1433	(446 1.70 1.70 15.6 (20) (3.20 181)	= [total	P B S	eristalti ladder ubmers uring p	(dedica sible urging:	Ų Y€	es 🔀 l	Dis	posabl posabl posabl s) ²] • 0. Remar	e polyethylene e Teflon e PVC 0408 ks
Purge depth (ft): Casing vol. (gal): (where applicable) Time ("24:00" hr) Purge vol. (gal) Purge rate (mL/min) pH (su) Temp. (°C) Spec. cond. (µS/cm) D.O. (mg/L) ORP (mV) Turbidity (NTU) Color/tint Odor	1433 200 6,63 15,6 1199 0,43 -166,9 0,71 CXEAR	1438 145 668 15.6 1201 0.25 -1766	1443 15.4 1202 0.20 -1433	(446 1.70 1.70 15.6 (20) (3.20 181)	= [total	P B S	eristalti ladder ubmers uring p	(dedica sible urging:	Ų Y€	es 🔀 l	Dis	posable posabl	e polyethylene e Teflon e PVC 0408 ks
Purge depth (ft): Casing vol. (gal): (where applicable) Time ("24:00" hr) Purge vol. (gal) Purge rate (mL/min) pH (su) Temp. (°C) Spec. cond. (µS/cm) D.O. (mg/L) ORP (mV) Turbidity (NTU) Color/tint Odor	1433 200 6,63 15,6 1199 0,43 -166,9 0,71 CXEAR	1438 145 668 15.6 1201 0.25 -176.6	1443 15.4 1202 0.20 -1433	1446 1.70 15.6 1201 0.720 181	= [total	P B S	eristalti ladder ubmers uring p	(dedica sible urging:	Ų Y€	es 🖎 I	Dis	posabl posabl s) ²]•0. Remar	e polyethylene e Teflon e PVC 0408 ks
Purge depth (ft): Casing vol. (gal): (where applicable) Time ("24:00" hr) Purge vol. (gal) Purge rate (mL/min) pH (su) Temp. (°C) Spec. cond. (µS/cm) D.O. (mg/L) ORP (mV) Turbidity (NTU) Color/tint Odor Sample Data	1433 200 6,63 15,6 1199 0,47 -166,9 0,71 (LEAR)E3	1438 1438 145 668 15.6 1201 0.25 -176.6	1443 15,1 1202 0.20 -143,3 3.06	(446 1.70 15.6 120 137 181 	= [total	P B B S Soes dry d depth (fee	eristalti ladder ubmers uring p	(dedica sible urging:	Ų Y€	es 🖎 I	Dis Dis No D (inches	posabl posabl s) ²]•0. Remar	e polyethylene e Teflon e PVC 0408 ks
Purge depth (ft): Casing vol. (gal): (where applicable) Time ("24:00" hr) Purge vol. (gal) Purge rate (mL/min) pH (su) Temp. (°C) Spec. cond. (µS/cm) D.O. (mg/L) ORP (mV) Turbidity (NTU) Color/tint Odor Sample Data Sample ID	1433 200 6,63 15,6 1199 0,47 -166,9 0,71 CXEAR /ES	1438 1438 15.6 15.6 1201 0.25 -176.6 0.52	1443 152 152 1202 0.20 1433 3.06	1446 1.70 15.6 1201 0.720 181	= [total	# Filt	eristalti ladder ubmers uring p	(dedicatible urging:	ter (feet)]	es 🗷 I	Dis Dis No D (inches Public II)	posabl posabl s) ²]•0 Remar	e polyethylene e Teflon e PVC 0408 ks 51 ble + 59mple urg e back
Purge depth (ft): Casing vol. (gal): (where applicable) Time ("24:00" hr) Purge vol. (gal) Purge rate (mL/min) pH (su) Temp. (°C) Spec. cond. (µS/cm) D.O. (mg/L) ORP (mV) Turbidity (NTU) Color/tint Odor Sample Data Sample ID	1433 200 6,63 15,6 1199 0,47 -166,9 0,71 (LEAR)E3	1438 1438 15.6 15.6 1201 0.25 -176.6 0.52	1443 15,1 1202 0.20 -143,3 3.06	1446 1.30 15.6 120 1317 181 	= [total	P B B S Soes dry d depth (fee	eristalti ladder ubmers uring p	(dedicatible urging:	ter (feet)]	From Land	Dis Dis No D (inches Hus) Remarks	posabl posabl s) ²]•0 Remar	e polyethylene e Teflon e PVC 0408 ks

Groundwater Sampling Record

Padita ()			_		Cita ID	. D.		Commi	- A		
	PILAN				Site ID			Sample	er. 74	511	ETNI Associates I to
bject Number: 03	343-	0500	-032		Date:	4/25	118				FTN Associates, Ltd
Site Description											
Type: Monitoring W	/ell Te	mporary	Well [Extracti	on Well [Produc	tion We	ll De	watering W	ell Borehole [Other
Weather: Slight	Ram			Air Te	mp (°F):		(, c)		V	Wind:	26
Well Locked? Yes	s \square No	To	tal Dep	th (ft)_/		Damas	ge/repai	rs neede	d: 1	in veret	up b
Remarks:									9.10	1 minuite	M. TIPALY FIFT
		Te	1 >	0,5	17/1	1				1 , 10000)	
					/						
Water Level Data			W/-4 1	1 1 (- Males	M. J.IN	T_		Carial NI	(Ontinual)	
Measuring point descri Mark/notch on TO			water	evel Mete	T Make/	A #4	NO.		Senai No	o. (Optional):	
North rim of TOC		-	Pre-pu	ırge	Pre-purg		During	,	Purge	After	
Other:			initi		onfirmat		purging		end	sampling	Remarks
Time ("24:00" hr)			NI	2	119		1144	1	150	1230	
Depth to Water (ft)			1		2.03	3 7	2,10	1	20	2.10	
Date (mm/dd/yy)					1/75/1	6 -				***	
LNAPL Thickness (ft) (If present	t)		/		•					
DNAPL Thickness (ft	The state of the s										
Note: Record "S" in Remar	ks Column	if sheen is	observe	d.							
Field Data											
Instrument Make/Mod	lel No:	Unit	r Serial	No:		Pun	ip descr	intion:		Bailer de	escription:
XII PRO PLU		Ome	8				Peristal				osable polyethylene
MERUTA			5						ted / porta	ible) 🔲 Disp	osable Teflon
			- 15		,		Submer	rsible		☐ Disp	osable PVC
Purge depth (ft):	~	26			Well	goes dry	during	purging:	[□ Yes	No No	
Casing vol. (gal): (where applicable)					= [tota	l depth (f	eet) – de	pth to wa	ter (feet)] •	[well ID (inches)	²] • 0.0408
Time ("24:00" hr)	1126	1131	1134	6 1141	1146	中华				R	Remarks
Purge vol. (gal)		,			1.4	1149					
Purge rate (mL/min)	60					->					
pH (su)	639	6 34	630	6.28	12:27	b.27					
Temp. (°C)	15,5	15,3	15.2	15.1	15.0	15,0					
Spec. cond. (µS/cm)	1641	642	641	641	640	640					
D.O. (mg/L)	0.59	0.61	1			0.43					
ORP (mV)	-129,7	-									
Turbidity (NTU)	1420										
Color/tint			7030	5 65,77	15,54 11,000						
	Brun			-	1)m	CLEM					
Odor	acrid -					7					
Sample Data	+ ilear	butbe	tan	tint							
Sample ID	Date		Time	# Cor	ntainers	# F	iltered			Remarks	
RW-6	4/25	118 1	151	L		0		LAMO	~ 5VOC 14	Plops Ann Ivi	Tis me playling, littlene
											7
7											
				2			18				
Sampler's Name (prin	t). A.	11		1			Same	oler Sign	atute:	ale Plus	
	1, F.	EX C	HULL				Juni	LAN DIE	aturo.	ale Plus	

Groundwater Sampling Record

Facility: OLD M	TOL 1.	0			Site ID	. D	W-7	Sampl	er: As	LI	
oject Number: O	FULAN	() 7 ()	127		Date:			Sumpi	CI. /	19	FTN Associates, Ltd
oject Number.	015-0	020.	092		Date.	9/2	0/18				TTV Associates, Etc
Site Description											
Type: Monitoring W	/ell □Te	mporary	Well	Extracti	on Well [Prod	uction Wel	l De	watering We	ll 🔲 Borehole [Other
Weather: 1-1 EAvy	RATN			Air Te	mp (°F):		55		W	ind: 5 mg/s	
Well Locked? ⊠Yes		To	tal Dept			v	age/repair	rs neede	d: Rem	ind: 5 mg/s	of accused
Remarks:			•						110770) 1 7-11 47501
Fe2+= 25 Mg	/L										
Water Level Data											
Measuring point descri	ription:		Water le	vel Mete	er Make/	Model	No.	-	Serial No.	(Optional):	
☐ Mark/notch on TO)Ċ				/	VW.	1 FF 3				
North rim of TOC			Pre-pur	ge	Pre-purg		During		Purge	After	Remarks
Other:			initia	+	onfirmat		purging		end	sampling	+>
Time ("24:00" hr)			NR	T	1251		1309		322	1338	in voult & conte
Depth to Water (ft)			_		0.18		0.18		3-19	0.19	in voult a could
Date (mm/dd/yy)) /IC		NONE		1/25/		22 2 2				Avi be puryed
LNAPL Thickness (ft DNAPL Thickness (ft			NUNE	r	Rodu(7	UN	FRU15E				
Note: Record "S" in Remar	A CONTRACTOR OF THE PARTY OF TH										
Field Data	1_1 NT	T Tools	- C:-1	NT		I D.	1	-4!		Dailes de	
Instrument Make/Mod		Unit	r Serial	NO:			mp descri Peristalt				escription: posable polyethylene
MICRU TPU			5						ited / portab		oosable Teflon
<u> </u>							Submer				oosable PVC
Purge depth (ft):	~	В			Well	goes dr	y during p	ourging:	[□ Yes	No No	
Casing vol. (gal): (where applicable)					= [tota	l depth	(feet) – de _l	pth to wa	iter (feet)] • [well ID (inches)	o ²] • 0.0408
Time ("24:00" hr)	1258	1303	1308	1312	1315	1319	1322			F	Remarks
Purge vol. (gal)							~.3				
Purge rate (mL/min)	80			>	140		\rightarrow	1			
pH (su)	6-73	6.78	6,80	4.31	682	6.82	6.82				
Temp. (°C)	14,8	14/8			15,2	15,3					
Spec. cond. (µS/cm)	8941	899		905	901	900					
D.O. (mg/L)	0.91	0.51	0,35		0.24		-				
ORP (mV)	-107	-115	-118		-121	-173					
Turbidity (NTU)	6.12	6086			1.78	3.52					
Color/tint	CLEAR		0770	010	110	1.76	, ,,,,				
Odor	yes×						-				
	× Acri	16									
Sample Data	~/40/10	7771	"								
Sample ID	Date		Гіте	# Con	tainers	#	Filtered			Remarks	
RW-7	1/25/19	3 1	324	4			0	4/11	LAMBE SU	UCg, IL Asin_	, 12750NE MANS, 17
	, , ,								1 TUC		7 11
				10							
Sampler's Name (prin	t): ALE	x /7	AMIJN				Samp	ler Sign	ature:	alla He	и 4

· Transcilled on WZ7/18 by ASH

Page ____ of ____ **IDW Container Storage Log** 03013-0070-032 Project #: GLD MIDL AND Project Name/Location: Container Size: 55 GAL POT Steel Construction Material: Date Filled **Boring** Container Final Contents Location Number Number Moved To Disposition First Last PRONT GRAVEL NIA 4/24/18 225 GAL 4/70/18 Water PURGE WATER NA 4 /20/18 4/20/18 2 15 GAE Water + 50AP DECON WATER

Facility or Project Name			AFIN # / County		Sa	mple			Para	meters	Requ	ested		Co	ntainer Ty	pe Code		Media Code	Preserva	ation Code
Old Midland Products		ИP)		_ ^ C	hara	cteris	tics		Total	No. o	f Conta	ainers			olyethylene	/Plastic	w =	- water	A = Cool	to ≤ 6°C
Ola, Arkansa		1	75-00049	থ	1		l	ı	Ŧ	ڇَ				G = GI			_	groundwater	B = Sulfu	
Function Code 5	50014		1	ië	1	1	l		<u>a</u> .	fate Kalii		ا ، ا			nber Glass		_	liquid (not wate	1	
Printed Name of Sampler(s)				ğ		1	a		ပြီ	Sul s		Iran	- 1	0 = Ot	her (Spec	fy)		soil or solid	D = NaOł	
				5	l g		-		S C	e de								edible tissue	E = Sodium 7	
			*	Grab (1) or Composite (2)	Container Type	Media Code	Preservation Type		Semivolatiles (PCP, PAH, Carbazole)	Anions chloride, sulfate, nitrate+ nitrite-N, alkalinity	 5	Dissolus		Instantan Flow	eous =		1 1	whole fish other	F = Other	(specify)
Comple ID	Date C	ollected	Time Collected	일	ıtair	dia	Sen	o	nivo	ons ate+	Total Iron	130			Field Mea	surements		Latitude	Longitude	Lab#
Sample ID	(mm/	dd/yy)	(hh:mm)	8	Ö	Ğ	F.	ည	Ser	Pit Ai	흐	á	-	DO (mg/L)	pH (SU)	Temp (°C)	Time	(dd.ddddd)	(bbbbb.bb)	
EB-2	4/2	3/18	1334	1	0	G	F	1	1	1	1			NJA	N/A	MA	1334			
Mw-23		1	1605	1	1	1		1	1	1	1			0.71	6,93	17.9	1605			
D4P-1W-23			1705					3	2	1	1			1	-	1	1			
EB-1			1335					1	1	1	1			NIA	NIA	NIA	MIA			
MW-215			1548	1		Ш		1	L	L	i			0.33	6.05	16,5	1548			
DUP-MW-215			1610			Ш		3	2	1	1			1		1	1			
MW-21D			1638					1	1	1	Ø	1		0,46	6.89	16.6	1636			
EB-3	J		1735					1	1		1			MA	NIA	N/A	MA		1)	
EB-4	4-20	4-18	0715											1	1	1	1			
MW-165			0925											0.81	6.62	17,1	0919			
MW-16D			0948											0,79	7.33	18.5	0945			
MW-125			0908				Ш	J	1	J	V			0.50	5,59	15.4	0906			
Dup-125			0928		Ш			3	2	1	1			J.	1	- 1	1			
MW-22D			1215		Ш			1	1	1	1			1,66	6.86	22.7	1212			
MW-22S	7	<u></u>	1250	1	1	W	1	1	1	1	1			0.48	6.10	18,4	1246			
					_	_	_	_	_											
CAMPLE CONDITION (IDON 5	DEOCIDE:	NI ABI										ADVO		101 5 00:	MATERIAL CO.		- 13			
SAMPLE CONDITION UPON F 1. Containers Correct			Report results to Di	anna	Kilb.	ırn 60	2.004	A or T	dor M	inht 6				MPLE CON		602 0055				
	Yes _		Charge time to fur					- UI 1	VIET VVI	IGHT O	00-000	o, AUC	LU Ld	DUI ALUI Y II	uniber 50	-002-0950	21.			
	Yes _	No																		
4. Temp (*C) Upon Receipt	1.9%										*					ç.				
FOR COMPLETION BY I	LAB ONLY	_														4				

Date 4/24/18 Sampler (print) ALEX HAMEN ELIZABETH STUD Site Identification Old Midland Products; AFIN 75-00049; EPA Id# ARD980745 Site Address Hwy 10 Ola, AR 72853 Sample ID Sample Remarks Time (hhmm) Latitude Longitude Lab ID EB-2 Rest W-Blank ASH 13341 MW-73 1608 Dyp-MW-23 Nudrah of MW-23 1705 EB-1 Rest W Blank EWS 1327 MW-715 Nuplrah of MW-715 1648 Dyp-MW-715 Nuplrah of MW-715 1648 Dyp-MW-715 Field filtered metals 1638 EB-3 end of day blank EWS 1735 EB-1 end of day blank ASH 0715 MW-165 MW-165 MW-165	
Site Identification Old Midland Products; AFIN 75-00049; EPA Id# ARD980745 Site Address Hwy 10 Ola, AR 72853 Sample ID Sample Remarks Time (hhmm) Latitude Longitude Lab ID EB-2 Pest W-Blush ASII 1334 MW-73 104P-MW-23 104P-M 23 1705 EB-1 Post W Blank Ens 1325 MW-715 154B DUP-MW-715 74P-715 1610 MW-710 Field filtered metals 1638 EB-3 End of day blank Ens 1735 EB-4 End of day blank ASII 0715 MW-165	BAKE
Sample ID Sample Remarks EB-2 Pert W-Blunk ASI) MW-Z3 DUP-MW-Z3 Posst W Blank Ens 1325 MW-Z15 DUP-MW-Z15 Puplrent of Mw-Z15 Pield filtered metals EB-3 EN of day blank Ens 1235 ENS-U end CF day blank ASId D9 Z Z	
EB-2 Part W-Blush ASH 1334 MW-Z3 DUP-MW-Z3 Part W Blank EWS 1325 MW-Z1S DUP-MW-Z1S Puplran of Mw-Z1S 1648 DUP-MW-Z1S Puplran of Mw-Z1S IOIC MW-Z1D Field filtral metals EB-3 EW of day blank EWS 1735 EB-41 end of day blank ASH D9 Z Z	
MW-Z3 DyP-MW-Z3 DyP-MW-Z3 Post he Blank Ens 1325 MW-Z1S DyP-MW-Z1S Tuplient of Mw-Z1S 1608 1705 EB-3 EW of day blank Ens 1725 EB-4 end of day blank ASIA DyZZ Mw-165	
Dup-Mw-23 Nuplanh of Mw-23 EB-1 Post he Blank this 1325 Mw-215 Dup-Mw-215 Ruplanh of Mw-218 Dup-Mw-215 Field filtered metals 1638 EB-3 Ew of day blank this 1735 EB-4 end of day blank this 0715 Mw-165 Mw-165	21
EB-1 Post he Blank Ens 1325 MW-215 DUP-MW-215 Puplrent of MW-215 MW-21D Field filtered metals 1638 EB-3 End of day blank Ens 1735 EB-4 end of day blank ASIA MW-165 MW-165	-
MW-ZIS DUP-MW-ZIS Puplyon of Mw-ZIS 1010 MW-ZID Field filteral metals EB-3 EN of day blank ENS EB-4 end of day blank ASIA O715 MW-165	
DUP-MW-ZIS Puplyon of Mw-ZIS 1010 MW-ZID Field filtered metals 1638 EB-3 end of day blank Ens 1735 EB-L/ end of day blank Asia 0715 Mw-165 09 Z Z	
MW-ZID Field filtered metals 1638 EB-3 END of day blank ENS 1735 EB-4 END of day blank ASIA 0715 MW-165 MW-165	
EB-3 end of day blank ENS (735) EB-4 end of day blank ASIA 0715 MW-165 0972	
EB-4 end of day blank ASIA 0715 MW-165 0922	
Mw-165 0922	
110-162	
MW-16D 0948	
/ ~ (0>	
MW-175 0908	
Dup-Mw-125 0928	
MW-27D 21715	
MW-225 125C	
Lab Use Only: Custody seal on each container?: YES NO Labels/COC agree?: YES NO	*
Date/Time Relinquished By Received By	
H 124/2018 Eurabeth Studebaker, Geologist Jim Chaig FTN	
Time 14.15 Signature Signature	
Date Name/Title Name/Title/	
4-24-2018 Jim Craix FTU	n Sup
1548 Signature Signature	
Date Name/Title Name/Title	
Time Signature Signature	
Date Name/Title Name/Title	
Time Signature Signature	

Facility or Project Name		AFIN # / County		Sai	mple			Parar	neters	Requ	ested		Co	ntainer Ty	pe Code		Media Code	Preserva	ation Code
Old Midland Products				harac		ics		Total	No. of	Conta	iners	1		olyethylene	e/Plastic		= water	A = Cool	to ≤ 6°C
Ola, Arkans		75-00049	8					Ĩ.	it.			Je	G = GI				groundwater	B = Sulfu	
Function Code	50014		Grab (1) or Composite (2)					Semivolatiles (PCP, PAH, Carbazole)	Anions chloride, sulfate, nitrate+ nitrite-N, alkalinity		3			nber Glas			liquid (not water		
Printed Name of Sampler(s)			ı			8		ပ္ပ	sul all		1-3	1	0 = Ot	her (Spec	ify)		soil or solid	D = NaOH	
			6	Je Je		Ę		s (F	ide,		\sim 1	1	05	CV-SEW-CV			edible tissue	E = Sodium 1	
			5	Container Type	Media Code	Preservation Type		atile	ihlor nitri	_	Dissolud		Instantan Flow	eous =		100	whole fish other	F = Other	(specity)
	Data Callantad	Time Collected	€	aj.	aC	er		ivol	ns c	Total Iron	3			Field Mes	surements		Latitude	Longitude	Lab#
Sample ID	Date Collected	(hh:mm)	g	ij	leg.	res	700	Sart	itral	otal	اک		DO (mg/L)	pH (SU)	Temp (*C)	Time		(dd.ddddd)	Lub II
	(mm/dd/yy)						_										(66,6666)	(00.0000)	
MW-95	4/24/18	1349 1135	1	Ö	G	F	1	1	2	Ø	1		2,20	6.15	25.1	1134			
MW-90	1	1220	1	1	V	1	1	1	T	1			1.11	6.58	23.3	1218			17.8
			\vdash	\vdash															
			-	-		-				_					`				
			- 1																
																1	1		-
	1											-							
	-		-			_													
																			¥
			1		1														
	+		\vdash	-	-					-							-		
			_		_		_	_											
																			41
																*,			
																1			
SAMPLE CONDITION UPON	RECEIPT IN LAB		_		_					REM	ARKS	/ SAN	APLE CON	MENTS			II		
1. Containers Correct	yes No E	Report results to Di					4 or Ty	ler Wr	ight 68						1-682-0955	<u>i:</u>			
	Yes No C	harge time to fun	ctio	n cod	e 500	14										posed in			
3. Received On Ice	Yes No														-				
4. Temp (°C) Upon Receipt	1.90€																		54
FOR COMPLETION BY	LAB ONLY																		

	ARKANSAS DEPA	RTMENT C									
Date 4/14/18		Sampler ((print)	ELI:	ADETH	STYDEBAK	ER				
Site Identification	Old Midland Pro	ducts; A	FIN '	75-00	049; EPA	Id# ARD	980745665				
Site Address	Hwy 10 Ola, AR	72853									
Sample ID	Sample Remarks		Time (hhmm)	Latitude	Longitude	Lab·ID				
Mw-95 Mw-91)			113	5							
MW-91)			17	20							
, ,											
					2.4						
							Y				
	,										
4,											
Lab Use Only: Cus	tody seal on each contai	ner?: YES	S NO	Labels/COC agree?: YES NO							
Date/Time	Relinquished By				eived By						
Date 4/24/2018	Name/Title	me Car	1 ict	Name/	Title Cred		1				
Time	Eurabeth Studebal	er, Ga	10011	Signatu	<u> </u>	ug FT	Ρ				
1405	State (Virdulal	<u> </u>			Lui C	5					
Date	Name/Title			Name	Tiple Jeff (lehr C	hen Supp.				
4-24-2018 Time	Signature Signature	Pru		Signatu	ire 1						
1548	Juni (2)			Jeff cuch							
Date	Name/Title			Name/Title							
Time	Signature			Signature							
Date	Name/Title			Name/Title							
Time	Signature			Signatu	ire						

Facility or Project Name		- VI. 3	AFIN # / County		Sa	mple				meter					ntainer Ty		13	Media Code	Preserva	ation Code
Old Midland Products		MP)	75 00040	_	harad	teris	tics			l No. o	_	ainers			lyethylene	e/Plastic	_	water	A = Cool	
Ola, Arkansa Function Code 5			75-00049	8					¥.	. e				G = Gl	ass nber Glass			groundwater	B = Sulfui	
Printed Name of Sampler(s)	0014			osite				ı	д. П	sulfate, , alkalinity		Las I			her (Speci			liquid (not water soil or solid	D = NaOl	
Times Hame of Campion(c)				ᇤ	g		_ y	ı	PC	P Z		H			ner (opco	17)		edible tissue	E = Sodium 1	
я				Grab (1) or Composite (2)	Container Type	Code	Preservation Type		Semivolatiles (PCP, PAH, Carbazole)	chloric + nitrite	<u>و</u>	Dissolved		Instantan Flow	eous =			whole fish other	F = Other	(specify)
Sample ID		Collected /dd/yy)	Time Collected (hh:mm)	_	Contai	Media (Preser	ည	Semivolatile Carbazole)	Anions chloride, s nitrate+ nitrite-N,	Total Iron	Diss		DO (mg/L)	Field Mea	Surements Temp (°C)	Time	Latitude (dd.ddddd)	Longitude (dd.ddddd)	Lab#
MW-205	4/2	14/18	1512	1	0	G	F	1	1	1	Ø	1		0.58	6.40	25,1	1509			
MW-200			1545				1				1			1,47	6.21	21,0	1542			
MW-10D			1538										a.	0.88	7.32	22.4	1536			
MW-10S			1616										1	1.35	6:19	20,7	1615		3	
EB-6			1700											NA	NIA	NA	NA		#1	14
EB-5			1718											1	1		1			*
MW-195	4/2	25/18	0910											0,63	533	175	0908			
MW-19D			0947 -											0.31	6,33	15%	0945			
RW-6			1151											0,43	6,77	15.0	1149			
MW-53			0853											0,29	6,45	15,4	0851			
MU-015			1038											2.30	5,52	18,7.	1035			
MW-01D	7		1149											2.68	7.00	14.7	1147			
RW-7	1	,	1324		1	V	1	1		1.1	J.	V		0,18	6.85	15.3	1352		1	
					,										+	and the same	****			jā.
			(*)													4 7	S. P.			
																- 2				
Ÿ																97	(
SAMPLE CONDITION UPON R														IPLE COM		*				
1. Containers Correct 2. COC & Labels Agree	Yes _	No R	eport results to Dis harge time to fun	ction	Kilbu	rn 68 e 500	2-084 014	4 or T	/ler W	right 6	83-006	8; ADE	EQ La	boratory ni	umber 501	-682-0955	<u>:</u>			
3. Received On Ice	Yes	No No														- No.				
4. Temp (*C) Upon Receipt	3.3°C															7				
FOR COMPLETION BY L																				

	ARKANSAS DEPARTMENT CHAIN-O	OF ENVIRO OF-CUSTO		ITAL QUALIT	Υ	**				
Date	Sampler	(print)	1.	1						
Site Identification	Old Midland Products;	AFIN 7	5-00	049; EPA	Id# ARD	980745665				
Site Address	Hwy 10 Ola, AR 72853	4								
Sample ID	Sample Remarks	Time (hl	hmm)	Latitude	Longitude	Lab ID				
MW-205 MW-ZOD	Metal, Add Altered	1912				7				
MW-20D	40	1545								
MW-100		1538	ſ		-					
MW-103		1616			9					
EB-6	ASI+ End of day egrop blank	1700	ž.	N. V.						
EB-5	ASH End of day equip blank EWS End of Day equip blank	1718				þ				
MW-195		0910								
MW-19D		094	7	P. Ja						
NW-6		115		+						
Mu-55	i te	085	3							
MW-015	,	1038								
MU-011)	F 142	1/40								
RW-7	Ť	132	4)							
	1									
	tody seal on each container?: YE									
Date/Time	Relinquished By			ived By						
Date 4/75/14	Name/Title ALEX HAMIIN		Name/1	Jim CKAIG	FIL					
Time 1410	Signature Clarklan	4	Signatu							
Date	Name/Title		Name//	VV) n	Chem				
4-25-18	Signature Signature		Signatu	Jeff	Vanh	(Sup				
4-25-18 Time	Signature ()		Signatu	Sell	Ruh	*				
Date	Name/Title	9	Name/	Tiple						
Time	Signature	-	Signature							
7			2-5-3-4							
Date	Name/Title		Name/Title							
Time	Signature		Signature							

Catalacteristics Total No. of Containers P = Polyethylene/Plastic N = vater S = Sulfur cold to Set Collected N = Archaecteristics N = vater S = Sulfur cold to Set Collected N = Archaecteristics N = vater S = Sulfur cold to Set Collected N = Archaecteristics N = vater S = Sulfur cold to Set Collected N = Archaecteristics N = vater S = Sulfur cold S = Sulfur cold to Set Collected N = Archaecteristics N = vater S = Sulfur cold to Set Collected N = Archaecteristics N = vater S = Sulfur cold to Set Collected N = Archaecteristics N = vater S = Sulfur cold to Set Collected N = Archaecteristics N = vater S = Sulfur cold to Set Collected N = Sulfur cold to Set Collected N = Archaecteristics N = vater S = Sulfur cold to Set Collected N = Sulfur collected N =	Facility or Project Name		AFIN # / County		Sa	mple			Para	meters	Requ	ested		Co	ntainer Ty	pe Code		Media Code	Preserva	ation Code
Function Code 50014					harad	cterist	ics		Tota	No. of	Cont	ainers				/Plastic			3 50 00 00 000	
MU-175			75-00049	12					Ī	. ≩					and the same of th			-		
MU-175	Function Code 5	0014		<u>a</u>	1				<u>a</u>	fate							L=	liquid (not wate	C = Nitric	Acid
MU-175	Printed Name of Sampler(s)			1 🖁			l g		[유	la se				0 = Ot	her (Speci	fy)			D = NaOl	1
MU-175				ह	g g		🖺		(a)	e ë									100 00000000000000000000000000000000000	earth and the same
MU-175	1			6	£	용	ë		 	를	_ ا				eous =				F = Other	(specify)
MU-175		I a a		₹€	ig	ŭ	8		Vols	S C e+ r	<u> </u>			Flow	Field Mee			T T	1	Lab#
MU-175	Sample ID	1		<u>명</u>	jë	legi	res	8	art emi	itrat	otal			DO (mg/L)						Lau #
RW-	1. 7.			_			_	1		$\overline{}$	_		-	_				(da.dddd)	(00.0000)	
EB-7 1535 MA		1/25/1	8 1439	1	10	G	1	1	17	1	1			0.69			15.51			
FB-8	RW-1		1448											0.70	6.70	15.6	1446	1		
NEELEY	EB-7		1535											NA	N/A	NIA	NIA			
MV-1 & S	EB-8		1930												1		1			
MW-03D O926 O926 O926 O926 O946 O96619 O946 MW-035 O9698 O96619	NEELEX	4/26/18	1120											0.26	6.59	14,4	1119			
MW-03D	MW-185		0 838											0.56	6.11	14,7	0836			
MW-035 0948 0.64 6.19 14,4 0846 MW-035 1247 0.68 5.64 16.0 1245 MW-08D 1305 1.77 7.51 16.9 1303 EB-9 1470 MA MA MA MA MA EDW-1 1410 1410 SAMPLE CONDITION UPON RECEIPT IN LAB 1410 1. Containers Correct ✓ Yes No 2. COC & Labels Agree ✓ Yes No 3. Received On Ice ✓ Yes No 4. Temp (°C) Upon Receipt 3.5 °C	MW-18D		0925											0.58	6.78	14,7	0973			
MW-035 0948 0.64 6.19 14,4 0846 MW-035 1247 0.68 5.64 16.0 1245 MW-08D 1305 1.77 7.51 16.9 1303 EB-9 1470 MA MA MA MA MA EDW-1 1410 1410 SAMPLE CONDITION UPON RECEIPT IN LAB 1410 1. Containers Correct ✓ Yes No 2. COC & Labels Agree ✓ Yes No 3. Received On Ice ✓ Yes No 4. Temp (°C) Upon Receipt 3.5 °C	MW-03D		0926										2.	0.36	6.77	15.4	0974			
MW - 0 9 S	MW-035		0848											0.96		14,7	0846			
1305 1305 1303 1303 1470 1410	Mw-085		1247											0.68	5,64	16.0	1245			
EB -9 1470 1410 1	MU-08D		1305											1,77	7.51	16.8	1303	1		
SAMPLE CONDITION UPON RECEIPT IN LAB SAMPLE CONDITION UPON RECEIPT IN LAB 1. Containers Correct 1. Yes No 2. COC & Labels Agree 1. Yes No 3. Received On Ice 4. Yes No 4. Temp (*C) Upon Receipt 1. Yes No 1. Yes No 2. COC & Labels Agree 3. Soc			1420											N/4	NIA	NIA	NIA			
SAMPLE CONDITION UPON RECEIPT IN LAB 1. Containers Correct 1. Yes No 2. COC & Labels Agree 1. Yes No 3. Received On Ice 1. Temp (°C) Upon Receipt 2. COC & Labels Agree 3. 5 C	E 13-10		1340														4"			
1. Containers Correct	Inw-1		1410											1	1	1	4			
1. Containers Correct																- 1				
1. Containers Correct	*															74				
1. Containers Correct																44				
2. COC & Labels Agree Yes No Charge time to function code 50014 3. Received On Ice Yes No 4. Temp (*C) Upon Receipt 3.5°C			3					121 77 7127			REN	IARKS	/ SAI	MPLE CON	MENTS					
3. Received On Ice Yes No 4. Temp (*C) Upon Receipt 3.5°C				ianna	Kilbu	irn 68	2-084	4 or T	yler W	right 6	83-006	8; AD	EQ La	boratory n	umber 501	1-682-0955	<u>):</u>			
4. Temp (*C) Upon Receipt 3.5°C			4	iictio	11 000	16 300	14													
			<u> </u>																	
FOR COMPLETION BY LAB ONLY			4																	
	FOR COMPLETION BY L	AB ONLY																		

	Arkansas Depa	ARTMENT C			ITAL QUALIT	ΓY				
Date 4/76/14		Sampler	(print)	ALEX	HAMUEN.	ELIZABETH	STUDEBAKER			
Site Identification	Old Midland Pro	ducts; A								
Site Address	Hwy 10 Ola, AR	72853								
Sample ID	Sample Remarks		Time (nhmm)	Latitude	Longitude	Lab.ID			
MW-179			1439				1			
RW-1	High result A		14	G		*.	. ,			
EB-7			1539	5						
EB-8			1530							
NEELEY			1170)	*					
MW-185			ዐዌን	в						
MW-18D			092							
MW-03D			09	26						
MW-035			0849	8						
Mw-085			124	7						
MW-08D			1309	_	7 1					
EB-9	EWS END of DAY BLANT		147	e)						
EB-10	EWS END OF DAY BLANK) K	1340)						
Inw-1			1416	ין						
	tody seal on each contai	ner?: YES	s (40)	_	els/COC agi	ree?: (YE) 1	40			
Date/Time	Relinquished By			Name/	eived By					
4/26/18	1 14 2				Jim CRAC	1 Fin				
Time	ALEX HAMILIN Signature			Signatu	7 //)				
[43]	Name/Title			Name	two (
4/26/18		70				Rowhouser				
Time	Signature			Signature A Rawhouser						
1614 Date	Name/Title			Name/	Title Title					
	0									
Time	Signature			Signatu	ire					
Date	Name/Title			Name/Title						
Time	, Signature			Signature //						

Legal COC Form Revision 001 Effective Date: 04/16/2018

Laboratory Data Reports

5301 Northshore Drive North Little Rock, AR 72118 Telephone: 501-682-0744

Client Report For:

Old Midland 2018 1700-1798

Attention:

Client Address:

Report Date:

June 27, 2018

LAB ID:

AR17APR25-04

Jeff Ruch

Comment:

MW-1S, MW-1D, MW-03S, MW-03D, MW-5S, MW-8S, MW-8D, MW-10S, MW-10D, MW-12S, MW-16S, MW-16D, MW-17S, MW-18S, MW-18D, MW-19S, MW-19D, MW-20S, MW-20D, MW-21S, MW-21D, MW-22S, MW-22D, MW-23, RW-1, RW-6, RW-7, EB-1, EB-2, EB-3, EB-4, EB-5, EB-6, EB-7, EB-8, EB-9, EB-10, MW-12S dup, MW-21S dup, MW-

23 dup

Approved By:_

Date: July 30, 2018

Lab Contact Info:

ADEQ Laboratory and Monitoring Services

№ 5301 Northshore Drive, North Little Rock, AR 72118

www.adeq.state.ar.us

Lessie Redican

Redican@adeq.state.ar.us

501-682-0937

Collector: Associates, FTN Project: Old Midland

Project Description: Old Midland 2018 1700-1713

Date and Time Received: 04/24/2018 15:48 **Work Order Number: WO-180424-01**

Case Narrative:

The following parameters were analyzed in the field upon collection by FTN Associates personnel:

рп

Specific Conductance

Turbidity

Water Temperature Dissolved Oxygen Ferrous Iron

Sample Receipt Conditions:

Condition	Response	Comment
Is the COC completed properly?	Yes	
Temperature on Receipt	1.9°C	
Received on Ice	Yes	
Containers are Correct	Yes	
Custody Seals	Yes	
COC/Labels Agree	Yes	

Data Qualifiers

Qualifier Flag	Description
R	RPD value does not meet lab acceptance criteria

Page 2 of 36

Laboratory Name: ADEQ Laboratory and Monitoring Services Email: Kilburn@adeq.state.ar.us

Contact Name: Kilburn, Dianna Phone: 501-682-0844

Lab Address: 5301 Northshore Drive North Little Rock, AR 72118 Fax:

Collector: Associates, FTN Site: EB-2 Work Order Number: WO-180424-01

Sample Classification: Special Project: Old Midland

Matrix: Water Collected: 4/23/2018 13:34

Sample Barcode: Sample Number: 2018-1700

Alkalinity as CaCO3 Method: EPA 310.2 (Rev. 1974) Analyst: KH

Aliquot #: 2018-1700-1-1 Batch Number: AB-180424-011

Analyte(s) Result Units Q Limit Dilution Date and Time

Alkalinity <6.00 mg/L 6 1 4/25/2018 13:08

Anions Method: EPA 300.0 (Rev.2.1, 1993) Analyst: PR

Aliquot #: 2018-1700-1-2 Batch Number: AB-180425-026

Reporting **Analysis** Result Units Q Limit **Dilution Date and Time** Analyte(s) <0.500 Chloride mg/L 0.5 4/25/2018 17:52 Sulfate < 0.500 mg/L 0.5 1 4/25/2018 17:52

ICP/MS Metals (Total) Method: EPA 200.8 (Rev. 5.4, 1994) Analyst: PR

Aliquot #: 2018-1700-3-1 Batch Number: AB-180430-001

 Analyte(s)
 Result
 Units
 Q
 Limit
 Dilution
 Date and Time

 Iron
 <5.00</td>
 ug/L
 5
 1
 4/30/2018
 12:43

Nitrate +Nitrite as N Method: SM 4500-NO3 F, 2011 Analyst: KH

Aliquot #: 2018-1700-1-3 Batch Number: AB-180424-010

Analyte(s) Result Units Q Limit Dilution Date and Time
Nitrite+Nitrate as Nitrogen <0.0500 mg/L 0.05 1 4/25/2018 9:51

Total Organic Carbon Method: SM 5310 C, 2011 Analyst: PR

Aliquot #: 2018-1700-2-1 Batch Number: AB-180425-015

Analyte(s)
Result
Units
Q
Limit
Dilution
Date and Time
Total Organic Carbon

7.1.00
Reporting
Q
Limit
Dilution
Date and Time
1 1 4/25/2018 14:28

Collector: Associates, FTN Site: MW-23 Work Order Number: WO-180424-01

Sample Classification: Special Project: Old Midland

Matrix: Water Collected: 4/23/2018 16:05

Sample Barcode: Sample Number: 2018-1701

Alkalinity as CaCO3 Method: EPA 310.2 (Rev. 1974) Analyst: KH

Aliquot #: 2018-1701-1-1 Batch Number: AB-180424-011

Analyte(s) Result Units Q Limit Dilution Date and Time

Alkalinity 183 mg/L 6 1 4/25/2018 13:09

Anions Method: EPA 300.0 (Rev.2.1, 1993) Analyst: PR

Aliquot #: 2018-1701-1-2 Batch Number: AB-180425-026

Reporting **Analysis** Analyte(s) Result Units Q Limit **Dilution Date and Time** Sulfate 140 2.5 5 4/27/2018 9:26 mg/L 85.1 1 Chloride 0.5 4/25/2018 18:00 mg/L

Dissolved Oxygen Method: SM 4500-O G, 2011

Aliquot #: 2018-1701-1-4 Batch Number: AB-180501-006

Analyte(s) Result Units Q Limit Dilution Date and Time

Dissolved Oxygen 0.710 mg/L 1 4/23/2018 16:01

Ferrous Iron Method: HACH Color disc/1,10 Phenanthroline

Aliquot #: 2018-1701-1-9 Batch Number: AB-180503-015

Analyte(s) Result Units Q Limit Dilution Date and Time

Iron (Ferrous) 2.0 mg/L 0.5 1 4/23/2018 16:01

ICP/MS Metals (Total) Method: EPA 200.8 (Rev. 5.4, 1994) Analyst: PR

Aliquot #: 2018-1701-3-1 Batch Number: AB-180430-001

 Analyte(s)
 Result
 Units
 Q
 Limit
 Dilution
 Date and Time

 Iron
 2070
 ug/L
 5
 1
 4/30/2018
 12:49

Collector: Associates, FTN Site: MW-23 Work Order Number: WO-180424-01

Sample Classification: Special Project: Old Midland

Matrix: Water Collected: 4/23/2018 16:05

Sample Barcode: Sample Number: 2018-1701

Nitrate +Nitrite as N Method: SM 4500-NO3 F, 2011 Analyst: KH

Aliquot #: 2018-1701-1-3 Batch Number: AB-180424-010

Analyte(s)

Result
Units
Q
Limit
Dilution
Date and Time

0.050
Nitrite+Nitrate as Nitrogen

< 0.0500
mg/L
0.05
1
4/25/2018
9:52

pH Method: SM 4500-H+ B, 2000

Aliquot #: 2018-1701-1-5 Batch Number: AB-180501-007

Analyte(s) Result Units Q Limit Dilution Date and Time
pH 6.93 units 1 4/23/2018 16:01

Specific Conductance Method: EPA 120.1, 1982

Aliquot #: 2018-1701-1-8 Batch Number: AB-180501-010

Analyte(s) Result Units Q Limit Dilution Date and Time
Specific Conductance 873 uS/cm 1 1 4/23/2018 16:01

Water Temperature Method: SM 2550 B, 2000

Aliquot #: 2018-1701-1-6 Batch Number: AB-180501-009

Analyte(s) Result Units Q Limit Dilution Date and Time
Water Temperature 17.9 °C 1 4/23/2018 16:01

Total Organic Carbon Method: SM 5310 C, 2011 Analyst: PR

Aliquot #: 2018-1701-2-1 Batch Number: AB-180425-015

Analyte(s)
Result
Units
Q
Limit
Dilution
Date and Time

Total Organic Carbon
2.05
mg/L
R
1
1
4/25/2018
14:45

This analytical report must be reproduced in its entirety

Collector: Associates, FTN Site: MW-23 Work Order Number: WO-180424-01

Sample Classification: Special Project: Old Midland

Matrix: Water Collected: 4/23/2018 16:05

Sample Barcode: Sample Number: 2018-1701

Turbidity Method: EPA 2310 B, 2011

Aliquot #: 2018-1701-1-7 Batch Number: AB-180501-011

Analyte(s) Result Units Q Limit Dilution Date and Time
Turbidity 3.06 NTU 1 4/23/2018 16:01

Collector: Associates, FTN Site: EB-1 Work Order Number: WO-180424-01

Sample Classification: Special Project: Old Midland

Matrix: Water Collected: 4/23/2018 13:35

Sample Barcode: Sample Number: 2018-1702

Alkalinity as CaCO3 Method: EPA 310.2 (Rev. 1974) Analyst: KH

Aliquot #: 2018-1702-1-1 Batch Number: AB-180424-011

Analyte(s) Result Units Q Limit Dilution Date and Time

Alkalinity <6.00 mg/L 6 1 4/25/2018 13:11

Anions Method: EPA 300.0 (Rev.2.1, 1993) Analyst: PR

Aliquot #: 2018-1702-1-2 Batch Number: AB-180425-026

Reporting **Analysis** Units Q Limit **Dilution Date and Time** Analyte(s) Result Chloride < 0.500 0.5 4/25/2018 18:15 mg/L 1 < 0.500 0.5 4/25/2018 18:15 Sulfate mg/L

ICP/MS Metals (Total) Method: EPA 200.8 (Rev. 5.4, 1994) Analyst: PR

Aliquot #: 2018-1702-3-1 Batch Number: AB-180430-001

Analyte(s) Result Units Q Limit Dilution Date and Time

Iron <5.00 ug/L 5 1 4/30/2018 13:00

Nitrate +Nitrite as N Method: SM 4500-NO3 F, 2011 Analyst: KH

Aliquot #: 2018-1702-1-3 Batch Number: AB-180424-010

Analyte(s) Result Units Q Limit Dilution Date and Time
Nitrite+Nitrate as Nitrogen <0.0500 mg/L 0.05 1 4/25/2018 9:55

Total Organic Carbon Method: SM 5310 C, 2011 Analyst: PR

Aliquot #: 2018-1702-2-1 Batch Number: AB-180425-015

Analyte(s)

Result
Units
Q
Limit
Dilution
Date and Time

7 total Organic Carbon

Nesult
Units
Q
Limit
Dilution
Date and Time
1 1 4/25/2018 15:23

Collector: Associates, FTN Site: MW-21S Work Order Number: WO-180424-01

Sample Classification: Special Project: Old Midland

Matrix: Water Collected: 4/23/2018 15:48

Sample Barcode: Sample Number: 2018-1703

Alkalinity as CaCO3 Method: EPA 310.2 (Rev. 1974) Analyst: KH

Aliquot #: 2018-1703-1-1 Batch Number: AB-180424-011

Analyte(s) Result Units Q Limit Dilution Date and Time
Alkalinity 125 mg/L 6 1 4/25/2018 13:12

Anions Method: EPA 300.0 (Rev.2.1, 1993) Analyst: PR

Aliquot #: 2018-1703-1-2 Batch Number: AB-180425-026

				Reporting		Analysis
Analyte(s)	Result	Units	Q	Limit	Dilution	Date and Time
Sulfate	48.9	mg/L		0.5	1	4/25/2018 18:22
Chloride	140	mg/L		2.5	5	4/27/2018 9:41

Dissolved Oxygen Method: SM 4500-O G, 2011

Aliquot #: 2018-1703-1-4 Batch Number: AB-180501-006

				Reporting		Analysis
Analyte(s)	Result	Units	Q	Limit	Dilution	Date and Time
Dissolved Oxygen	0.330	mg/L			1	4/23/2018 15:46

Ferrous Iron Method: HACH Color disc/1,10 Phenanthroline

Aliquot #: 2018-1703-1-9 Batch Number: AB-180503-015

				Reporting		Analysis
Analyte(s)	Result	Units	Q	Limit	Dilution	Date and Time
Iron (Ferrous)	0.5	mg/L		0.5	1	4/23/2018 15:46

ICP/MS Metals (Total) Method: EPA 200.8 (Rev. 5.4, 1994) Analyst: PR

Aliquot #: 2018-1703-3-1 Batch Number: AB-180430-001

Analyte(s) Result Units Q Limit Dilution Date and Time
Iron 1030 ug/L 5 1 4/30/2018 13:06

Collector: Associates, FTN Site: MW-21S Work Order Number: WO-180424-01

Sample Classification: Special Project: Old Midland
Matrix: Water Collected: 4/23/2018 15:48

Sample Barcode: Sample Number: 2018-1703

Nitrate +Nitrite as N Method: SM 4500-NO3 F, 2011 Analyst: KH

Aliquot #: 2018-1703-1-3 Batch Number: AB-180424-010

Analyte(s)

Result
Units
Q
Limit
Dilution
Date and Time

Analysis
Analyte(s)

Nitrite+Nitrate as Nitrogen

mg/L
0.05
1
4/25/2018
9:56

pH Method: SM 4500-H+ B, 2000

Aliquot #: 2018-1703-1-5 Batch Number: AB-180501-007

 Analyte(s)
 Result
 Units
 Q
 Limit
 Dilution
 Date and Time

 pH
 6.05
 units
 1
 4/23/2018
 15:46

Specific Conductance Method: EPA 120.1, 1982

Aliquot #: 2018-1703-1-8 Batch Number: AB-180501-010

Analyte(s) Result Units Q Limit Dilution Date and Time
Specific Conductance 669 uS/cm 1 1 4/23/2018 15:46

Water Temperature Method: SM 2550 B, 2000

Aliquot #: 2018-1703-1-6 Batch Number: AB-180501-009

Analyte(s) Result Units Q Limit Dilution Date and Time
Water Temperature 16.5 °C 1 4/23/2018 15:46

Total Organic Carbon Method: SM 5310 C, 2011 Analyst: PR

Aliquot #: 2018-1703-2-1 Batch Number: AB-180425-015

Analyte(s) Result Units Q Limit Dilution Date and Time
Total Organic Carbon <1.00 mg/L 1 1 4/25/2018 15:42

Collector: Associates, FTN Site: MW-21S Work Order Number: WO-180424-01

Sample Classification: Special Project: Old Midland

Matrix: Water Collected: 4/23/2018 15:48

Sample Barcode: Sample Number: 2018-1703

Turbidity Method: EPA 2310 B, 2011

Aliquot #: 2018-1703-1-7 Batch Number: AB-180501-011

Analyte(s) Result Units Q Limit Dilution Date and Time
Turbidity 20.7 NTU 1 4/23/2018 15:46

Collector: Associates, FTN Site: MW-21D Work Order Number: WO-180424-01

Sample Classification: Special Project: Old Midland

Matrix: Water Collected: 4/23/2018 16:38

Sample Barcode: Sample Number: 2018-1704

Alkalinity as CaCO3 Method: EPA 310.2 (Rev. 1974) Analyst: KH

Aliquot #: 2018-1704-1-1 Batch Number: AB-180424-011

Analyte(s) Result Units Q Limit Dilution Date and Time
Alkalinity 173 mg/L 6 1 4/25/2018 13:16

Anions Method: EPA 300.0 (Rev.2.1, 1993) Analyst: PR

Aliquot #: 2018-1704-1-2 Batch Number: AB-180425-026

Reporting **Analysis** Result Units Q Limit **Dilution Date and Time** Analyte(s) Chloride 83.0 0.5 4/25/2018 18:37 mg/L 1 < 0.500 0.5 1 4/25/2018 18:37 Sulfate mg/L

Dissolved Oxygen Method: SM 4500-O G, 2011

Aliquot #: 2018-1704-1-4 Batch Number: AB-180501-006

Analyte(s) Result Units Q Limit Dilution Date and Time

Dissolved Oxygen 0.460 mg/L 1 4/23/2018 16:36

Ferrous Iron Method: HACH Color disc/1,10 Phenanthroline

Aliquot #: 2018-1704-1-9 Batch Number: AB-180503-015

 Analyte(s)
 Result
 Units
 Q
 Limit
 Dilution
 Date and Time

 Iron (Ferrous)
 1.0
 mg/L
 0.5
 1
 4/23/2018
 16:36

ICP/MS Metals (Dissolved) Method: EPA 200.8 (Rev. 5.4, 1994) Analyst: PR

Aliquot #: 2018-1704-5-1 Batch Number: AB-180425-018

 Analyte(s)
 Result
 Units
 Q
 Limit
 Dilution
 Date and Time

 Iron
 893
 ug/L
 5
 1
 4/25/2018
 14:05

Collector: Associates, FTN Site: MW-21D Work Order Number: WO-180424-01

Sample Classification: Special Project: Old Midland
Matrix: Water Collected: 4/23/2018 16:38

Sample Barcode: Sample Number: 2018-1704

Nitrate +Nitrite as N Method: SM 4500-NO3 F, 2011 Analyst: KH

Aliquot #: 2018-1704-1-3 Batch Number: AB-180424-010

pH Method: SM 4500-H+ B, 2000

Aliquot #: 2018-1704-1-5 Batch Number: AB-180501-007

 Analyte(s)
 Result
 Units
 Q
 Limit
 Dilution
 Date and Time

 pH
 6.89
 units
 1
 4/23/2018
 16:36

Specific Conductance Method: EPA 120.1, 1982

Aliquot #: 2018-1704-1-8 Batch Number: AB-180501-010

Analyte(s) Result Units Q Limit Dilution Date and Time
Specific Conductance 509 uS/cm 1 1 4/23/2018 16:36

Water Temperature Method: SM 2550 B, 2000

Aliquot #: 2018-1704-1-6 Batch Number: AB-180501-009

Analyte(s) Result Units Q Limit Dilution Date and Time
Water Temperature 16.6 °C 1 4/23/2018 16:36

Total Organic Carbon Method: SM 5310 C, 2011 Analyst: PR

Aliquot #: 2018-1704-2-1 Batch Number: AB-180425-015

Analyte(s)

Result
Units
Q
Limit
Dilution
Date and Time

1 1 4/25/2018 16:18

Collector: Associates, FTN Site: MW-21D Work Order Number: WO-180424-01

Sample Classification: Special Project: Old Midland

Matrix: Water Collected: 4/23/2018 16:38

Sample Barcode: Sample Number: 2018-1704

Turbidity Method: EPA 2310 B, 2011

Aliquot #: 2018-1704-1-7 Batch Number: AB-180501-011

Analyte(s) Result Units Q Limit Dilution Date and Time
Turbidity 37.3 NTU 1 4/23/2018 16:36

Collector: Associates, FTN Site: EB-3 Work Order Number: WO-180424-01

Sample Classification: Special Project: Old Midland

Matrix: Water Collected: 4/23/2018 17:35

Sample Barcode: Sample Number: 2018-1705

Alkalinity as CaCO3 Method: EPA 310.2 (Rev. 1974) Analyst: KH

Aliquot #: 2018-1705-1-1 Batch Number: AB-180424-011

Analyte(s) Result Units Q Limit Dilution Date and Time

Alkalinity <6.00 mg/L 6 1 4/25/2018 13:17

Anions Method: EPA 300.0 (Rev.2.1, 1993) Analyst: PR

Aliquot #: 2018-1705-1-2 Batch Number: AB-180425-026

Reporting **Analysis** Units Q Limit **Dilution Date and Time** Analyte(s) Result Chloride < 0.500 0.5 4/25/2018 18:44 mg/L 1 < 0.500 0.5 4/25/2018 18:44 Sulfate mg/L

ICP/MS Metals (Total) Method: EPA 200.8 (Rev. 5.4, 1994) Analyst: PR

Aliquot #: 2018-1705-3-1 Batch Number: AB-180430-001

 Analyte(s)
 Result
 Units
 Q
 Limit
 Dilution
 Date and Time

 Iron
 <5.00</td>
 ug/L
 5
 1
 4/30/2018
 13:18

Nitrate +Nitrite as N Method: SM 4500-NO3 F, 2011 Analyst: KH

Aliquot #: 2018-1705-1-3 Batch Number: AB-180424-010

Analyte(s) Result Units Q Limit Dilution Date and Time
Nitrite+Nitrate as Nitrogen <0.0500 mg/L 0.05 1 4/25/2018 10:00

Total Organic Carbon Method: SM 5310 C, 2011 Analyst: PR

Aliquot #: 2018-1705-2-1 Batch Number: AB-180425-015

Analyte(s)

Result
Units
Q
Limit
Dilution
Date and Time

1 1 4/25/2018 16:36

Collector: Associates, FTN Site: EB-4 Work Order Number: WO-180424-01

Sample Classification: Special Project: Old Midland

Matrix: Water Collected: 4/24/2018 7:15

Sample Barcode: Sample Number: 2018-1706

Alkalinity as CaCO3 Method: EPA 310.2 (Rev. 1974) Analyst: KH

Aliquot #: 2018-1706-1-1 Batch Number: AB-180424-011

		Reporting			Analysis	
Analyte(s)	Result	Units	Q	Limit	Dilution	Date and Time
Alkalinity	<6.00	mg/L		6	1	4/25/2018 13:18

Anions Method: EPA 300.0 (Rev.2.1, 1993) Analyst: PR

Aliquot #: 2018-1706-1-2 Batch Number: AB-180425-026

				Reporting		Analysis
Analyte(s)	Result	Units	Q	Limit	Dilution	Date and Time
Chloride	<0.500	mg/L		0.5	1	4/25/2018 18:51
Sulfate	<0.500	mg/L		0.5	1	4/25/2018 18:51

ICP/MS Metals (Total) Method: EPA 200.8 (Rev. 5.4, 1994) Analyst: PR

Aliquot #: 2018-1706-3-1 Batch Number: AB-180430-001

				Reporting		Analysis
Analyte(s)	Result	Units	Q	Limit	Dilution	Date and Time
Iron	<5.00	ug/L		5	1	4/30/2018 13:24

Nitrate +Nitrite as N Method: SM 4500-NO3 F, 2011 Analyst: KH

Aliquot #: 2018-1706-1-3 Batch Number: AB-180424-010

				Reporting	Analysis	
Analyte(s)	Result	Units	Q	Limit	Dilution	Date and Time
Nitrite+Nitrate as Nitrogen	<0.0500	mg/L		0.05	1	4/25/2018 10:01

Total Organic Carbon Method: SM 5310 C, 2011 Analyst: PR

Aliquot #: 2018-1706-2-1 Batch Number: AB-180425-015

					Reporting		
Analyte(s)	Result	Units	Q	Limit	Dilution	Date and Time	
Total Organic Carbon	<1.00	mg/L		1	1	4/25/2018 16:55	

Collector: Associates, FTN Site: MW-16S Work Order Number: WO-180424-01

Sample Classification: Special Project: Old Midland

Matrix: Water Collected: 4/24/2018 9:22

Sample Barcode: Sample Number: 2018-1707

Alkalinity as CaCO3 Method: EPA 310.2 (Rev. 1974) Analyst: KH

Aliquot #: 2018-1707-1-1 Batch Number: AB-180424-011

Analyte(s) Result Units Q Limit Dilution Date and Time
Alkalinity 139 mg/L 6 1 4/25/2018 13:19

Anions Method: EPA 300.0 (Rev.2.1, 1993) Analyst: PR

Aliquot #: 2018-1707-1-2 Batch Number: AB-180425-026

Reporting **Analysis** Analyte(s) Result **Units** Q Limit **Dilution Date and Time** 163 5 4/27/2018 9:55 Sulfate mg/L 2.5 1 Chloride 98.3 0.5 4/25/2018 19:13 mg/L

Dissolved Oxygen Method: SM 4500-O G, 2011

Aliquot #: 2018-1707-1-4 Batch Number: AB-180501-006

Analyte(s) Result Units Q Limit Dilution Date and Time
Dissolved Oxygen 0.810 mg/L 1 4/24/2018 9:19

Ferrous Iron Method: HACH Color disc/1,10 Phenanthroline

Aliquot #: 2018-1707-1-9 Batch Number: AB-180503-015

 Analyte(s)
 Result
 Units
 Q
 Limit
 Dilution
 Date and Time

 Iron (Ferrous)
 < 0.5</td>
 mg/L
 0.5
 1
 4/24/2018
 9:19

ICP/MS Metals (Total) Method: EPA 200.8 (Rev. 5.4, 1994) Analyst: PR

Aliquot #: 2018-1707-3-1 Batch Number: AB-180430-001

 Analyte(s)
 Result
 Units
 Q
 Limit
 Dilution
 Date and Time

 Iron
 399
 ug/L
 5
 1
 4/30/2018
 13:29

Collector: Associates, FTN Site: MW-16S Work Order Number: WO-180424-01

Sample Classification: Special Project: Old Midland

Matrix: Water Collected: 4/24/2018 9:22

Sample Barcode: Sample Number: 2018-1707

Nitrate +Nitrite as N Method: SM 4500-NO3 F, 2011 Analyst: KH

Aliquot #: 2018-1707-1-3 Batch Number: AB-180424-010

Analyte(s)

Result
Units
Q
Limit
Dilution
Date and Time

Nitrite+Nitrate as Nitrogen

0.0647
mg/L
0.05
1
4/25/2018
10:02

pH Method: SM 4500-H+ B, 2000

Aliquot #: 2018-1707-1-5 Batch Number: AB-180501-007

Analyte(s) Result Units Q Limit Dilution Date and Time

PH 6.62 units 1 4/24/2018 9:19

Specific Conductance Method: EPA 120.1, 1982

Aliquot #: 2018-1707-1-8 Batch Number: AB-180501-010

Analyte(s)

Result
Units
Q
Limit
Dilution
Date and Time
Units
Specific Conductance
917
US/cm
1
1
4/24/2018
9:19

Water Temperature Method: SM 2550 B, 2000

Aliquot #: 2018-1707-1-6 Batch Number: AB-180501-009

Analyte(s) Result Units Q Limit Dilution Date and Time
Water Temperature 17.1 °C 1 4/24/2018 9:19

Total Organic Carbon Method: SM 5310 C, 2011 Analyst: PR

Aliquot #: 2018-1707-2-1 Batch Number: AB-180425-015

Analyte(s)
Result
Units
Q
Limit
Dilution
Date and Time

1 1 4/25/2018 17:51

This analytical report must be reproduced in its entirety

Collector: Associates, FTN Site: MW-16S Work Order Number: WO-180424-01

Sample Classification: Special Project: Old Midland

Matrix: Water Collected: 4/24/2018 9:22

Sample Barcode: Sample Number: 2018-1707

Turbidity Method: EPA 2310 B, 2011

Aliquot #: 2018-1707-1-7 Batch Number: AB-180501-011

Analyte(s) Result Units Q Limit Dilution Date and Time
Turbidity 8.67 NTU 1 4/24/2018 9:19

Collector: Associates, FTN Site: MW-16D Work Order Number: WO-180424-01

Sample Classification: Special Project: Old Midland

Matrix: Water Collected: 4/24/2018 9:48

Sample Barcode: Sample Number: 2018-1708

Alkalinity as CaCO3 Method: EPA 310.2 (Rev. 1974) Analyst: KH

Aliquot #: 2018-1708-1-1 Batch Number: AB-180424-011

		Reporting			Analysis	
Analyte(s)	Result	Units	Q	Limit	Dilution	Date and Time
Alkalinity	111	mg/L		6	1	4/25/2018 13:20

Anions Method: EPA 300.0 (Rev.2.1, 1993) Analyst: PR

Aliquot #: 2018-1708-1-2 Batch Number: AB-180425-026

				Reporting		Analysis
Analyte(s)	Result	Units	Q	Limit	Dilution	Date and Time
Chloride	62.5	mg/L		0.5	1	4/25/2018 19:21
Sulfate	102	mg/L		2.5	5	4/27/2018 10:03

Dissolved Oxygen Method: SM 4500-O G, 2011

Aliquot #: 2018-1708-1-4 Batch Number: AB-180501-006

				Reporting		Anaiysis
Analyte(s)	Result	Units	Q	Limit	Dilution	Date and Time
Dissolved Oxygen	0.790	mg/L			1	4/24/2018 9:45

Ferrous Iron Method: HACH Color disc/1,10 Phenanthroline

Aliquot #: 2018-1708-1-9 Batch Number: AB-180503-015

				Reporting		Analysis
Analyte(s)	Result	Units	Q	Limit	Dilution	Date and Time
Iron (Ferrous)	< 0.5	mg/L		0.5	1	4/24/2018 9:45

ICP/MS Metals (Total) Method: EPA 200.8 (Rev. 5.4, 1994) Analyst: PR

Aliquot #: 2018-1708-3-1 Batch Number: AB-180430-001

				Reporting		Analysis
Analyte(s)	Result	Units	Q	Limit	Dilution	Date and Time
Iron	2420	ug/L		5	1	4/30/2018 13:47

Collector: Associates, FTN Site: MW-16D Work Order Number: WO-180424-01

Sample Classification: Special Project: Old Midland
Matrix: Water Collected: 4/24/2018 9:48

Sample Barcode: Sample Number: 2018-1708

Nitrate +Nitrite as N Method: SM 4500-NO3 F, 2011 Analyst: KH

Aliquot #: 2018-1708-1-3 Batch Number: AB-180424-010

Analyte(s)

Result
Units
Q
Limit
Dilution
Date and Time

0.050
Nitrite+Nitrate as Nitrogen

< 0.0500
mg/L

0.05
1
4/25/2018
10:06

pH Method: SM 4500-H+ B, 2000

Aliquot #: 2018-1708-1-5 Batch Number: AB-180501-007

Analyte(s) Result Units Q Limit Dilution Date and Time

PH 7.33 units 1 4/24/2018 9:45

Specific Conductance Method: EPA 120.1, 1982

Aliquot #: 2018-1708-1-8 Batch Number: AB-180501-010

Analyte(s) Result Units Q Limit Dilution Date and Time
Specific Conductance 596 uS/cm 1 1 4/24/2018 9:45

Water Temperature Method: SM 2550 B, 2000

Aliquot #: 2018-1708-1-6 Batch Number: AB-180501-009

Analyte(s) Result Units Q Limit Dilution Date and Time
Water Temperature 18.5 °C 1 4/24/2018 9:45

Total Organic Carbon Method: SM 5310 C, 2011 Analyst: PR

Aliquot #: 2018-1708-2-1 Batch Number: AB-180425-015

Analyte(s) Result Units Q Limit Dilution Date and Time
Total Organic Carbon 15.8 mg/L 1 1 4/25/2018 18:10

Collector: Associates, FTN Site: MW-16D Work Order Number: WO-180424-01

Sample Classification: Special Project: Old Midland

Matrix: Water Collected: 4/24/2018 9:48

Sample Barcode: Sample Number: 2018-1708

Turbidity Method: EPA 2310 B, 2011

Aliquot #: 2018-1708-1-7 Batch Number: AB-180501-011

Analyte(s) Result Units Q Limit Dilution Date and Time
Turbidity 16.1 NTU 1 4/24/2018 9:45

Collector: Associates, FTN Site: MW-12S Work Order Number: WO-180424-01

Sample Classification: Special Project: Old Midland

Matrix: Water Collected: 4/24/2018 9:08

Sample Barcode: Sample Number: 2018-1709

Alkalinity as CaCO3 Method: EPA 310.2 (Rev. 1974) Analyst: KH

Aliquot #: 2018-1709-1-1 Batch Number: AB-180424-011

		Reporting			Analysis	
Analyte(s)	Result	Units	Q	Limit	Dilution	Date and Time
Alkalinity	41.8	mg/L		6	1	4/25/2018 13:21

Anions Method: EPA 300.0 (Rev.2.1, 1993) Analyst: PR

Aliquot #: 2018-1709-1-2 Batch Number: AB-180425-026

				Reporting		Analysis
Analyte(s)	Result	Units	Q	Limit	Dilution	Date and Time
Sulfate	1.08	mg/L		0.5	1	4/25/2018 19:28
Chloride	8.70	mg/L		0.5	1	4/25/2018 19:28

Dissolved Oxygen Method: SM 4500-O G, 2011

Aliquot #: 2018-1709-1-4 Batch Number: AB-180501-006

				Reporting		Analysis
Analyte(s)	Result	Units	Q	Limit	Dilution	Date and Time
Dissolved Oxygen	0.500	mg/L			1	4/24/2018 9:06

Ferrous Iron Method: HACH Color disc/1,10 Phenanthroline

Aliquot #: 2018-1709-1-9 Batch Number: AB-180503-015

				Reporting		Analysis
Analyte(s)	Result	Units	Q	Limit	Dilution	Date and Time
Iron (Ferrous)	<0.5	mg/L		0.5		4/24/2018 9:06

ICP/MS Metals (Total) Method: EPA 200.8 (Rev. 5.4, 1994) Analyst: PR

Aliquot #: 2018-1709-3-1 Batch Number: AB-180430-001

				Reporting		Analysis
Analyte(s)	Result	Units	Q	Limit	Dilution	Date and Time
Iron	676	ug/L	R	5	1	4/30/2018 13:53

Collector: Associates, FTN Site: MW-12S Work Order Number: WO-180424-01

Sample Classification: Special Project: Old Midland

Matrix: Water Collected: 4/24/2018 9:08

Sample Barcode: Sample Number: 2018-1709

Nitrate +Nitrite as N Method: SM 4500-NO3 F, 2011 Analyst: KH

Aliquot #: 2018-1709-1-3 Batch Number: AB-180424-010

Analyte(s)

Result
Units
Q
Limit
Dilution
Date and Time

Nitrite+Nitrate as Nitrogen

0.0873
mg/L
0.05
1
4/25/2018
10:07

pH Method: SM 4500-H+ B, 2000

Aliquot #: 2018-1709-1-5 Batch Number: AB-180501-007

Analyte(s) Result Units Q Limit Dilution Date and Time
pH 5.55 units 1 4/24/2018 9:06

Specific Conductance Method: EPA 120.1, 1982

Aliquot #: 2018-1709-1-8 Batch Number: AB-180501-010

Analyte(s) Result Units Q Limit Dilution Date and Time
Specific Conductance 94.6 uS/cm 1 1 4/24/2018 9:06

Water Temperature Method: SM 2550 B, 2000

Aliquot #: 2018-1709-1-6 Batch Number: AB-180501-009

Analyte(s) Result Units Q Limit Dilution Date and Time
Water Temperature 15.4 °C 1 4/24/2018 9:06

Total Organic Carbon Method: SM 5310 C, 2011 Analyst: PR

Aliquot #: 2018-1709-2-1 Batch Number: AB-180425-015

Analyte(s) Result Units Q Limit Dilution Date and Time
Total Organic Carbon <1.00 mg/L 1 1 4/25/2018 18:28

This analytical report must be reproduced in its entirety

Collector: Associates, FTN Site: MW-12S Work Order Number: WO-180424-01

Sample Classification: Special Project: Old Midland

Matrix: Water Collected: 4/24/2018 9:08

Sample Barcode: Sample Number: 2018-1709

Turbidity Method: EPA 2310 B, 2011

Aliquot #: 2018-1709-1-7 Batch Number: AB-180501-011

 Analyte(s)
 Result
 Units
 Q
 Limit
 Dilution
 Date and Time

 Turbidity
 2.57
 NTU
 1
 4/24/2018
 9:06

Analyst: KH

Collector: Associates, FTN Site: MW-22D Work Order Number: WO-180424-01

Sample Classification: Special Project: Old Midland

Matrix: Water Collected: 4/24/2018 12:15

Sample Barcode: Sample Number: 2018-1710

Aliquot #: 2018-1710-1-1 Batch Number: AB-180424-011

Alkalinity as CaCO3

Analyte(s) Result Units Q Limit Dilution Date and Time

Alkalinity 151 mg/L 6 1 4/25/2018 13:23

Method: EPA 310.2 (Rev. 1974)

Anions Method: EPA 300.0 (Rev.2.1, 1993) Analyst: PR

Aliquot #: 2018-1710-1-2 Batch Number: AB-180425-026

Reporting **Analysis** Result Units Q Limit **Dilution Date and Time** Analyte(s) Chloride 115 2.5 5 4/27/2018 10:10 mg/L 44.8 0.5 1 4/25/2018 19:43 Sulfate mg/L

Dissolved Oxygen Method: SM 4500-O G, 2011

Aliquot #: 2018-1710-1-4 Batch Number: AB-180501-006

Analyte(s) Result Units Q Limit Dilution Date and Time

Dissolved Oxygen 1.66 mg/L 1 4/24/2018 12:12

Ferrous Iron Method: HACH Color disc/1,10 Phenanthroline

Aliquot #: 2018-1710-1-9 Batch Number: AB-180503-015

Analyte(s) Result Units Q Limit Dilution Date and Time
Iron (Ferrous) <0.5 mg/L 0.5 1 4/24/2018 12:12

ICP/MS Metals (Total) Method: EPA 200.8 (Rev. 5.4, 1994) Analyst: PR

Aliquot #: 2018-1710-3-1 Batch Number: AB-180430-001

 Analyte(s)
 Result
 Units
 Q
 Limit
 Dilution
 Date and Time

 Iron
 516
 ug/L
 5
 1
 4/30/2018
 14:04

Collector: Associates, FTN Site: MW-22D Work Order Number: WO-180424-01

Sample Classification: Special Project: Old Midland

Matrix: Water Collected: 4/24/2018 12:15

Sample Barcode: Sample Number: 2018-1710

Nitrate +Nitrite as N Method: SM 4500-NO3 F, 2011 Analyst: KH

Aliquot #: 2018-1710-1-3 Batch Number: AB-180424-010

Analyte(s)

Result
Units
Q
Limit
Dilution
Date and Time

Nitrite+Nitrate as Nitrogen

0.127
mg/L
0.05
1
4/25/2018 10:09

pH Method: SM 4500-H+ B, 2000

Aliquot #: 2018-1710-1-5 Batch Number: AB-180501-007

Analyte(s) Result Units Q Limit Dilution Date and Time

PH 6.86 units 1 4/24/2018 12:12

Specific Conductance Method: EPA 120.1, 1982

Aliquot #: 2018-1710-1-8 Batch Number: AB-180501-010

Analyte(s) Result Units Q Limit Dilution Date and Time
Specific Conductance 723 uS/cm 1 1 4/24/2018 12:12

Water Temperature Method: SM 2550 B, 2000

Aliquot #: 2018-1710-1-6 Batch Number: AB-180501-009

Analyte(s) Result Units Q Limit Dilution Date and Time
Water Temperature 22.7 °C 1 4/24/2018 12:12

Total Organic Carbon Method: SM 5310 C, 2011 Analyst: PR

Aliquot #: 2018-1710-2-1 Batch Number: AB-180425-015

Analyte(s)
Result
Units
Q
Limit
Dilution
Date and Time

1 1 4/25/2018 19:04

This analytical report must be reproduced in its entirety

Collector: Associates, FTN Site: MW-22D Work Order Number: WO-180424-01

Sample Classification: Special Project: Old Midland

Matrix: Water Collected: 4/24/2018 12:15

Sample Barcode: Sample Number: 2018-1710

Turbidity Method: EPA 2310 B, 2011

Aliquot #: 2018-1710-1-7 Batch Number: AB-180501-011

Analyte(s) Result Units Q Limit Dilution Date and Time
Turbidity 9.78 NTU 1 4/24/2018 12:12

Collector: Associates, FTN Site: MW-22S Work Order Number: WO-180424-01

Sample Classification: Special Project: Old Midland

Matrix: Water Collected: 4/24/2018 12:50

Sample Barcode: Sample Number: 2018-1711

Alkalinity as CaCO3 Method: EPA 310.2 (Rev. 1974) Analyst: KH

Aliquot #: 2018-1711-1-1 Batch Number: AB-180424-011

Analyte(s) Result Units Q Limit Dilution Date and Time

Alkalinity 129 mg/L 6 1 4/25/2018 13:24

Anions Method: EPA 300.0 (Rev.2.1, 1993) Analyst: PR

Aliquot #: 2018-1711-1-2 Batch Number: AB-180425-026

Reporting **Analysis** Result Units Q Limit **Dilution Date and Time** Analyte(s) Sulfate 809 5 4/27/2018 10:17 mg/L 10 5 258 10 4/27/2018 10:17 Chloride mg/L

Dissolved Oxygen Method: SM 4500-O G, 2011

Aliquot #: 2018-1711-1-4 Batch Number: AB-180501-006

Analyte(s) Result Units Q Limit Dilution Date and Time

Dissolved Oxygen 0.480 mg/L 1 4/24/2018 12:46

Ferrous Iron Method: HACH Color disc/1,10 Phenanthroline

Aliquot #: 2018-1711-1-9 Batch Number: AB-180503-015

Analyte(s) Result Units Q Limit Dilution Date and Time
Iron (Ferrous) NA mg/L 0.5 1 4/24/2018 12:46

ICP/MS Metals (Total) Method: EPA 200.8 (Rev. 5.4, 1994) Analyst: PR

Aliquot #: 2018-1711-3-1 Batch Number: AB-180430-001

Analyte(s) Result Units Q Limit Dilution Date and Time

Iron 67.2 ug/L 5 1 4/30/2018 14:10

Collector: Associates, FTN Site: MW-22S Work Order Number: WO-180424-01

Sample Classification: Special Project: Old Midland

Matrix: Water Collected: 4/24/2018 12:50 Sample Barcode: Sample Number: 2018-1711

Nitrate +Nitrite as N Method: SM 4500-NO3 F, 2011 Analyst: KH

Aliquot #: 2018-1711-1-3 Batch Number: AB-180424-010

Analyte(s)

Result
Units
Q
Limit
Dilution
Date and Time

0.050
Nitrite+Nitrate as Nitrogen

< 0.0500
mg/L
0.05
1
4/25/2018
10:10

pH Method: SM 4500-H+ B, 2000

Aliquot #: 2018-1711-1-5 Batch Number: AB-180501-007

 Analyte(s)
 Result
 Units
 Q
 Limit
 Dilution
 Date and Time

 pH
 6.10
 units
 1
 4/24/2018
 12:46

Specific Conductance Method: EPA 120.1, 1982

Aliquot #: 2018-1711-1-8 Batch Number: AB-180501-010

Analyte(s) Result Units Q Limit Dilution Date and Time
Specific Conductance 2260 uS/cm 1 1 4/24/2018 12:46

Water Temperature Method: SM 2550 B, 2000

Aliquot #: 2018-1711-1-6 Batch Number: AB-180501-009

Analyte(s)ResultUnitsQLimitDilutionDate and TimeWater Temperature18.4°C14/24/201812:46

Total Organic Carbon Method: SM 5310 C, 2011 Analyst: PR

Aliquot #: 2018-1711-2-1 Batch Number: AB-180425-015

Analyte(s)
Result
Units
Q
Limit
Dilution
Date and Time

Total Organic Carbon
2.49
mg/L
1
1
4/25/2018
19:24

This analytical report must be reproduced in its entirety

Collector: Associates, FTN Site: MW-22S Work Order Number: WO-180424-01

Sample Classification: Special Project: Old Midland
Matrix: Water Collected: 4/24/2018 12:50

Sample Barcode: Sample Number: 2018-1711

Turbidity Method: EPA 2310 B, 2011

Aliquot #: 2018-1711-1-7 Batch Number: AB-180501-011

Analyte(s) Result Units Q Limit Dilution Date and Time
Turbidity 12.1 NTU 1 4/24/2018 12:46

Page 30 of 36

Collector: Associates, FTN Site: MW-9S Work Order Number: WO-180424-01

Sample Classification: Special Project: Old Midland

Matrix: Water Collected: 4/24/2018 11:35

Sample Barcode: Sample Number: 2018-1712

Alkalinity as CaCO3 Method: EPA 310.2 (Rev. 1974) Analyst: KH

Aliquot #: 2018-1712-1-1 Batch Number: AB-180424-011

Analyte(s) Result Units Q Limit Dilution Date and Time
Alkalinity 134 mg/L 6 1 4/25/2018 13:27

Anions Method: EPA 300.0 (Rev.2.1, 1993) Analyst: PR

Aliquot #: 2018-1712-1-2 Batch Number: AB-180425-026

Reporting **Analysis** Limit Result **Units** Q **Dilution Date and Time** Analyte(s) Chloride 146 2.5 5 4/27/2018 10:25 mg/L Sulfate 109 2.5 5 4/27/2018 10:25 mg/L

Dissolved Oxygen Method: SM 4500-O G, 2011

Aliquot #: 2018-1712-1-4 Batch Number: AB-180501-006

Analyte(s) Result Units Q Limit Dilution Date and Time
Dissolved Oxygen 2.20 mg/L 1 4/24/2018 11:34

Ferrous Iron Method: HACH Color disc/1,10 Phenanthroline

Aliquot #: 2018-1712-1-9 Batch Number: AB-180503-015

Analyte(s) Result Units Q Limit Dilution Date and Time
Iron (Ferrous) < 0 .5 mg/L 0.5 1 4/24/2018 11:34

ICP/MS Metals (Dissolved) Method: EPA 200.8 (Rev. 5.4, 1994) Analyst: PR

Aliquot #: 2018-1712-5-1 Batch Number: AB-180425-018

Analyte(s) Result Units Q Limit Dilution Date and Time
Iron 129 ug/L 5 1 4/25/2018 14:11

Collector: Associates, FTN Site: MW-9S Work Order Number: WO-180424-01

Sample Classification: Special Project: Old Midland

Matrix: Water Collected: 4/24/2018 11:35

Sample Barcode: Sample Number: 2018-1712

Nitrate +Nitrite as N Method: SM 4500-NO3 F, 2011 Analyst: KH

Aliquot #: 2018-1712-1-3 Batch Number: AB-180424-010

Analyte(s)

Result
Units
Q
Limit
Dilution
Date and Time

0.050
Nitrite+Nitrate as Nitrogen

< 0.0500
mg/L
0.05
1
4/25/2018
10:11

pH Method: SM 4500-H+ B, 2000

Aliquot #: 2018-1712-1-5 Batch Number: AB-180501-007

Analyte(s) Result Units Q Limit Dilution Date and Time

PH 6.15 units 1 4/24/2018 11:34

Specific Conductance Method: EPA 120.1, 1982

Aliquot #: 2018-1712-1-8 Batch Number: AB-180501-010

Analyte(s) Result Units Q Limit Dilution Date and Time
Specific Conductance 825 uS/cm 1 1 4/24/2018 11:34

Water Temperature Method: SM 2550 B, 2000

Aliquot #: 2018-1712-1-6 Batch Number: AB-180501-009

Analyte(s)

Result
Units
Q
Limit
Dilution
Date and Time

25.1
°C
1
4/24/2018 11:34

Total Organic Carbon Method: SM 5310 C, 2011 Analyst: PR

Aliquot #: 2018-1712-2-1 Batch Number: AB-180425-015

Analyte(s)
Result
Units
Q
Limit
Dilution
Date and Time

1 1 4/25/2018 19:41

This analytical report must be reproduced in its entirety

Collector: Associates, FTN Site: MW-9S Work Order Number: WO-180424-01

Sample Classification: Special Project: Old Midland

Matrix: Water Collected: 4/24/2018 11:35

Sample Barcode: Sample Number: 2018-1712

Turbidity Method: EPA 2310 B, 2011

Aliquot #: 2018-1712-1-7 Batch Number: AB-180501-011

Analyte(s) Result Units Q Limit Dilution Date and Time
Turbidity 38.9 NTU 1 4/24/2018 11:34

Collector: Associates, FTN Site: MW-9D Work Order Number: WO-180424-01

Sample Classification: Special Project: Old Midland

Matrix: Water Collected: 4/24/2018 12:20

Sample Barcode: Sample Number: 2018-1713

Alkalinity as CaCO3 Method: EPA 310.2 (Rev. 1974) Analyst: KH

Aliquot #: 2018-1713-1-1 Batch Number: AB-180424-011

Analyte(s) Result Units Q Limit Dilution Date and Time
Alkalinity 183 mg/L 6 1 4/25/2018 13:28

Anions Method: EPA 300.0 (Rev.2.1, 1993) Analyst: PR

Aliquot #: 2018-1713-1-2 Batch Number: AB-180425-026

				Reporting		Analysis
Analyte(s)	Result	Units	Q	Limit	Dilution	Date and Time
Chloride	139	mg/L		2.5	5	4/27/2018 10:32
Sulfate	2.40	mg/L		0.5	1	4/25/2018 20:05

Dissolved Oxygen Method: SM 4500-O G, 2011

Aliquot #: 2018-1713-1-4 Batch Number: AB-180501-006

Analyte(s) Result Units Q Limit Dilution Date and Time

1.11 mg/L 1 4/24/2018 12:18

Ferrous Iron Method: HACH Color disc/1,10 Phenanthroline

Aliquot #: 2018-1713-1-9 Batch Number: AB-180503-015

 Analyte(s)
 Result
 Units
 Q
 Limit
 Dilution
 Date and Time

 Iron (Ferrous)
 1.5
 mg/L
 0.5
 1
 4/24/2018
 12:18

ICP/MS Metals (Total) Method: EPA 200.8 (Rev. 5.4, 1994) Analyst: PR

Aliquot #: 2018-1713-3-1 Batch Number: AB-180430-001

 Analyte(s)
 Result
 Units
 Q
 Limit
 Dilution
 Date and Time

 Iron
 2480
 ug/L
 5
 1
 4/30/2018
 14:16

Collector: Associates, FTN Site: MW-9D Work Order Number: WO-180424-01

Sample Classification: Special Project: Old Midland

Matrix: Water Collected: 4/24/2018 12:20 Sample Barcode: Sample Number: 2018-1713

Nitrate +Nitrite as N Method: SM 4500-NO3 F, 2011 Analyst: KH

Aliquot #: 2018-1713-1-3 Batch Number: AB-180424-010

pH Method: SM 4500-H+ B, 2000

Aliquot #: 2018-1713-1-5 Batch Number: AB-180501-007

 Analyte(s)
 Result
 Units
 Q
 Limit
 Dilution
 Date and Time

 pH
 6.58
 units
 1
 4/24/2018
 12:18

Specific Conductance Method: EPA 120.1, 1982

Aliquot #: 2018-1713-1-8 Batch Number: AB-180501-010

Analyte(s) Result Units Q Limit Dilution Date and Time
Specific Conductance 670 uS/cm 1 1 4/24/2018 12:18

Water Temperature Method: SM 2550 B, 2000

Aliquot #: 2018-1713-1-6 Batch Number: AB-180501-009

Analyte(s) Result Units Q Limit Dilution Date and Time
Water Temperature 23.3 °C 1 4/24/2018 12:18

Total Organic Carbon Method: SM 5310 C, 2011 Analyst: PR

Aliquot #: 2018-1713-2-1 Batch Number: AB-180425-015

Analyte(s) Result Units Q Limit Dilution Date and Time

Total Organic Carbon <1.00 mg/L 1 1 4/25/2018 20:00

This analytical report must be reproduced in its entirety

Collector: Associates, FTN Site: MW-9D Work Order Number: WO-180424-01

Sample Classification: Special Project: Old Midland

Matrix: Water Collected: 4/24/2018 12:20

Sample Barcode: Sample Number: 2018-1713

Turbidity Method: EPA 2310 B, 2011

Aliquot #: 2018-1713-1-7 Batch Number: AB-180501-011

Analyte(s) Result Units Q Limit Dilution Date and Time
Turbidity 6.28 NTU 1 4/24/2018 12:18

QUALITY CONTROL REPORT

Project: Old Midland 2018 1700-1713

Date and Time Received: 04/24/2018 15:48

Analyte	Units	Method Blank	Reporting Limit	% Recovery LCS/LCSD	Limits	% RPD Lab Dup Result	Limits	% Recove		% RPD	Limits	Qualifiers
Nitrate +Nitrite as N		SM 45	00-NO3 F, 2	2011	Batch #:	AB-180424-010		Parent San	nple: 2018-1709			
Nitrite+Nitrate as Nitrogen	mg/L	<0.0500	0.05	99.3 /	80-120	1	-	N/A 98.4 / 95	.1 80-120	2.9	-	
Alkalinity as CaCO3		EPA 3	10.2 (Rev. 1	974)	Batch #:	AB-180424-011		Parent San	nple: 2018-1693			
Alkalinity	mg/L	<6.00	6.00	104.8 /	90-110	I	-	87.1 / 89	0.8 80 -120	2.51	-	
Total Organic Carbon		SM 53	10 C, 2011		Batch #:	AB-180425-015		Parent San	nple: 2018-1709			
Total Organic Carbon	mg/L	<1.00	1.00	103.0 /	85-115	1	-	N/A 103.8 / 10	2.0 80-120	1.0	-	
ICP/MS Metals (Dissolv	/ed)	EPA 2 1994)	00.8 (Rev. 5	5.4,	Batch #:	AB-180425-018		Parent San	2018-1724 nple:		-	
Iron	ug/L	<5.00	5.00	99.8 /	85-115	1		101	.1 / 101.2 70-13	30 0	.2	
Anions		EPA 30 1993)	00.0 (Rev.2.1	1,	Batch #:	AB-180425-026		Parent Sam	2018-1709 ple:			
Chloride	mg/L	<0.500	0.50	102.5 /	90-110	I		<u> </u> 1	01.2 / 101.2 80-	-120	0.0	 -
Sulfate	mg/L	<0.500	0.50	102.7 /	90-110	ĺ		1	00.3 / 100.4 80-	-120	0.1	1
											-	
ICP/MS Metals (Tota	al)	EP/ 199	A 200.8 (Rev 14)	v. 5.4,	Batch	AB-180430-00 #:	1	Parent S	2018-170 Sample:	9		
Iron	ug/L	<5.00	5.00	91.5 /	85-115	I	-	99.7 / 97.3	70-130	2.4		

FIELD QUALITY CONTROL REPORT

Work Order # WO-180424-01

Parent Sample 2018-1701

Analyte(s)	Parent Sample Result	Field Dup Result	Units	% RPD	Limits	Batch Number
Alkalinity	183	162	mg/L	12.17	0 - 20	AB-180424-011
Alkalinity	125	123	mg/L	1.61	0 - 20	AB-180424-011
Alkalinity	41.8	40.9	mg/L	2.18	0 - 20	AB-180424-011
Chloride	85.1	87.4	mg/L	2.66	0 - 20	AB-180425-026
Sulfate	140	142	mg/L	1.60	0 - 20	AB-180425-026
Chloride	140	140	mg/L	0.07	0 - 20	AB-180425-026
Sulfate	48.9	49.0	mg/L	0.31	0 - 20	AB-180425-026
Chloride	8.70	8.94	mg/L	2.76	0 - 20	AB-180425-026
Sulfate	1.08	1.09	mg/L	0.38	0 - 20	AB-180425-026
Nitrite+Nitrate as Nitrogen	<0.0500	<0.0500	mg/L	NA	0 - 20	AB-180424-010
Nitrite+Nitrate as Nitrogen	<0.0500	<0.0500	mg/L	NA	0 - 20	AB-180424-010
Nitrite+Nitrate as Nitrogen	0.0873	0.0871	mg/L	0.23	0 - 20	AB-180424-010
Total Organic Carbon	2.05	4.46	mg/L	74.04 R	0 - 20	AB-180425-015
Total Organic Carbon	<1.00	<1.00	mg/L	NA	0 - 20	AB-180425-015
Total Organic Carbon	<1.00	<1.00	mg/L	NA	0 - 20	AB-180425-015
Iron (Total)	2070	1950	ug/L	5.97	0 - 20	AB-180430-001
Iron (Total)	1030	973	ug/L	5.69	0 - 20	AB-180430-001
Iron (Total)	676	617	ug/L	9.13	0 - 20	AB-180430-001

Arkansas Department . Environmental Quality \\ \(\psi \) \(\lambda \) | \(\

Facility or Project Name	1 2		AFIN # / County	,	Sa	mple			Para	meters	Requ	ested		Co	ontainer Ty	pe Code		Media Code	Preserv	vation Code
Old Midland Products		/IP)	5	۸ (cteris			Total	No. o	f Cont	ainers		P = P	olyethylene	e/Plastic	W=	- water	A = Cool	to ≤ 6°C
Ola, Arkansa			75-00049	3					I,	. <u>A</u>				G = G	7.0			groundwater	B = Sulfu	uric Acid
Function Code 5	0014			ite (1				A	ate		_		A = A	mber Glass	S	L =	liquid (not water	er) C = Nitrio	c Acid
Printed Name of Sampler(s)				sod			l e		유 -	sulfate, , alkalinity		Iran		0 = 0	ther (Spec	ify)	S =	soil or solid	D = NaO	Н
				or Composite (2)	Be		Туре		9	de,							E=	edible tissue	E = Sodium	Thiosulfate
				or O	Ę	Code	tion		tiles	olori itrit	_	3		Instantan	eous =			whole fish	F = Othe	er (specify)
			*	Ξ	Container Type	ပြို	Preservation		Semivolatiles (PCP, PAH, Carbazole)	Anions chloride, s nitrate+ nitrite-N,	Total Iron	Dissolue		Flow				other		1
Sample ID		ollected	Time Collected	Grab	outs	Media	ese	T0C	arb	nion	otal	3				surements		Latitude	Longitude	1 1
- Store	(mm/	dd/yy)	(hh:mm)								Ĕ	12	-	DO (mg/L)	pH (SU)	Temp (*C)	Time	(dd.ddddd)	(dd.ddddd)	
EB-2	4/2	3/18	1334	1	0	G	F	1	1	1	1			NJA	NA	MA	1334			2013-1700
MW-23			1605	1	1			1	1	1	V			0.71	6.93	17.9	1605			1701
Dup-MW-23	*		1705				1	3	2	1	1			V.	1	1	L	1		17010
E13-1	2		1335					1	1	1	1			NIA	NIA	NIA	MA			1102
MW-215			1548	-				1	i	L	i			0.33	6.05	16.5	1548	,		1703
Dup-MW-ZIS			1610		П			3	2	1	1			1	1	1	1			17030
MW-210			1638		П			1	1	1	Ø	1		0,46	6.39	16.6	1636			1704
EB-3	J	,	1735					1	I		1			MA	NIA	N/A	MA			1105
EB-4	4-20	1-18	0715											1	1	1	1			1706
MW-165	i		0922		П									0.81	6.62	17,1	0919			1107
MW-161)			0948		П									0,79	7.33	1815	0945			1708
MW-125		,	0908		П			J	J	J	1			0,50	5,59	15.4	0906			1709
Dup-MW-125			0978					3	2	1	1			1	1	1	1			1709 D
MW-22D			1215					1	1	1	1			1,66	6.86	22.7	1212			1710
MW-22S	1		1250		1,1		1	1	1	1	1			0.48		18,4	1246			1711
																				Part and
																	-3			
SAMPLE CONDITION UPON R	ECEIPT I													IPLE CON		-				
	Yes	_ No R	Report results to Dia	anna	Kilbu	rn 68	2-084	4 or T	yler Wi	ight 68	33-006	8; ADI	EQ La	boratory n	umber 501	1-682-0955	<u>i:</u>	/		
2. COC & Labels Agree	Yes		harge time to fun	ctio	1 COC	e 500	<u>)14</u>											(-(1)	
	Yes_	No																\	(8)	
4. Temp (°C) Upon Receipt	1.90										*									
FOR COMPLETION BY L	AB ONLY	'																		

	Arkansas Depa		OF ENVIRO F-CUSTO		TAL QUALIT	Y	
Date	4/24/18	Sampler	(print)	Αl	EX HAM	LIN ELIZA	SETH STUDEBAKE
Site Identification	Old Midland Pro	ducts; A	FIN 7				
Site Address	Hwy 10 Ola, AR	72853					
Sample ID	Sample Remarks		Time (hl	hmm)	Latitude	Longitude	Lab ID
EB-2	Post WL-Blush ASIA		1334)		2	9 3-3
MW-23			1609				- 4,
D4P-MW-23	nuplrah of MW-23		1705				
EB-1	Post he Blank to	~3	1335	_			
MW-215	1 1 1	¥	1548	5			
DUP_MW-215	Ruplient of Mw-		1010				
MW-21D	Field filteral me	tals	1638				
EB-3	env of day blank E	45	1735				
EB-4	end of day blank	ASIL	0715				7
MW-165			0922	?			
MW-16D	y .	***	0948	'			
. Mw-175			0908				
D48-MW-125			0979	3			
MW-27D	1	. v.	0 1715				
MW-275			1250				
	tody seal on each contai	ner?: YE	s NO		els/COC agr	ee?: YES N	10
Date/Time	Relinquished By Name/Title			Rece Name/	ived By		
Date 4 24 2018	Eurabeth Stud	ebaker, (Geologist		Jim Crac	g FIN	
Time 14 05	Signature Stratile Versiles	ah		Signatu	ire A	0	
Date	Nande/Title			Name/7	Title 1	(0)	- Chem Sup
4-24-2018	- 111/ Cici . 1	TU		g: .	(Vet	of Huen	ir satsq
1548	Signature			Signatu	re	I Luck	
Date	Name/Title			Name/1	Title 7		
Time	Signature		_	Signatu	70		
Time	Signature			Signatu	10		
Date	Name/Title			Name/1	îtle .		
Time	Signature			Signatu	re		1.2

Effective Date: 04/16/2018

Arkansas Department of Environmental Quality for Compliance, Enforcement, or Emergency Samples

Facility or Project Name		AFIN # / County		Sai	mple			Parai	meters	Requ	ested			Container T	ype Code	* 4	Media Code	Preserv	ation Code	
Old Midland Products	Site (OMP)		С		terist	ics				f Conta		1		olyethyle			= water	A = Cool		
Ola, Arkansa	IS	75-00049	2)					Ŧ.	iţ			Ja	G = (Glass		G:	groundwater	B = Sulfu	ıric Acid	
Function Code 5	0014	1	te (PA	ate,		7		A = /	Amber Gla	ss	L=	liquid (not water	r) C = Nitrio	C = Nitric Acid	
Printed Name of Sampler(s)			osi			ø		e,	ak ak	. 1	13	1	0 = 0	Other (Spe	cify)	S=	soil or solid	D = NaOH		
			E E	g g		Тур		<u>G</u>	, Y		1-4	1				E=	edible tissue	E = Sodium	Thiosulfate	
			Ñ	7	g	no		iles	loric trite		3		Instanta	neous	=	F=	whole fish	F = Othe	r (specify)	
			10	ner	Š	vati		olat	유	ē.	2/2		Flow		_	B =	= other			
Sample ID	Date Collected	Time Collected	Grab (1) or Composite (2)	Container Type	Media Code	Preservation Type	ပ္	Semivolatiles (PCP, PAH, Carbazole)	Anions chloride, sulfate, nitrate+ nitrite-N, alkalinity	Total Iron	Disalmol			Field Me	easurement	S	Latitude	Longitude	Lab #	
Campie 15	(mm/dd/yy)	(hh:mm)	Ö	ပိ	_	Pre	TOC		P ii	인			DO (mg/L	.) pH (SU)	Temp (*C)	Time	(dd.ddddd)	(dd.ddddd)	39	
MW-95	4/24/18	1349 1135	1	0	G	F	1	1	1	D	1		2,26	6.19	- 25.1	1134			2018-1712	
MW-90	1	1220	1	1	V	1	1	1	1	1			1.11	6.58	23.3	1718			1713	
														-						
						_														
			-					_												
													i		*				Mark 1	
								1				_								
						_		_							_					
				_																
								ļ												
															4					
															-					
										_						-				
																× 1				
								-						-	- 2	Maria Maria				
															1				. Joseph	
SAMPLE CONDITION UPON RI														MMENTS						
1. Containers Correct	-/	eport results to Dia	anna	Kilbu	rn 682	2-0844	or Ty	ler Wr	ight 68	33-006	8; ADE	Q La	ooratory	number 5	01-682-0955	5;				
2. COC & Labels Agree		harge time to fun	ction	coa	e 500	14												(-	1 6	
3. Received On Ice	Yes No																	13	4	
4. Temp (*C) Upon Receipt	1.90c																			
FOR COMPLETION BY L	AB ONLY									Y										

ARKANSAS DEPARTMENT OF ENVIRONMENTAL QUALITY CHAIN-OF-CUSTODY										
Date 4/14/18		Sampler (ANETH	STYDEBAK	ER			
Site Identification	Old Midland Prod									
Site Address	Hwy 10 Ola, AR									
Sample ID	Sample Remarks	Sample Remarks Time (hhmm) Latitude Longitude Lab-ID								
Mw-95 Mw-91)			1139	ĩ						
MW-91)			120	0						
	tody seal on each containe	er?: YES	S NO	_	els/COC agr	ee?: YES N	40			
Date/Time	Relinquished By Name/Title			Name/T	ived By					
4/24/2018	Elizabeth Studebalce	r, aco	logist	-	Jim Cra	rig FT	~			
Time 14p5	Signature And In		<i>J</i>	Signatu	te)	J				
Date	Name/Title			Name/T	Steph C	51 0	1			
4-24-2018		PTU		U	r Jest (k	dehr	hem Supo.			
Time 1548	Signature			Signatu	re \	1)1				
Date	Name/Tiple	-		Name/T	Title	1 Thet				
Bute				rume, r	nie -					
Time	Signature			Signatu	re					
Date	Name/Title			Name/T	itle	-				
	v Amo		Trains Title							
Time	Signature			Signatu	re					

Effective Date: 04/16/2018

Lab Contact Info:

ADEQ Laboratory and Monitoring Services

5301 Northshore Drive, North Little Rock, AR 72118

www.adeq.state.ar.us

Lessie Redican

Redican@adeq.state.ar.us

501-682-0937

Collector: Associates, FTN Project: Old Midland

Project Description: Old Midland 2018 1772-1784

Date and Time Received: 04/25/2018 16:08 Work Order Number: WO-180426-01

Case Narrative:

The following parameters were analyzed in the field upon collection by FTN Associates personnel:

pН

Specific Conductance

Turbidity

Water Temperature

Dissolved Oxygen

Ferrous Iron

Quality Control Excursions:

Anions Batch # AB-180427-002--The Matrix Spike/Matrix Spike Duplicate (MS/MSD) samples did not recover within acceptance criteria due to the high concentration of target analyte (Sulfate) in the parent sample, 2018-1772 (MW-20S). The MS/MSD recoveries were qualified as "MBA" which means "Masked by Analyte." No sample results for sulfate were qualified as a result of these failures.

Sample Receipt Conditions:

Condition	Response	Comment
Is the COC completed properly?	Yes	
Temperature on Receipt	3.3°C	
Received on Ice	Yes	
Containers are Correct	Yes	
Custody Seals	Yes	
COC/Labels Agree	Yes	

Data Qualifiers

Qualifier Flag	Description
MBA	Masked by Analyte

Laboratory Name: ADEQ Laboratory and Monitoring Services Email: Kilburn@adeq.state.ar.us

Contact Name: Kilburn, Dianna Phone: 501-682-0844

Lab Address: 5301 Northshore Drive North Little Rock, AR 72118 Fax:

Collector: Associates, FTN Site: MW-20S Work Order Number: WO-180426-01

Sample Classification: Special Project: Old Midland

Matrix: Water Collected: 4/24/2018 15:12

Sample Barcode: Sample Number: 2018-1772

Alkalinity as CaCO3 Method: EPA 310.2 (Rev. 1974) Analyst: KH

Aliquot #: 2018-1772-1-1 Batch Number: AB-180426-035

Analyte(s) Result Units Q Limit Dilution Date and Time
Alkalinity 99.9 mg/L 6 1 4/27/2018 10:11

Anions Method: EPA 300.0 (Rev.2.1, 1993) Analyst: PR

Aliquot #: 2018-1772-1-2 Batch Number: AB-180427-002

Reporting **Analysis** Result Units Q Limit **Dilution Date and Time** Analyte(s) 89.3 0.5 Chloride mg/L 1 4/27/2018 11:09 158 5 4/27/2018 16:24 Sulfate mg/L 2.5

Dissolved Oxygen Method: SM 4500-O G, 2011

Aliquot #: 2018-1772-1-5 Batch Number: AB-180501-015

Analyte(s)

Result
Units
Q
Limit
Dilution
Date and Time

0.580

mg/L

1 4/24/2018 15:09

Ferrous Iron Method: HACH Color disc/1,10 Phenanthroline

Aliquot #: 2018-1772-1-4 Batch Number: AB-180503-015

Analyte(s) Result Units Q Limit Dilution Date and Time
Iron (Ferrous) 2.00 mg/L 0.5 1 4/24/2018 15:09

ICP/MS Metals (Dissolved) Method: EPA 200.8 (Rev. 5.4, 1994) Analyst: PR

Aliquot #: 2018-1772-5-1 Batch Number: AB-180508-001

 Analyte(s)
 Result
 Units
 Q
 Limit
 Dilution
 Date and Time

 Iron
 1820
 ug/L
 5
 1
 5/8/2018
 12:38

Collector: Associates, FTN Site: MW-20S Work Order Number: WO-180426-01

Sample Classification: Special Project: Old Midland

Matrix: Water Collected: 4/24/2018 15:12

Sample Barcode: Sample Number: 2018-1772

Nitrate +Nitrite as N Method: SM 4500-NO3 F, 2011 Analyst: KH

Aliquot #: 2018-1772-1-3 Batch Number: AB-180426-034

Analyte(s)

Result
Units
Q
Limit
Dilution
Date and Time

0.050
Nitrite+Nitrate as Nitrogen

< 0.0500
mg/L
0.05
1
4/26/2018
14:14

pH Method: SM 4500-H+ B, 2000

Aliquot #: 2018-1772-1-6 Batch Number: AB-180501-014

 Analyte(s)
 Result
 Units
 Q
 Limit
 Dilution
 Date and Time

 pH
 6.40
 units
 1
 4/24/2018
 15:09

Specific Conductance Method: EPA 120.1, 1982

Aliquot #: 2018-1772-1-8 Batch Number: AB-180501-017

Analyte(s) Result Units Q Limit Dilution Date and Time
Specific Conductance 764 uS/cm 1 1 4/24/2018 15:09

Water Temperature Method: SM 2550 B, 2000

Aliquot #: 2018-1772-1-7 Batch Number: AB-180501-016

Analyte(s) Result Units Q Limit Dilution Date and Time
Water Temperature 25.1 °C 1 4/24/2018 15:09

Total Organic Carbon Method: SM 5310 C, 2011 Analyst: PR

Aliquot #: 2018-1772-2-1 Batch Number: AB-180426-002

Analyte(s)

Result
Units
Q
Limit
Dilution
Date and Time

7 total Organic Carbon

7 total Organic Carbon

Result
Units
Q
Limit
Dilution
Date and Time
1 1 4/27/2018 0:41

This analytical report must be reproduced in its entirety * = reported result it

Collector: Associates, FTN Site: MW-20S Work Order Number: WO-180426-01

Sample Classification: Special Project: Old Midland

Matrix: Water Collected: 4/24/2018 15:12

Sample Barcode: Sample Number: 2018-1772

Turbidity Method: EPA 2310 B, 2011

Aliquot #: 2018-1772-1-9 Batch Number: AB-180501-018

Analyte(s) Result Units Q Limit Dilution Date and Time
Turbidity 108 NTU 1 4/24/2018 15:09

Collector: Associates, FTN Site: MW-20D Work Order Number: WO-180426-01

Sample Classification: Special Project: Old Midland

Matrix: Water Collected: 4/24/2018 15:45

Sample Barcode: Sample Number: 2018-1773

Sample Baresde.

Alkalinity as CaCO3 Method: EPA 310.2 (Rev. 1974) Analyst: KH

Aliquot #: 2018-1773-1-1 Batch Number: AB-180426-035

Analyte(s) Result Units Q Limit Dilution Date and Time
Alkalinity 90.6 mg/L 6 1 4/27/2018 10:15

Anions Method: EPA 300.0 (Rev.2.1, 1993) Analyst: PR

Aliquot #: 2018-1773-1-2 Batch Number: AB-180427-002

Reporting **Analysis** Result Units Q Limit **Dilution Date and Time** Analyte(s) Chloride 62.2 0.5 4/27/2018 11:38 mg/L 1 141 2.5 5 4/27/2018 16:39 Sulfate mg/L

Dissolved Oxygen Method: SM 4500-O G, 2011

Aliquot #: 2018-1773-1-5 Batch Number: AB-180501-015

Analyte(s) Result Units Q Limit Dilution Date and Time

1.47 mg/L 1 4/24/2018 15:42

Ferrous Iron Method: HACH Color disc/1,10 Phenanthroline

Aliquot #: 2018-1773-1-4 Batch Number: AB-180503-015

Analyte(s) Result Units Q Limit Dilution Date and Time
Iron (Ferrous) 1.50 mg/L 0.5 1 4/24/2018 15:42

ICP/MS Metals (Total) Method: EPA 200.8 (Rev. 5.4, 1994) Analyst: PR

Aliquot #: 2018-1773-3-1 Batch Number: AB-180430-004

Analyte(s) Result Units Q Limit Dilution Date and Time
Iron 1940 ug/L 5 1 5/1/2018 0:16

Collector: Associates, FTN Site: MW-20D Work Order Number: WO-180426-01

Sample Classification: Special Project: Old Midland
Matrix: Water Collected: 4/24/2018 15:45

Sample Barcode: Sample Number: 2018-1773

Nitrate +Nitrite as N Method: SM 4500-NO3 F, 2011 Analyst: KH

Aliquot #: 2018-1773-1-3 Batch Number: AB-180426-034

Analyte(s)

Result
Units
Q
Limit
Dilution
Date and Time

Nitrite+Nitrate as Nitrogen

0.0521
mg/L
0.05
1
4/26/2018
14:24

pH Method: SM 4500-H+ B, 2000

Aliquot #: 2018-1773-1-6 Batch Number: AB-180501-014

 Analyte(s)
 Result
 Units
 Q
 Limit
 Dilution
 Date and Time

 pH
 6.21
 units
 1
 4/24/2018
 15:42

Specific Conductance Method: EPA 120.1, 1982

Aliquot #: 2018-1773-1-8 Batch Number: AB-180501-017

Analyte(s) Result Units Q Limit Dilution Date and Time
Specific Conductance 634 uS/cm 1 1 4/24/2018 15:42

Water Temperature Method: SM 2550 B, 2000

Aliquot #: 2018-1773-1-7 Batch Number: AB-180501-016

Analyte(s) Result Units Q Limit Dilution Date and Time
Water Temperature 21.0 °C 1 4/24/2018 15:42

Total Organic Carbon Method: SM 5310 C, 2011 Analyst: PR

Aliquot #: 2018-1773-2-1 Batch Number: AB-180426-002

Analyte(s) Result Units Q Limit Dilution Date and Time
Total Organic Carbon <1.00 mg/L 1 1 4/27/2018 0:59

^{* =} reported result has not been approved

Collector: Associates, FTN Site: MW-20D Work Order Number: WO-180426-01

Sample Classification: Special Project: Old Midland

Matrix: Water Collected: 4/24/2018 15:45

Sample Barcode: Sample Number: 2018-1773

Turbidity Method: EPA 2310 B, 2011

Aliquot #: 2018-1773-1-9 Batch Number: AB-180501-018

Analyte(s) Result Units Q Limit Dilution Date and Time
Turbidity 18.7 NTU 1 4/24/2018 15:42

Collector: Associates, FTN Site: MW-10D Work Order Number: WO-180426-01

Sample Classification: Special Project: Old Midland

Matrix: Water Collected: 4/24/2018 15:38

Sample Barcode: Sample Number: 2018-1774

Alkalinity as CaCO3 Method: EPA 310.2 (Rev. 1974) Analyst: KH

Aliquot #: 2018-1774-1-1 Batch Number: AB-180426-035

				Reporting		Analysis
Analyte(s)	Result	Units	Q	Limit	Dilution	Date and Time
Alkalinity	217	mg/L		6	1	4/27/2018 10:18

Anions Method: EPA 300.0 (Rev.2.1, 1993) Analyst: PR

Aliquot #: 2018-1774-1-2 Batch Number: AB-180427-002

				Reporting		Analysis
Analyte(s)	Result	Units	Q	Limit	Dilution	Date and Time
Chloride	51.9	mg/L		0.5	1	4/27/2018 11:45
Sulfate	2.57	mg/L		0.5	1	4/27/2018 11:45

Dissolved Oxygen Method: SM 4500-O G, 2011

Aliquot #: 2018-1774-1-5 Batch Number: AB-180501-015

				Reporting		Analysis
Analyte(s)	Result	Units	Q	Limit	Dilution	Date and Time
Dissolved Oxygen	0.880	mg/L			1	4/24/2018 15:36

Ferrous Iron Method: HACH Color disc/1,10 Phenanthroline

Aliquot #: 2018-1774-1-4 Batch Number: AB-180503-015

				Reporting		Analysis
Analyte(s)	Result	Units	Q	Limit	Dilution	Date and Time
Iron (Ferrous)	1.00	mg/L		0.5	1	4/24/2018 15:36

ICP/MS Metals (Total) Method: EPA 200.8 (Rev. 5.4, 1994) Analyst: PR

Aliquot #: 2018-1774-3-1 Batch Number: AB-180430-004

				Reporting		Analysis	
Analyte(s)	Result	Units	Q	Limit	Dilution	Date and Time	
Iron	1220	ug/L		5	1	5/1/2018 0:22	

Collector: Associates, FTN Site: MW-10D Work Order Number: WO-180426-01

Sample Classification: Special Project: Old Midland

Matrix: Water Collected: 4/24/2018 15:38

Sample Barcode: Sample Number: 2018-1774

Nitrate +Nitrite as N Method: SM 4500-NO3 F, 2011 Analyst: KH

Aliquot #: 2018-1774-1-3 Batch Number: AB-180426-034

Analyte(s)

Result
Units
Q
Limit
Dilution
Date and Time

0.050
Nitrite+Nitrate as Nitrogen

< 0.0500
mg/L
0.05
1
4/26/2018
14:25

pH Method: SM 4500-H+ B, 2000

Aliquot #: 2018-1774-1-6 Batch Number: AB-180501-014

Analyte(s) Result Units Q Limit Dilution Date and Time

PH 7.32 units 1 4/24/2018 15:36

Specific Conductance Method: EPA 120.1, 1982

Aliquot #: 2018-1774-1-8 Batch Number: AB-180501-017

Analyte(s) Result Units Q Limit Dilution Date and Time
Specific Conductance 501 uS/cm 1 1 4/24/2018 15:36

Water Temperature Method: SM 2550 B, 2000

Aliquot #: 2018-1774-1-7 Batch Number: AB-180501-016

Analyte(s) Result Units Q Limit Dilution Date and Time
Water Temperature 22.4 °C 1 4/24/2018 15:36

Total Organic Carbon Method: SM 5310 C, 2011 Analyst: PR

Aliquot #: 2018-1774-2-1 Batch Number: AB-180426-002

Analyte(s)
Result
Units
Q
Limit
Dilution
Date and Time
Total Organic Carbon

7.00
Result
Units
Q
Limit
Dilution
Date and Time
1.17
1.27/2018
1:17

^{* =} reported result has not been approved

Collector: Associates, FTN Site: MW-10D Work Order Number: WO-180426-01

Sample Classification: Special Project: Old Midland

Matrix: Water Collected: 4/24/2018 15:38

Sample Barcode: Sample Number: 2018-1774

Turbidity Method: EPA 2310 B, 2011

Aliquot #: 2018-1774-1-9 Batch Number: AB-180501-018

Analyte(s) Result Units Q Limit Dilution Date and Time
Turbidity 15.4 NTU 1 4/24/2018 15:36

Collector: Associates, FTN Site: MW-10S Work Order Number: WO-180426-01

Sample Classification: Special Project: Old Midland

Matrix: Water Collected: 4/24/2018 16:16

Sample Barcode: Sample Number: 2018-1775

Alkalinity as CaCO3 Method: EPA 310.2 (Rev. 1974) Analyst: KH

Aliquot #: 2018-1775-1-1 Batch Number: AB-180426-035

Analyte(s) Result Units Q Limit Dilution Date and Time
Alkalinity 160 mg/L 6 1 4/27/2018 10:19

Anions Method: EPA 300.0 (Rev.2.1, 1993) Analyst: PR

Aliquot #: 2018-1775-1-2 Batch Number: AB-180427-002

Reporting **Analysis** Result Units Q Limit **Dilution Date and Time** Analyte(s) Sulfate 361 2.5 5 4/27/2018 16:46 mg/L 223 2.5 5 4/27/2018 16:46 Chloride mg/L

Dissolved Oxygen Method: SM 4500-O G, 2011

Aliquot #: 2018-1775-1-5 Batch Number: AB-180501-015

Analyte(s) Result Units Q Limit Dilution Date and Time

Dissolved Oxygen 1.35 mg/L 1 4/24/2018 16:15

Ferrous Iron Method: HACH Color disc/1,10 Phenanthroline

Aliquot #: 2018-1775-1-4 Batch Number: AB-180503-015

 Analyte(s)
 Result
 Units
 Q
 Limit
 Dilution
 Date and Time

 Iron (Ferrous)
 <0.500</td>
 mg/L
 0.5
 1
 4/24/2018
 16:15

ICP/MS Metals (Total) Method: EPA 200.8 (Rev. 5.4, 1994) Analyst: PR

Aliquot #: 2018-1775-3-1 Batch Number: AB-180430-004

Analyte(s) Result Units Q Limit Dilution Date and Time
Iron 71.3 ug/L 5 1 5/1/2018 0:28

Collector: Associates, FTN Site: MW-10S Work Order Number: WO-180426-01

Sample Classification: Special Project: Old Midland

Matrix: Water Collected: 4/24/2018 16:16

Sample Barcode: Sample Number: 2018-1775

Nitrate +Nitrite as N Method: SM 4500-NO3 F, 2011 Analyst: KH

Aliquot #: 2018-1775-1-3 Batch Number: AB-180426-034

Analyte(s)

Result
Units
Q
Limit
Dilution
Date and Time

0.050
Nitrite+Nitrate as Nitrogen

< 0.0500
mg/L
0.05
1
4/26/2018
14:26

pH Method: SM 4500-H+ B, 2000

Aliquot #: 2018-1775-1-6 Batch Number: AB-180501-014

 Analyte(s)
 Result
 Units
 Q
 Limit
 Dilution
 Date and Time

 pH
 6.19
 units
 1
 4/24/2018 16:15

Specific Conductance Method: EPA 120.1, 1982

Aliquot #: 2018-1775-1-8 Batch Number: AB-180501-017

Analyte(s) Result Units Q Limit Dilution Date and Time
Specific Conductance 1260 uS/cm 1 1 4/24/2018 16:15

Water Temperature Method: SM 2550 B, 2000

Aliquot #: 2018-1775-1-7 Batch Number: AB-180501-016

Analyte(s)ResultUnitsQLimitDilutionDate and TimeWater Temperature20.7°C14/24/2018 16:15

Total Organic Carbon Method: SM 5310 C, 2011 Analyst: PR

Aliquot #: 2018-1775-2-1 Batch Number: AB-180426-002

Analyte(s)

Result
Units
Q
Limit
Dilution
Date and Time

7 total Organic Carbon

7 total Organic Carbon

Nesult
Units
Q
Limit
Dilution
Date and Time
1 1 4/27/2018 1:37

This analytical report must be reproduced in its entirety

Collector: Associates, FTN Site: MW-10S Work Order Number: WO-180426-01

Sample Classification: Special Project: Old Midland

Matrix: Water Collected: 4/24/2018 16:16

Sample Barcode: Sample Number: 2018-1775

Turbidity Method: EPA 2310 B, 2011

Aliquot #: 2018-1775-1-9 Batch Number: AB-180501-018

Analyte(s) Result Units Q Limit Dilution Date and Time
Turbidity 3.53 NTU 1 4/24/2018 16:15

Collector: Associates, FTN Site: EB-6 Work Order Number: WO-180426-01

Sample Classification: Special Project: Old Midland

Matrix: Water Collected: 4/24/2018 17:00

Sample Barcode: Sample Number: 2018-1776

Alkalinity as CaCO3 Method: EPA 310.2 (Rev. 1974) Analyst: KH

Aliquot #: 2018-1776-1-1 Batch Number: AB-180426-035

Analyte(s) Result Units Q Limit Dilution Date and Time
Alkalinity <6.00 mg/L 6 1 4/27/2018 10:34

Anions Method: EPA 300.0 (Rev.2.1, 1993) Analyst: PR

Aliquot #: 2018-1776-1-2 Batch Number: AB-180427-002

Reporting **Analysis** Result Units Q Limit **Dilution Date and Time** Analyte(s) Chloride < 0.500 0.5 4/27/2018 12:00 mg/L 1 < 0.500 0.5 4/27/2018 12:00 Sulfate mg/L

ICP/MS Metals (Total) Method: EPA 200.8 (Rev. 5.4, 1994) Analyst: PR

Aliquot #: 2018-1776-3-1 Batch Number: AB-180430-004

Analyte(s) Result Units Q Limit Dilution Date and Time

Iron <5.00 ug/L 5 1 5/1/2018 1:20

Nitrate +Nitrite as N Method: SM 4500-NO3 F, 2011 Analyst: KH

Aliquot #: 2018-1776-1-3 Batch Number: AB-180426-034

Analyte(s)

Result
Units
Q
Limit
Dilution
Date and Time

Nitrite+Nitrate as Nitrogen

<-0.0500
mg/L
0.05
1
4/26/2018
14:27

Total Organic Carbon Method: SM 5310 C, 2011 Analyst: PR

Aliquot #: 2018-1776-2-1 Batch Number: AB-180426-002

Analyte(s) Result Units Q Limit Dilution Date and Time
Total Organic Carbon <1.00 mg/L 1 1 4/27/2018 1:56

Collector: Associates, FTN Site: EB-5 Work Order Number: WO-180426-01

Sample Classification: Special Project: Old Midland Matrix: Water Collected: 4/24/2018 17:18

Sample Barcode: Sample Number: 2018-1777

Alkalinity as CaCO3 Method: EPA 310.2 (Rev. 1974) Analyst: KH

Aliquot #: 2018-1777-1-1 Batch Number: AB-180426-035

Analyte(s) Result Units Q Limit Dilution Date and Time

Alkalinity <6.00 mg/L 6 1 4/27/2018 10:22

Anions Method: EPA 300.0 (Rev.2.1, 1993) Analyst: PR

Aliquot #: 2018-1777-1-2 Batch Number: AB-180427-002

Reporting **Analysis** Result Units Q Limit **Dilution Date and Time** Analyte(s) Chloride < 0.500 0.5 4/27/2018 12:22 mg/L 1 < 0.500 0.5 4/27/2018 12:22 Sulfate mg/L

ICP/MS Metals (Total) Method: EPA 200.8 (Rev. 5.4, 1994) Analyst: PR

Aliquot #: 2018-1777-3-1 Batch Number: AB-180430-004

Analyte(s) Result Units Q Limit Dilution Date and Time

Iron <5.00 ug/L 5 1 5/1/2018 1:26

Nitrate +Nitrite as N Method: SM 4500-NO3 F, 2011 Analyst: KH

Aliquot #: 2018-1777-1-3 Batch Number: AB-180426-034

Analyte(s) Result Units Q Limit Dilution Date and Time
Nitrite+Nitrate as Nitrogen <0.0500 mg/L 0.05 1 4/26/2018 14:28

Total Organic Carbon Method: SM 5310 C, 2011 Analyst: PR

Aliquot #: 2018-1777-2-1 Batch Number: AB-180426-002

Analyte(s) Result Units Q Limit Dilution Date and Time
Total Organic Carbon <1.00 mg/L 1 1 4/27/2018 2:14

This analytical report must be reproduced in its entirety

Collector: Associates, FTN Site: MW-19S Work Order Number: WO-180426-01

Sample Classification: Special Project: Old Midland

Matrix: Water Collected: 4/25/2018 9:10

Sample Barcode: Sample Number: 2018-1778

Alkalinity as CaCO3 Method: EPA 310.2 (Rev. 1974) Analyst: KH

Aliquot #: 2018-1778-1-1 Batch Number: AB-180426-035

Analyte(s) Result Units Q Limit Dilution Date and Time
Alkalinity 88.7 mg/L 6 1 4/27/2018 10:23

Anions Method: EPA 300.0 (Rev.2.1, 1993) Analyst: PR

Aliquot #: 2018-1778-1-2 Batch Number: AB-180427-002

Reporting **Analysis** Result Units Q Limit **Dilution Date and Time** Analyte(s) Chloride 133 5 4/27/2018 16:54 mg/L 2.5 37.6 0.5 1 4/27/2018 12:29 Sulfate mg/L

Dissolved Oxygen Method: SM 4500-O G, 2011

Aliquot #: 2018-1778-1-5 Batch Number: AB-180501-015

Analyte(s)

Result
Units
Q
Limit
Dilution
Date and Time

0.630
mg/L

1 4/25/2018
9:08

Ferrous Iron Method: HACH Color disc/1,10 Phenanthroline

Aliquot #: 2018-1778-1-4 Batch Number: AB-180503-015

 Analyte(s)
 Result
 Units
 Q
 Limit
 Dilution
 Date and Time

 Iron (Ferrous)
 <0.500</td>
 mg/L
 0.5
 1
 4/25/2018
 9:08

ICP/MS Metals (Total) Method: EPA 200.8 (Rev. 5.4, 1994) Analyst: PR

Aliquot #: 2018-1778-3-1 Batch Number: AB-180430-004

 Analyte(s)
 Result
 Units
 Q
 Limit
 Dilution
 Date and Time

 Iron
 109
 ug/L
 5
 1
 5/1/2018
 1:32

Collector: Associates, FTN Site: MW-19S Work Order Number: WO-180426-01

Sample Classification: Special Project: Old Midland

Matrix: Water Collected: 4/25/2018 9:10

Sample Barcode: Sample Number: 2018-1778

Nitrate +Nitrite as N Method: SM 4500-NO3 F, 2011 Analyst: KH

Aliquot #: 2018-1778-1-3 Batch Number: AB-180426-034

Analyte(s)

Result
Units
Q
Limit
Dilution
Date and Time

0.050
Nitrite+Nitrate as Nitrogen

< 0.0500
mg/L
0.05
1
4/26/2018
14:34

pH Method: SM 4500-H+ B, 2000

Aliquot #: 2018-1778-1-6 Batch Number: AB-180501-014

Analyte(s) Result Units Q Limit Dilution Date and Time

pH 5.73 units 1 4/25/2018 9:08

Specific Conductance Method: EPA 120.1, 1982

Aliquot #: 2018-1778-1-8 Batch Number: AB-180501-017

Analyte(s) Result Units Q Limit Dilution Date and Time
Specific Conductance 650 uS/cm 1 1 4/25/2018 9:08

Water Temperature Method: SM 2550 B, 2000

Aliquot #: 2018-1778-1-7 Batch Number: AB-180501-016

Analyte(s) Result Units Q Limit Dilution Date and Time
Water Temperature 17.5 °C 1 4/25/2018 9:08

Total Organic Carbon Method: SM 5310 C, 2011 Analyst: PR

Aliquot #: 2018-1778-2-1 Batch Number: AB-180426-002

 Analyte(s)
 Result
 Units
 Q
 Limit
 Dilution
 Date and Time

 Total Organic Carbon
 <1.00</td>
 mg/L
 1
 1
 4/27/2018
 3:09

This analytical report must be reproduced in its entirety

Collector: Associates, FTN Site: MW-19S Work Order Number: WO-180426-01

Sample Classification: Special Project: Old Midland

Matrix: Water Collected: 4/25/2018 9:10

Sample Barcode: Sample Number: 2018-1778

Turbidity Method: EPA 2310 B, 2011

Aliquot #: 2018-1778-1-9 Batch Number: AB-180501-018

 Analyte(s)
 Result
 Units
 Q
 Limit
 Dilution
 Date and Time

 Turbidity
 5.95
 NTU
 1
 4/25/2018
 9:08

Collector: Associates, FTN Site: MW-19D Work Order Number: WO-180426-01

Sample Classification: Special Project: Old Midland

Matrix: Water Collected: 4/25/2018 9:47

Sample Barcode: Sample Number: 2018-1779

Alkalinity as CaCO3 Method: EPA 310.2 (Rev. 1974) Analyst: KH

Aliquot #: 2018-1779-1-1 Batch Number: AB-180426-035

Analyte(s) Result Units Q Limit Dilution Date and Time

Alkalinity 104 mg/L 6 1 4/27/2018 10:24

Anions Method: EPA 300.0 (Rev.2.1, 1993) Analyst: PR

Aliquot #: 2018-1779-1-2 Batch Number: AB-180427-002

				Reporting		Analysis
Analyte(s)	Result	Units	Q	Limit	Dilution	Date and Time
Chloride	89.1	mg/L		0.5	1	4/27/2018 12:37
Sulfate	51.8	mg/L		0.5	1	4/27/2018 12:37

Dissolved Oxygen Method: SM 4500-O G, 2011

Aliquot #: 2018-1779-1-5 Batch Number: AB-180501-015

				Reporting		Analysis
Analyte(s)	Result	Units	Q	Limit	Dilution	Date and Time
Dissolved Oxygen	0.310	mg/L			1	4/25/2018 9:45

Ferrous Iron Method: HACH Color disc/1,10 Phenanthroline

Aliquot #: 2018-1779-1-4 Batch Number: AB-180503-015

			Reporting	Analysis		
Analyte(s)	Result	Units	Q	Limit	Dilution	Date and Time
Iron (Ferrous)	1.50	mg/L		0.5	1	4/25/2018 9:45

ICP/MS Metals (Total) Method: EPA 200.8 (Rev. 5.4, 1994) Analyst: PR

Aliquot #: 2018-1779-3-1 Batch Number: AB-180430-004

			Reporting	Analysis		
Analyte(s)	Result	Units	Q	Limit	Dilution	Date and Time
Iron	2640	ug/L		5	1	5/1/2018 1:38

Collector: Associates, FTN Site: MW-19D Work Order Number: WO-180426-01

Sample Classification: Special Project: Old Midland

Matrix: Water Collected: 4/25/2018 9:47

Sample Barcode: Sample Number: 2018-1779

Nitrate +Nitrite as N Method: SM 4500-NO3 F, 2011 Analyst: KH

Aliquot #: 2018-1779-1-3 Batch Number: AB-180426-034

Analyte(s)

Result
Units
Q
Limit
Dilution
Date and Time

Nitrite+Nitrate as Nitrogen

0.0662
mg/L
0.05
1
4/26/2018
14:31

pH Method: SM 4500-H+ B, 2000

Aliquot #: 2018-1779-1-6 Batch Number: AB-180501-014

 Analyte(s)
 Result
 Units
 Q
 Limit
 Dilution
 Date and Time

 pH
 6.33
 units
 1
 4/25/2018
 9:45

Specific Conductance Method: EPA 120.1, 1982

Aliquot #: 2018-1779-1-8 Batch Number: AB-180501-017

Analyte(s) Result Units Q Limit Dilution Date and Time
Specific Conductance 570 uS/cm 1 1 4/25/2018 9:45

Water Temperature Method: SM 2550 B, 2000

Aliquot #: 2018-1779-1-7 Batch Number: AB-180501-016

Analyte(s)

Result
Units
Q
Limit
Dilution
Date and Time

Water Temperature

15.6
°C
1
4/25/2018
9:45

Total Organic Carbon Method: SM 5310 C, 2011 Analyst: PR

Aliquot #: 2018-1779-2-1 Batch Number: AB-180426-002

Analyte(s) Result Units Q Limit Dilution Date and Time
Total Organic Carbon <1.00 mg/L 1 1 4/27/2018 3:27

^{* =} reported result has not been approved

Collector: Associates, FTN Site: MW-19D Work Order Number: WO-180426-01

Sample Classification: Special Project: Old Midland

Matrix: Water Collected: 4/25/2018 9:47

Sample Barcode: Sample Number: 2018-1779

Turbidity Method: EPA 2310 B, 2011

Aliquot #: 2018-1779-1-9 Batch Number: AB-180501-018

 Analyte(s)
 Result
 Units
 Q
 Limit
 Dilution
 Date and Time

 Turbidity
 13.2
 NTU
 1
 4/25/2018
 9:45

Collector: Associates, FTN Site: RW-6 Work Order Number: WO-180426-01

Sample Classification: Special Project: Old Midland

Matrix: Water Collected: 4/25/2018 11:51

Sample Barcode: Sample Number: 2018-1780

Alkalinity as CaCO3 Method: EPA 310.2 (Rev. 1974) Analyst: KH

Aliquot #: 2018-1780-1-1 Batch Number: AB-180426-035

Analyte(s) Result Units Q Limit Dilution Date and Time
Alkalinity 144 mg/L 6 1 4/27/2018 10:25

Anions Method: EPA 300.0 (Rev.2.1, 1993) Analyst: PR

Aliquot #: 2018-1780-1-2 Batch Number: AB-180427-002

Reporting **Analysis** Result Units Q Limit **Dilution Date and Time** Analyte(s) Sulfate 28.0 0.5 4/27/2018 12:44 mg/L 1 106 2.5 5 4/27/2018 17:01 Chloride mg/L

Dissolved Oxygen Method: SM 4500-O G, 2011

Aliquot #: 2018-1780-1-5 Batch Number: AB-180501-015

Analyte(s) Result Units Q Limit Dilution Date and Time

Dissolved Oxygen 0.430 mg/L 1 4/25/2018 11:49

Ferrous Iron Method: HACH Color disc/1,10 Phenanthroline

Aliquot #: 2018-1780-1-4 Batch Number: AB-180503-015

Analyte(s) Result Units Q Limit Dilution Date and Time
Iron (Ferrous) 0.500 mg/L 0.5 1 4/25/2018 11:49

ICP/MS Metals (Total) Method: EPA 200.8 (Rev. 5.4, 1994) Analyst: PR

Aliquot #: 2018-1780-3-1 Batch Number: AB-180430-004

Analyte(s) Result Units Q Limit Dilution Date and Time
Iron 1640 ug/L 5 1 5/1/2018 1:43

Collector: Associates, FTN Site: RW-6 Work Order Number: WO-180426-01

Sample Classification: Special Project: Old Midland
Matrix: Water Collected: 4/25/2018 11:51

Sample Barcode: Sample Number: 2018-1780

Nitrate +Nitrite as N Method: SM 4500-NO3 F, 2011 Analyst: KH

Aliquot #: 2018-1780-1-3 Batch Number: AB-180426-034

Analyte(s)

Result
Units
Q
Limit
Dilution
Date and Time

Value 1.005

Analysis

Analyte(s)

Reporting
Analysis

Analyte(s)

Result
Units
Q
Limit
Dilution
Date and Time

4/26/2018
14:32

pH Method: SM 4500-H+ B, 2000

Aliquot #: 2018-1780-1-6 Batch Number: AB-180501-014

 Analyte(s)
 Result
 Units
 Q
 Limit
 Dilution
 Date and Time

 pH
 6.22
 units
 1
 4/25/2018
 11:49

Specific Conductance Method: EPA 120.1, 1982

Aliquot #: 2018-1780-1-8 Batch Number: AB-180501-017

Analyte(s) Result Units Q Limit Dilution Date and Time
Specific Conductance 640 uS/cm 1 1 4/25/2018 11:49

Water Temperature Method: SM 2550 B, 2000

Aliquot #: 2018-1780-1-7 Batch Number: AB-180501-016

Analyte(s)

Result
Units
Q
Limit
Dilution
Date and Time

Vater Temperature

15.0
°C
1 4/25/2018 11:49

Total Organic Carbon Method: SM 5310 C, 2011 Analyst: PR

Aliquot #: 2018-1780-2-1 Batch Number: AB-180427-001

Analyte(s) Result Units Q Limit Dilution Date and Time

Total Organic Carbon 1.15 mg/L 1 1 4/27/2018 8:40

Collector: Associates, FTN Site: RW-6 Work Order Number: WO-180426-01

Sample Classification: Special Project: Old Midland

Matrix: Water Collected: 4/25/2018 11:51

Sample Barcode: Sample Number: 2018-1780

Turbidity Method: EPA 2310 B, 2011

Aliquot #: 2018-1780-1-9 Batch Number: AB-180501-018

Analyte(s) Result Units Q Limit Dilution Date and Time
Turbidity 19.2 NTU 1 4/25/2018 11:49

Collector: Associates, FTN Site: MW-5S Work Order Number: WO-180426-01

Sample Classification: Special Project: Old Midland

Matrix: Water Collected: 4/25/2018 8:53

Sample Barcode: Sample Number: 2018-1781

Alkalinity as CaCO3 Method: EPA 310.2 (Rev. 1974) Analyst: KH

Aliquot #: 2018-1781-1-1 Batch Number: AB-180426-035

Analyte(s) Result Units Q Limit Dilution Date and Time
Alkalinity 184 mg/L 6 1 4/27/2018 10:26

Anions Method: EPA 300.0 (Rev.2.1, 1993) Analyst: PR

Aliquot #: 2018-1781-1-2 Batch Number: AB-180427-002

				Reporting		Analysis
Analyte(s)	Result	Units	Q	Limit	Dilution	Date and Time
Sulfate	29.0	mg/L		0.5	1	4/27/2018 12:51
Chloride	35.1	mg/L		0.5	1	4/27/2018 12:51

Dissolved Oxygen Method: SM 4500-O G, 2011

Aliquot #: 2018-1781-1-5 Batch Number: AB-180501-015

				Reporting		Analysis
Analyte(s)	Result	Units	Q	Limit	Dilution	Date and Time
Dissolved Oxygen	0.290	mg/L			1	4/25/2018 8:51

Ferrous Iron Method: HACH Color disc/1,10 Phenanthroline

Aliquot #: 2018-1781-1-4 Batch Number: AB-180503-015

				Analysis		
Analyte(s)	Result	Units	Q	Limit	Dilution	Date and Time
Iron (Ferrous)	<0.500	mg/L		0.5	1	4/25/2018 8:51

ICP/MS Metals (Total) Method: EPA 200.8 (Rev. 5.4, 1994) Analyst: PR

Aliquot #: 2018-1781-3-1 Batch Number: AB-180430-004

			Reporting	Analysis		
Analyte(s)	Result	Units	Q	Limit	Dilution	Date and Time
Iron	9.31	ug/L		5	1	5/1/2018 1:49

Collector: Associates, FTN Site: MW-5S Work Order Number: WO-180426-01

Sample Classification: Special Project: Old Midland

Matrix: Water Collected: 4/25/2018 8:53

Sample Barcode: Sample Number: 2018-1781

Nitrate +Nitrite as N Method: SM 4500-NO3 F, 2011 Analyst: KH

Aliquot #: 2018-1781-1-3 Batch Number: AB-180426-034

Analyte(s)

Result
Units
Q
Limit
Dilution
Date and Time

0.050
Nitrite+Nitrate as Nitrogen

< 0.0500
mg/L
0.05
1
4/26/2018
14:33

pH Method: SM 4500-H+ B, 2000

Aliquot #: 2018-1781-1-6 Batch Number: AB-180501-014

Analyte(s) Result Units Q Limit Dilution Date and Time
pH 6.45 units 1 4/25/2018 8:51

Specific Conductance Method: EPA 120.1, 1982

Aliquot #: 2018-1781-1-8 Batch Number: AB-180501-017

Analyte(s) Result Units Q Limit Dilution Date and Time
Specific Conductance 441 uS/cm 1 1 4/25/2018 8:51

Water Temperature Method: SM 2550 B, 2000

Aliquot #: 2018-1781-1-7 Batch Number: AB-180501-016

Analyte(s) Result Units Q Limit Dilution Date and Time
Water Temperature 15.4 °C 1 4/25/2018 8:51

Total Organic Carbon Method: SM 5310 C, 2011 Analyst: PR

Aliquot #: 2018-1781-2-1 Batch Number: AB-180427-001

 Analyte(s)
 Result
 Units
 Q
 Limit
 Dilution
 Date and Time

 Total Organic Carbon
 <1.00</td>
 mg/L
 1
 1
 4/27/2018
 8:58

This analytical report must be reproduced in its entirety

Collector: Associates, FTN Site: MW-5S Work Order Number: WO-180426-01

Sample Classification: Special Project: Old Midland

Matrix: Water Collected: 4/25/2018 8:53

Sample Barcode: Sample Number: 2018-1781

Turbidity Method: EPA 2310 B, 2011

Aliquot #: 2018-1781-1-9 Batch Number: AB-180501-018

 Analyte(s)
 Result
 Units
 Q
 Limit
 Dilution
 Date and Time

 Turbidity
 1.39
 NTU
 1
 4/25/2018
 8:51

Collector: Associates, FTN Site: MW-1S Work Order Number: WO-180426-01

Sample Classification: Special Project: Old Midland

Matrix: Water Collected: 4/25/2018 10:38

Sample Barcode: Sample Number: 2018-1782

Alkalinity as CaCO3 Method: EPA 310.2 (Rev. 1974) Analyst: KH

Aliquot #: 2018-1782-1-1 Batch Number: AB-180426-035

Analyte(s) Result Units Q Limit Dilution Date and Time

Alkalinity 21.2 mg/L 6 1 4/27/2018 10:27

Anions Method: EPA 300.0 (Rev.2.1, 1993) Analyst: PR

Aliquot #: 2018-1782-1-2 Batch Number: AB-180427-002

Reporting **Analysis** Analyte(s) Result Units Q Limit **Dilution Date and Time** Chloride 43.4 0.5 4/27/2018 12:59 mg/L 1 Sulfate 1.77 0.5 1 4/27/2018 12:59 mg/L

Dissolved Oxygen Method: SM 4500-O G, 2011

Aliquot #: 2018-1782-1-5 Batch Number: AB-180501-015

Analyte(s) Result Units Q Limit Dilution Date and Time

2.30 mg/L 1 4/25/2018 10:36

Ferrous Iron Method: HACH Color disc/1,10 Phenanthroline

Aliquot #: 2018-1782-1-4 Batch Number: AB-180503-015

 Analyte(s)
 Result
 Units
 Q
 Limit
 Dilution
 Date and Time

 Iron (Ferrous)
 <0.500</td>
 mg/L
 0.5
 1
 4/25/2018 10:36

ICP/MS Metals (Total) Method: EPA 200.8 (Rev. 5.4, 1994) Analyst: PR

Aliquot #: 2018-1782-3-1 Batch Number: AB-180509-008

Analyte(s) Result Units Q Limit Dilution Date and Time
Iron 22.9 ug/L 5 1 5/9/2018 14:14

Collector: Associates, FTN Site: MW-1S Work Order Number: WO-180426-01

Sample Classification: Special Project: Old Midland

Matrix: Water Collected: 4/25/2018 10:38

Sample Barcode: Sample Number: 2018-1782

Nitrate +Nitrite as N Method: SM 4500-NO3 F, 2011 Analyst: KH

Aliquot #: 2018-1782-1-3 Batch Number: AB-180426-034

Analyte(s)

Result
Units
Q
Limit
Dilution
Date and Time

Nitrite+Nitrate as Nitrogen

0.238
mg/L
0.05
1
4/26/2018
14:39

pH Method: SM 4500-H+ B, 2000

Aliquot #: 2018-1782-1-6 Batch Number: AB-180501-014

Analyte(s) Result Units Q Limit Dilution Date and Time

pH 5.52 units 1 4/25/2018 10:36

Specific Conductance Method: EPA 120.1, 1982

Aliquot #: 2018-1782-1-8 Batch Number: AB-180501-017

Analyte(s) Result Units Q Limit Dilution Date and Time
Specific Conductance 170 uS/cm 1 1 4/25/2018 10:36

Water Temperature Method: SM 2550 B, 2000

Aliquot #: 2018-1782-1-7 Batch Number: AB-180501-016

Analyte(s)ResultUnitsQLimitDilutionDate and TimeWater Temperature18.7°C14/25/201810:36

Total Organic Carbon Method: SM 5310 C, 2011 Analyst: PR

Aliquot #: 2018-1782-2-1 Batch Number: AB-180427-001

Analyte(s) Result Units Q Limit Dilution Date and Time

Total Organic Carbon <1.00 mg/L 1 1 4/27/2018 9:16

This analytical report must be reproduced in its entirety

Collector: Associates, FTN Site: MW-1S Work Order Number: WO-180426-01

Sample Classification: Special Project: Old Midland

Matrix: Water Collected: 4/25/2018 10:38

Sample Barcode: Sample Number: 2018-1782

Turbidity Method: EPA 2310 B, 2011

Aliquot #: 2018-1782-1-9 Batch Number: AB-180501-018

Analyte(s) Result Units Q Limit Dilution Date and Time
Turbidity 0.840 NTU 1 4/25/2018 10:36

Collector: Associates, FTN Site: MW-1D Work Order Number: WO-180426-01

Sample Classification: Special Project: Old Midland

Matrix: Water Collected: 4/25/2018 11:49

Sample Barcode: Sample Number: 2018-1783

Alkalinity as CaCO3 Method: EPA 310.2 (Rev. 1974) Analyst: KH

Aliquot #: 2018-1783-1-1 Batch Number: AB-180426-035

Analyte(s) Result Units Q Limit Dilution Date and Time

Alkalinity 173 mg/L 6 1 4/27/2018 10:32

Anions Method: EPA 300.0 (Rev.2.1, 1993) Analyst: PR

Aliquot #: 2018-1783-1-2 Batch Number: AB-180427-002

Reporting **Analysis** Result Units Q Limit **Dilution Date and Time** Analyte(s) Chloride 6.38 0.5 4/27/2018 13:06 mg/L 1 1.25 0.5 1 4/27/2018 13:06 Sulfate mg/L

Dissolved Oxygen Method: SM 4500-O G, 2011

Aliquot #: 2018-1783-1-5 Batch Number: AB-180501-015

Analyte(s) Result Units Q Limit Dilution Date and Time

Dissolved Oxygen 2.68 mg/L 1 4/25/2018 11:47

Ferrous Iron Method: HACH Color disc/1,10 Phenanthroline

Aliquot #: 2018-1783-1-4 Batch Number: AB-180503-015

 Analyte(s)
 Result
 Units
 Q
 Limit
 Dilution
 Date and Time

 Iron (Ferrous)
 <0.500</td>
 mg/L
 0.5
 1
 4/25/2018
 11:47

ICP/MS Metals (Total) Method: EPA 200.8 (Rev. 5.4, 1994) Analyst: PR

Aliquot #: 2018-1783-3-1 Batch Number: AB-180509-008

 Analyte(s)
 Result
 Units
 Q
 Limit
 Dilution
 Date and Time

 Iron
 205
 ug/L
 5
 1
 5/9/2018
 14:19

Collector: Associates, FTN Site: MW-1D Work Order Number: WO-180426-01

Sample Classification: Special Project: Old Midland

Matrix: Water Collected: 4/25/2018 11:49

Sample Barcode: Sample Number: 2018-1783

Nitrate +Nitrite as N Method: SM 4500-NO3 F, 2011 Analyst: KH

Aliquot #: 2018-1783-1-3 Batch Number: AB-180426-034

Analyte(s)

Result
Units
Q
Limit
Dilution
Date and Time

Nitrite+Nitrate as Nitrogen

0.106
mg/L
0.05
1
4/26/2018
14:40

pH Method: SM 4500-H+ B, 2000

Aliquot #: 2018-1783-1-6 Batch Number: AB-180501-014

 Analyte(s)
 Result
 Units
 Q
 Limit
 Dilution
 Date and Time

 pH
 7.00
 units
 1
 4/25/2018
 11:47

Specific Conductance Method: EPA 120.1, 1982

Aliquot #: 2018-1783-1-8 Batch Number: AB-180501-017

Analyte(s) Result Units Q Limit Dilution Date and Time
Specific Conductance 288 uS/cm 1 1 4/25/2018 11:47

Water Temperature Method: SM 2550 B, 2000

Aliquot #: 2018-1783-1-7 Batch Number: AB-180501-016

Analyte(s)

Result
Units
Q
Limit
Dilution
Date and Time

Vater Temperature

14.7
°C
1 4/25/2018 11:47

Total Organic Carbon Method: SM 5310 C, 2011 Analyst: PR

Aliquot #: 2018-1783-2-1 Batch Number: AB-180427-001

Analyte(s)

Result
Units
Q
Limit
Dilution
Date and Time

7 total Organic Carbon

7 total Organic Carbon

Nesult
Units
Q
Limit
Dilution
Date and Time
1 total Organic Carbon

1 1 4/27/2018 9:35

This analytical report must be reproduced in its entirety

Collector: Associates, FTN Site: MW-1D Work Order Number: WO-180426-01

Sample Classification: Special Project: Old Midland

Matrix: Water Collected: 4/25/2018 11:49

Sample Barcode: Sample Number: 2018-1783

Turbidity Method: EPA 2310 B, 2011

Aliquot #: 2018-1783-1-9 Batch Number: AB-180501-018

Analyte(s) Result Units Q Limit Dilution Date and Time
Turbidity 0.820 NTU 1 4/25/2018 11:47

Collector: Associates, FTN Site: RW-7 Work Order Number: WO-180426-01

Sample Classification: Special Project: Old Midland

Matrix: Water Collected: 4/25/2018 13:24

Sample Barcode: Sample Number: 2018-1784

Alkalinity as CaCO3 Method: EPA 310.2 (Rev. 1974) Analyst: KH

Aliquot #: 2018-1784-1-1 Batch Number: AB-180426-035

Analyte(s) Result Units Q Limit Dilution Date and Time

Alkalinity 263 mg/L 6 1 4/27/2018 10:33

Anions Method: EPA 300.0 (Rev.2.1, 1993) Analyst: PR

Aliquot #: 2018-1784-1-2 Batch Number: AB-180427-002

Reporting **Analysis** Result Units Q Limit **Dilution Date and Time** Analyte(s) Sulfate 6.31 0.5 4/27/2018 13:13 mg/L 1 2.5 5 4/27/2018 17:08 Chloride 130 mg/L

Dissolved Oxygen Method: SM 4500-O G, 2011

Aliquot #: 2018-1784-1-5 Batch Number: AB-180501-015

Analyte(s) Result Units Q Limit Dilution Date and Time

Dissolved Oxygen 0.180 mg/L 1 4/25/2018 13:22

Ferrous Iron Method: HACH Color disc/1,10 Phenanthroline

Aliquot #: 2018-1784-1-4 Batch Number: AB-180503-016

Analyte(s) Result Units Q Limit Dilution Date and Time
Iron (Ferrous) 2.50 mg/L 0.5 1 4/25/2018 13:22

ICP/MS Metals (Total) Method: EPA 200.8 (Rev. 5.4, 1994) Analyst: PR

Aliquot #: 2018-1784-3-1 Batch Number: AB-180509-008

Analyte(s) Result Units Q Limit Dilution Date and Time
Iron 5080 ug/L 50 10 5/10/2018 11:21

Collector: Associates, FTN Site: RW-7 Work Order Number: WO-180426-01

Sample Classification: Special Project: Old Midland

Matrix: Water Collected: 4/25/2018 13:24

Sample Barcode: Sample Number: 2018-1784

Nitrate +Nitrite as N Method: SM 4500-NO3 F, 2011 Analyst: KH

Aliquot #: 2018-1784-1-3 Batch Number: AB-180426-034

Analyte(s)

Result
Units
Q
Limit
Dilution
Date and Time

Nitrite+Nitrate as Nitrogen

0.0734
mg/L
0.05
1
4/26/2018
14:41

pH Method: SM 4500-H+ B, 2000

Aliquot #: 2018-1784-1-6 Batch Number: AB-180501-014

 Analyte(s)
 Result
 Units
 Q
 Limit
 Dilution
 Date and Time

 pH
 6.82
 units
 1
 4/25/2018
 13:22

Specific Conductance Method: EPA 120.1, 1982

Aliquot #: 2018-1784-1-8 Batch Number: AB-180501-017

Analyte(s) Result Units Q Limit Dilution Date and Time
Specific Conductance 900 uS/cm 1 1 4/25/2018 13:22

Water Temperature Method: SM 2550 B, 2000

Aliquot #: 2018-1784-1-7 Batch Number: AB-180501-016

Analyte(s)

Result
Units
Q
Limit
Dilution
Date and Time

15.3
°C
1 4/25/2018 13:22

Total Organic Carbon Method: SM 5310 C, 2011 Analyst: PR

Aliquot #: 2018-1784-2-1 Batch Number: AB-180427-001

Analyte(s) Result Units Q Limit Dilution Date and Time
Total Organic Carbon 1.34 mg/L 1 1 4/27/2018 9:53

Collector: Associates, FTN Site: RW-7 Work Order Number: WO-180426-01

Sample Classification: Special Project: Old Midland

Matrix: Water Collected: 4/25/2018 13:24

Sample Barcode: Sample Number: 2018-1784

Turbidity Method: EPA 2310 B, 2011

Aliquot #: 2018-1784-1-9 Batch Number: AB-180501-018

Analyte(s) Result Units Q Limit Dilution Date and Time
Turbidity 3.93 NTU 1 4/25/2018 13:22

QUALITY CONTROL REPORT

Project: Old Midland 2018 1772-1784

Date and Time Received: 04/25/2018 16:08

Analyte	Units	Method Blank	Reporting Limit	% Recovery LCS/LCSD		% RPD Result	Limits	% RPD	% Recovery MS/MSD	Limits	% RPD	Limits	Qualifiers
Total Organic Carbon		SM 53	10 C, 2011		Batch #:	AB-180426-002			Parent Sample:	2018-1768			
Total Organic Carbon	mg/L	<1.00	1.00	105.2 /	85-115	1	-		99.0 / 100.6	80-120	1.3	-	
Nitrate +Nitrite as N		SM 45	00-NO3 F, 20	011	Batch #:	AB-180426-034			Parent Sample:	2018-1772			
Nitrite+Nitrate as Nitrogen	mg/L	<0.0500	0.05	100.7 /	80-120	<0.0500	0-20	N/A	100.4 / 99.1	80-120	1.3	0-20	
Alkalinity as CaCO3		EPA 3	10.2 (Rev. 1	974)	Batch #:	AB-180426-035			Parent Sample:	2018-1772			
Alkalinity	mg/L	<6.00	6.00	99.6 /	90-110	107	0-20	6.9	1	-		0-20	
Total Organic Carbon		SM 53	10 C, 2011		Batch #:	AB-180427-001			Parent Sample:	2018-1785			
Total Organic Carbon	mg/L	<1.00	1.00	104.2 /	85-115	1	-	N/A	103.1 / 101.1	80-120	1.9	-	
Anions		EPA 30 1993)	00.0 (Rev.2.1	Ι,	Batch #:	AB-180427-002			Parent Sample:	2018-1772			
Chloride	mg/L	<0.500	0.50	101.8 /	90-110	89.6	0-20	0.3	85.9 / 86.2	80-120	0.0	0-20m	I
Sulfate	mg/L	<0.500	0.50	102.5 /	90-110	158	0-20	0.2	MBA/MBA	80-120	0.0	0-20	MBA
ICP/MS Metals (Total)		EPA 2 1994)	00.8 (Rev. 5	.4,	Batch #:	AB-180430-004			P	arent Sample:	2018-1770		
Iron	ug/L	<5.00	5.00	93.8 /	85-115	I	-		105.6 / 103.7	70-130	1.7		I
ICP/MS Metals (Dissolv	ed)	EPA 20 1994)	00.8 (Rev. 5.	4,	Batch #:	AB-180508-001			Parent Sample:	2018-1825			
Iron	ug/l	L <5.00	5.00	103.0 /	85-11	5	-		101.5 / 100.8	70-130	0.7		I
ICP/MS Metals (Total)		EPA 2 1994)	00.8 (Rev. 5	i. 4 ,	Batch #:	AB-180509-008			Parent Sample:	2018-1801			
Iron	uç	g/L <5.	00 5.00	105.0	/ 85-11	15			103.4 / 100.9	5 70-130	2.7		1

Arkansas Department Environmental Quality for Compliance, Enforcement, or Emergency Samples

WO-180426-01

Old Midland Products Site (OMP) Ola, Arkansas Function Code 50014 Printed Name of Sampler(s) Sample ID Date Collected (mm/dd/yy) Date Collected (mm/dd/yy) Date Collected (mm/dd/yy) Characteristics Characteristics Total No. of Containers P = Polyethylene/F A = Amber Glass A = Amber Glass O = Other (Specify) Instantaneous Flow Field Measu Do (mg/L) PH (SU) Total No. of Containers P = Polyethylene/F A = Amber Glass O = Other (Specify) Instantaneous Flow Field Measu Do (mg/L) PH (SU) Total No. of Containers P = Polyethylene/F A = Amber Glass Do (mg/L) PH (SU) Total No. of Containers P = Polyethylene/F A = Amber Glass Do (mg/L) PH (SU) Total No. of Containers A = Amber Glass Do (mg/L) PH (SU) Total No. of Containers P = Polyethylene/F A = Amber Glass Do (mg/L) PH (SU) Total No. of Containers P = Polyethylene/F A = Amber Glass Do (mg/L) PH (SU) Total No. of Containers P = Polyethylene/F A = Amber Glass Do (mg/L) PH (SU) Total No. of Containers A = Amber Glass Do (mg/L) PH (SU) Total No. of Containers A = Amber Glass Do (mg/L) PH (SU) Total No. of Containers A = Amber Glass Do (mg/L) PH (SU) Total No. of Containers A = Amber Glass Do (mg/L) PH (SU) Total No. of Containers A = Amber Glass Do (mg/L) PH (SU) Total No. of Containers A = Amber Glass Do (mg/L) PH (SU) Total No. of Containers A = Amber Glass Do (mg/L) PH (SU) Total No. of Containers A = Amber Glass Do (mg/L) PH (SU) Total No. of Containers A = Amber Glass Do (mg/L) PH (SU) Total No. of Containers A = Amber Glass Do (mg/L) PH (SU) Total No. of Containers A = Amber Glass Do (mg/L) PH (SU) Total No. of Containers A = Amber Glass Do (mg/L) PH (SU) Total No. of Containers A = Amber Glass Do (mg/L) PH (SU) Total No. of Containers A = Amber Glass Do (mg/L) PH (SU) Total No. of Containers A = Amber Glass Do (mg/L) PH (SU) Total No. of Containers A = Amber Glass Do (mg/L) PH (SU) Total No. of Containers A = Amber Glass Do (mg/L) PH (SU) Total No. of Containers A = Amber Glass Do (mg/L) PH (SU) Total No. of Containers A = A	2.46	W = water G = groundwate L = liquid (not wa S = soil or solid E = edible tissue	r B = Sulfu ter) C = Nitrio	I to ≤ 6°C uric Acid c Acid
Function Code 50014 Printed Name of Sampler(s) A = Amber Glass O = Other (Specify)	y)	L = liquid (not wa S = soil or solid	ter) C = Nitri	
Function Code 50014 Printed Name of Sampler(s) Output Outpu	<u>/)</u>	S = soil or solid		c Acid
Printed Name of Sampler(s) Sod	<u>y)</u>		D - N-O	A0.45 4-15-255
I) or Come Code Code Code Code Code Code Code Cod		E - adible tienus	D = NaO	H
Code Code Instantaneous Flow Instantaneous Flow Flow Instantaneous Ins		The state of the s		n Thiosulfate
		F = whole fish	F = Othe	er (specify)
		B = other		
Sample ID Date Collected (mm/dd/yy) (hh:mm)		Latitude	Longitude	
	Temp (*C) T	rime (dd.ddddd)	(dd.ddddd)	2018
MW-205 4/24/18 1512 10 G F 1 1 1 0 1 0.58 6.40 3	25,1 15	09		-1772
MW-200 1 1545 1 1 1 1 1 1 1 1 6.21 3	21,0 15	42		-1773
	22:4 15	36		-1724
MW-105 1616 1.35 6.19	20,7 16	15		-1775
EB-6 1700 N/A N/A N	N/A NI	IA		-1776
EB-5 1718 1111 1 1 1		1		-1778-1
MW-195 4/25/18 0910 0.63 53	. , .	908		-1779-1
MW-19D 1 0947 - 1 0,31 6,33		945		1-1280-1
	15.0 110	49		119-1781-1
		851	41	-1280-1
MU-015 1038 7,305,52	18,7 10	136		-1283-1
MW-01D 1149 11 268 7.00		47		-1785-1
RW-7 1324 UUUUUUU G.186,821	15.3 13	77		-1285-1
	and the same			
	i on			
SAMPLE CONDITION UPON RECEIPT IN LAB REMARKS / SAMPLE COMMENTS Containers Correct Yes No Report results to Dianna Kilburn 682-0844 or Tyler Wright 683-0068; ADEQ Laboratory number 501-6	200 0055			
	082-0955;			
. Received On Ice Yes No	4. 3		(0
Temp (*C) Upon Receipt 3.3°C			,	(5)
FOR COMPLETION BY LAB ONLY				V

Arkansas Department of Environmental Quality Chain-of-Custody							
Date	7	Sampler	(print)				
Site Identification	Old Midland Prod	ducts; A	FIN 7	5-000	049; EPA	Id# ARD	980745665
Site Address	Hwy 10 Ola, AR	72853			5.		
Sample ID	Sample Remarks		Time (h	nmm)	Latitude	Longitude	Lab ID
MW-205 MW-20D	Metal, Freld filtered		1912				W.
MW-ZOD	3 3 7	7	1545				
MW-100			1538			,	
MW-105	-124	,	1616			5	
EB-6	ASI+ End of day equip	blank	1700		- /-		
EB-5	ASI+ End of day equip Ews End of Day equip	blan	1718				
MW-195	, 11	×	0910				
MW-19D !			099	7	y T		
nw-6	Ç.,1		115)			
140-55	y Aug.		085	3	3		II .
MW-015	=						
MW-011)				1			
RW-7				-)			
	2 = 2 - 3		~		V		
	tody seal on each contain	er?: YES	S NO		els/COC agr	ee?: YES N	10
Date/Time	Relinquished By Name/Title			Rece Name/T	ived By		
4/75/14	ALEX HAMILN				Jim CKAig	FTL	
Time 1410	Signature		ł.	Signatur			
Date	Name/Title			Name/	H V		Chem
4-25-18	Jin Ceary		1	Size	Jeff	Vaul	Chem Sup
4-25-18 Time	Signature			Signatu	3 11	Ruh	
Date	Name//Title		, A	Name/	itle		
Time			*	Signatu			
AMIC	M gnature			orginatu			; "
Date	Name/Title			Name/T	itle		
Time	Signature	1	**	Signatur	re		

Effective Date: 04/16/2018

Lab Contact Info:

ADEQ Laboratory and Monitoring Services

5301 Northshore Drive, North Little Rock, AR 72118

www.adeq.state.ar.us

Lessie Redican

Redican@adeq.state.ar.us

501-682-0937

Collector: Associates, FTN Project: Old Midland

Project Description: Old Midland 2018 1785-1798

Date and Time Received: 04/26/2018 16:14 **Work Order Number: WO-180426-02**

Case Narrative:

The following parameters were analyzed in the field upon collection by FTN Associates personnel:

Hq

Specific Conductance

Turbidity

Water Temperature

Dissolved Oxygen

Ferrous Iron

In this Work Order, there were no quality control excursiions resulting in sample data qualification.

Sample Receipt Conditions:

Condition	Response	Comment
Is the COC completed properly?	Yes	
Temperature on Receipt	3.5°C	
Received on Ice	Yes	
Containers are Correct	Yes	
Custody Seals	Yes	
COC/Labels Agree	Yes	

Data Qualifiers

Qualifier Flag) Description
MBA	Masked by Analyte

Laboratory Name: ADEQ Laboratory and Monitoring Services Email: Kilburn@adeq.state.ar.us

Contact Name: Kilburn, Dianna Phone: 501-682-0844

Lab Address: 5301 Northshore Drive North Little Rock, AR 72118 Fax:

Collector: Associates, FTN Site: MW-17 Work Order Number: WO-180426-02

Sample Classification: Special Project: Old Midland

Matrix: Groundwater Collected: 4/25/2018 14:39

Sample Barcode: Sample Number: 2018-1785

Alkalinity as CaCO3 Method: EPA 310.2 (Rev. 1974) Analyst: KH

Aliquot #: 2018-1785-1-1 Batch Number: AB-180426-035

Analyte(s) Result Units Q Limit Dilution Date and Time
Alkalinity 31.7 mg/L 6 1 4/27/2018 10:35

Anions Method: EPA 300.0 (Rev.2.1, 1993) Analyst: PR

Aliquot #: 2018-1785-1-2 Batch Number: AB-180427-002

Reporting **Analysis** Result **Units** Q Limit **Dilution Date and Time** Analyte(s) 18.4 0.5 Chloride mg/L 4/27/2018 13:21 0.5 1 4/27/2018 13:21 Sulfate 3.17 mg/L

Dissolved Oxygen Method: SM 4500-O G, 2011

Aliquot #: 2018-1785-1-5 Batch Number: AB-180501-021

Analyte(s) Result Units Q Limit Dilution Date and Time

Dissolved Oxygen 0.640 mg/L 1 4/25/2018 14:37

Ferrous Iron Method: HACH Color disc/1,10 Phenanthroline

Aliquot #: 2018-1785-1-4 Batch Number: AB-180503-016

 Analyte(s)
 Result
 Units
 Q
 Limit
 Dilution
 Date and Time

 Iron (Ferrous)
 <0.500</td>
 mg/L
 0.5
 1
 4/25/2018
 14:37

ICP/MS Metals (Total) Method: EPA 200.8 (Rev. 5.4, 1994) Analyst: PR

Aliquot #: 2018-1785-3-1 Batch Number: AB-180509-008

 Analyte(s)
 Result
 Units
 Q
 Limit
 Dilution
 Date and Time

 Iron
 907
 ug/L
 5
 1
 5/9/2018 14:31

Collector: Associates, FTN Site: MW-17 Work Order Number: WO-180426-02

Sample Classification: Special Project: Old Midland

Matrix: Groundwater Collected: 4/25/2018 14:39

Sample Barcode: Sample Number: 2018-1785

Nitrate +Nitrite as N Method: SM 4500-NO3 F, 2011 Analyst: KH

Aliquot #: 2018-1785-1-3 Batch Number: AB-180427-004

Analyte(s)

Result
Units
Q
Limit
Dilution
Date and Time

Nitrite+Nitrate as Nitrogen

0.295
mg/L
0.05
1
4/27/2018
8:28

pH Method: SM 4500-H+ B, 2000

Aliquot #: 2018-1785-1-6 Batch Number: AB-180501-020

 Analyte(s)
 Result
 Units
 Q
 Limit
 Dilution
 Date and Time

 pH
 5.69
 units
 1
 4/25/2018
 14:37

Specific Conductance Method: EPA 120.1, 1982

Aliquot #: 2018-1785-1-9 Batch Number: AB-180501-023

Analyte(s) Result Units Q Limit Dilution Date and Time
Specific Conductance 117 uS/cm 1 1 4/25/2018 14:37

Water Temperature Method: SM 2550 B, 2000

Aliquot #: 2018-1785-1-7 Batch Number: AB-180501-022

Analyte(s) Result Units Q Limit Dilution Date and Time
Water Temperature 14.8 °C 1 4/25/2018 14:37

Total Organic Carbon Method: SM 5310 C, 2011 Analyst: PR

Aliquot #: 2018-1785-2-1 Batch Number: AB-180427-001

Analyte(s)
Result
Units
Q
Limit
Dilution
Date and Time

1 1 4/27/2018 10:11

This analytical report must be reproduced in its entirety

Collector: Associates, FTN Site: MW-17 Work Order Number: WO-180426-02

Sample Classification: Special Project: Old Midland

Matrix: Groundwater Collected: 4/25/2018 14:39

Sample Barcode: Sample Number: 2018-1785

Turbidity Method: EPA 2310 B, 2011

Aliquot #: 2018-1785-1-8 Batch Number: AB-180501-024

Analyte(s) Result Units Q Limit Dilution Date and Time
Turbidity 12.6 NTU 1 4/25/2018 14:37

Collector: Associates, FTN Site: RW-1 Work Order Number: WO-180426-02

Sample Classification: Special Project: Old Midland

Matrix: Groundwater Collected: 4/25/2018 14:48

Sample Barcode: Sample Number: 2018-1786

Alkalinity as CaCO3 Method: EPA 310.2 (Rev. 1974) Analyst: KH

Aliquot #: 2018-1786-1-1 Batch Number: AB-180426-035

Analyte(s) Result Units Q Limit Dilution Date and Time
Alkalinity 250 mg/L 6 1 4/27/2018 10:37

Anions Method: EPA 300.0 (Rev.2.1, 1993) Analyst: PR

Aliquot #: 2018-1786-1-2 Batch Number: AB-180427-002

Reporting **Analysis** Result Units Q Limit **Dilution Date and Time** Analyte(s) Chloride 191 2.5 5 4/27/2018 17:16 mg/L 78.3 0.5 1 4/27/2018 13:28 Sulfate mg/L

Dissolved Oxygen Method: SM 4500-O G, 2011

Aliquot #: 2018-1786-1-5 Batch Number: AB-180501-021

Analyte(s) Result Units Q Limit Dilution Date and Time

Dissolved Oxygen 0.200 mg/L 1 4/25/2018 14:46

Ferrous Iron Method: HACH Color disc/1,10 Phenanthroline

Aliquot #: 2018-1786-1-4 Batch Number: AB-180503-016

Analyte(s) Result Units Q Limit Dilution Date and Time

Iron (Ferrous) NA mg/L 0.5 1 4/25/2018 14:46

ICP/MS Metals (Total) Method: EPA 200.8 (Rev. 5.4, 1994) Analyst: PR

Aliquot #: 2018-1786-3-1 Batch Number: AB-180509-008

 Analyte(s)
 Result
 Units
 Q
 Limit
 Dilution
 Date and Time

 Iron
 68.3
 ug/L
 5
 1
 5/9/2018
 14:37

Collector: Associates, FTN Site: RW-1 Work Order Number: WO-180426-02

Sample Classification: Special Project: Old Midland Matrix: Groundwater Collected: 4/25/2018 14:48

Sample Barcode: Sample Number: 2018-1786

Nitrate +Nitrite as N Method: SM 4500-NO3 F, 2011 Analyst: KH

Aliquot #: 2018-1786-1-3 Batch Number: AB-180427-004

Analyte(s)

Result
Units
Q
Limit
Dilution
Date and Time

Analysis
Analyte(s)

Result
Units
Q
Limit
Dilution
Date and Time

4/27/2018
8:32

pH Method: SM 4500-H+ B, 2000

Aliquot #: 2018-1786-1-6 Batch Number: AB-180501-020

 Analyte(s)
 Result
 Units
 Q
 Limit
 Dilution
 Date and Time

 pH
 6.70
 units
 1
 4/25/2018
 14:46

Specific Conductance Method: EPA 120.1, 1982

Aliquot #: 2018-1786-1-9 Batch Number: AB-180501-023

Analyte(s) Result Units Q Limit Dilution Date and Time
Specific Conductance 1200 uS/cm 1 1 4/25/2018 14:46

Water Temperature Method: SM 2550 B, 2000

Aliquot #: 2018-1786-1-7 Batch Number: AB-180501-022

Analyte(s)ResultUnitsQLimitDilutionDate and TimeWater Temperature15.6°C14/25/201814:46

Total Organic Carbon Method: SM 5310 C, 2011 Analyst: PR

Aliquot #: 2018-1786-2-1 Batch Number: AB-180427-001

Analyte(s) Result Units Q Limit Dilution Date and Time
Total Organic Carbon 2.73 mg/L 1 1 4/27/2018 11:42

Collector: Associates, FTN Site: RW-1 Work Order Number: WO-180426-02

Sample Classification: Special Project: Old Midland

Matrix: Groundwater Collected: 4/25/2018 14:48

Sample Barcode: Sample Number: 2018-1786

Turbidity Method: EPA 2310 B, 2011

Aliquot #: 2018-1786-1-8 Batch Number: AB-180501-024

Analyte(s) Result Units Q Limit Dilution Date and Time
Turbidity 1.81 NTU 1 4/25/2018 14:46

Collector: Associates, FTN Site: EB-7 Work Order Number: WO-180426-02

Sample Classification: Special Project: Old Midland

Matrix: Groundwater Collected: 4/25/2018 15:35

Sample Parado: 1000 Midland

Sample Parado: 2018 1787

Sample Barcode: Sample Number: 2018-1787

Alkalinity as CaCO3 Method: EPA 310.2 (Rev. 1974) Analyst: KH

Aliquot #: 2018-1787-1-1 Batch Number: AB-180426-035

				Reporting		Analysis
Analyte(s)	Result	Units	Q	Limit	Dilution	Date and Time
Alkalinity	<6.00	mg/L		6	1	4/27/2018 10:38

Anions Method: EPA 300.0 (Rev.2.1, 1993) Analyst: PR

Aliquot #: 2018-1787-1-2 Batch Number: AB-180427-002

				Reporting		Analysis
Analyte(s)	Result	Units	Q	Limit	Dilution	Date and Time
Chloride	<0.500	mg/L		0.5	1	4/27/2018 13:50
Sulfate	<0.500	mg/L		0.5	1	4/27/2018 13:50

ICP/MS Metals (Total) Method: EPA 200.8 (Rev. 5.4, 1994) Analyst: PR

Aliquot #: 2018-1787-3-1 Batch Number: AB-180509-008

				Reporting		Analysis
Analyte(s)	Result	Units	Q	Limit	Dilution	Date and Time
Iron	<5.00	ug/L		5	1	5/9/2018 14:43

Nitrate +Nitrite as N Method: SM 4500-NO3 F, 2011 Analyst: KH

Aliquot #: 2018-1787-1-3 Batch Number: AB-180427-004

				Reporting		Analysis
Analyte(s)	Result	Units	Q	Limit	Dilution	Date and Time
Nitrite+Nitrate as Nitrogen	<0.0500	mg/L		0.05	1	4/27/2018 8:33

Total Organic Carbon Method: SM 5310 C, 2011 Analyst: PR

Aliquot #: 2018-1787-2-1 Batch Number: AB-180427-001

				Reporting		Anaiysis
Analyte(s)	Result	Units	Q	Limit	Dilution	Date and Time
Total Organic Carbon	<1.00	mg/L		1	1	4/27/2018 12:03

Collector: Associates, FTN Site: EB-8 Work Order Number: WO-180426-02

Sample Classification: Special Project: Old Midland

Matrix: Groundwater Collected: 4/25/2018 15:30

Sample Barcode: Sample Number: 2018-1788

Alkalinity as CaCO3 Method: EPA 310.2 (Rev. 1974) Analyst: KH

Aliquot #: 2018-1788-1-1 Batch Number: AB-180426-035

				Reporting		Analysis
Analyte(s)	Result	Units	Q	Limit	Dilution	Date and Time
Alkalinity	<6.00	mg/L		6	1	4/27/2018 10:39

Anions Method: EPA 300.0 (Rev.2.1, 1993) Analyst: PR

Aliquot #: 2018-1788-1-2 Batch Number: AB-180427-002

				Reporting		Analysis
Analyte(s)	Result	Units	Q	Limit	Dilution	Date and Time
Chloride	<0.500	mg/L		0.5	1	4/27/2018 13:57
Sulfate	<0.500	mg/L		0.5	1	4/27/2018 13:57

ICP/MS Metals (Total) Method: EPA 200.8 (Rev. 5.4, 1994) Analyst: PR

Aliquot #: 2018-1788-3-1 Batch Number: AB-180509-008

				Reporting		Analysis
Analyte(s)	Result	Units	Q	Limit	Dilution	Date and Time
Iron	<5.00	ug/L		5	1	5/9/2018 14:48

Nitrate +Nitrite as N Method: SM 4500-NO3 F, 2011 Analyst: KH

Aliquot #: 2018-1788-1-3 Batch Number: AB-180427-004

				Reporting		Analysis
Analyte(s)	Result	Units	Q	Limit	Dilution	Date and Time
Nitrite+Nitrate as Nitrogen	<0.0500	mg/L		0.05	1	4/27/2018 8:37

Total Organic Carbon Method: SM 5310 C, 2011 Analyst: PR

Aliquot #: 2018-1788-2-1 Batch Number: AB-180427-001

				Reporting		Analysis
Analyte(s)	Result	Units	Q	Limit	Dilution	Date and Time
Total Organic Carbon	<1.00	mg/L		1	1	4/27/2018 12:20

Collector: Associates, FTN Site: Neeley Well Work Order Number: WO-180426-02

Sample Classification: Special Project: Old Midland

Matrix: Groundwater Collected: 4/26/2018 11:20

Sample Barcode: Sample Number: 2018-1789

Alkalinity as CaCO3 Method: EPA 310.2 (Rev. 1974) Analyst: KH

Aliquot #: 2018-1789-1-1 Batch Number: AB-180426-035

Analyte(s) Result Units Q Limit Dilution Date and Time
Alkalinity 90.5 mg/L 6 1 4/27/2018 10:40

Anions Method: EPA 300.0 (Rev.2.1, 1993) Analyst: PR

Aliquot #: 2018-1789-1-2 Batch Number: AB-180427-002

				Reporting		Analysis
Analyte(s)	Result	Units	Q	Limit	Dilution	Date and Time
Sulfate	2.27	mg/L		0.5	1	4/27/2018 14:05
Chloride	18.7	mg/L		0.5	1	4/27/2018 14:05

Dissolved Oxygen Method: SM 4500-O G, 2011

Aliquot #: 2018-1789-1-5 Batch Number: AB-180501-021

Analyte(s) Result Units Q Limit Dilution Date and Time

Dissolved Oxygen 0.260 mg/L 1 4/26/2018 11:19

Ferrous Iron Method: HACH Color disc/1,10 Phenanthroline

Aliquot #: 2018-1789-1-4 Batch Number: AB-180503-016

Analyte(s) Result Units Q Limit Dilution Date and Time
Iron (Ferrous) 1.50 mg/L 0.5 1 4/26/2018 11:19

ICP/MS Metals (Total) Method: EPA 200.8 (Rev. 5.4, 1994) Analyst: PR

Aliquot #: 2018-1789-3-1 Batch Number: AB-180509-008

 Analyte(s)
 Result
 Units
 Q
 Limit
 Dilution
 Date and Time

 Iron
 12000
 ug/L
 50
 10
 5/10/2018
 11:38

Collector: Associates, FTN Site: Neeley Well Work Order Number: WO-180426-02

Sample Classification: Special Project: Old Midland

Matrix: Groundwater Collected: 4/26/2018 11:20

Sample Barcode: Sample Number: 2018-1789

Nitrate +Nitrite as N Method: SM 4500-NO3 F, 2011 Analyst: KH

Aliquot #: 2018-1789-1-3 Batch Number: AB-180427-004

Analyte(s)

Result
Units
Q
Limit
Dilution
Date and Time

Analysis
Analyte(s)

Result
Units
Q
Limit
Dilution
Date and Time

4/27/2018
8:38

pH Method: SM 4500-H+ B, 2000

Aliquot #: 2018-1789-1-6 Batch Number: AB-180501-020

 Analyte(s)
 Result
 Units
 Q
 Limit
 Dilution
 Date and Time

 pH
 6.59
 units
 1
 4/26/2018
 11:19

Specific Conductance Method: EPA 120.1, 1982

Aliquot #: 2018-1789-1-9 Batch Number: AB-180501-023

Analyte(s) Result Units Q Limit Dilution Date and Time
Specific Conductance 208 uS/cm 1 1 4/26/2018 11:19

Water Temperature Method: SM 2550 B, 2000

Aliquot #: 2018-1789-1-7 Batch Number: AB-180501-022

Analyte(s) Result Units Q Limit Dilution Date and Time
Water Temperature 14.4 °C 1 4/26/2018 11:19

Total Organic Carbon Method: SM 5310 C, 2011 Analyst: PR

Aliquot #: 2018-1789-2-1 Batch Number: AB-180427-001

Analyte(s) Result Units Q Limit Dilution Date and Time
Total Organic Carbon <1.00 mg/L 1 1 4/27/2018 12:38

This analytical report must be reproduced in its entirety

Collector: Associates, FTN Site: Neeley Well Work Order Number: WO-180426-02

Sample Classification: Special Project: Old Midland

Matrix: Groundwater Collected: 4/26/2018 11:20

Sample Barcode: Sample Number: 2018-1789

Turbidity Method: EPA 2310 B, 2011

Aliquot #: 2018-1789-1-8 Batch Number: AB-180501-024

Analyte(s) Result Units Q Limit Dilution Date and Time
Turbidity 22.7 NTU 1 4/26/2018 11:19

Collector: Associates, FTN Site: MW-18S Work Order Number: WO-180426-02

Sample Classification: Special Project: Old Midland

Matrix: Groundwater Collected: 4/26/2018 8:38

Sample Barcode: Sample Number: 2018-1790

Alkalinity as CaCO3 Method: EPA 310.2 (Rev. 1974) Analyst: KH

Aliquot #: 2018-1790-1-1 Batch Number: AB-180426-035

		Reporting			Analysis	
Analyte(s)	Result	Units	Q	Limit	Dilution	Date and Time
Alkalinity	93.2	mg/L		6	1	4/27/2018 10:43

Anions Method: EPA 300.0 (Rev.2.1, 1993) Analyst: PR

Aliquot #: 2018-1790-1-2 Batch Number: AB-180427-002

				Reporting		Analysis
Analyte(s)	Result	Units	Q	Limit	Dilution	Date and Time
Chloride	54.0	mg/L		0.5	1	4/27/2018 14:12
Sulfate	19.0	mg/L		0.5	1	4/27/2018 14:12

Dissolved Oxygen Method: SM 4500-O G, 2011

Aliquot #: 2018-1790-1-5 Batch Number: AB-180501-021

				Reporting		Analysis
Analyte(s)	Result	Units	Q	Limit	Dilution	Date and Time
Dissolved Oxygen	0.560	mg/L			1	4/26/2018 8:36

Ferrous Iron Method: HACH Color disc/1,10 Phenanthroline

Aliquot #: 2018-1790-1-4 Batch Number: AB-180503-016

				Reporting		
Analyte(s)	Result	Units	Q	Limit	Dilution	Date and Time
Iron (Ferrous)	<0.500	mg/L		0.5	1	4/26/2018 8:36

ICP/MS Metals (Total) Method: EPA 200.8 (Rev. 5.4, 1994) Analyst: PR

Aliquot #: 2018-1790-3-1 Batch Number: AB-180509-008

		Reporting			Analysis	
Analyte(s)	Result	Units	Q	Limit	Dilution	Date and Time
Iron	35.6	ug/L		5	1	5/9/2018 15:11

Collector: Associates, FTN Site: MW-18S Work Order Number: WO-180426-02

Sample Classification: Special Project: Old Midland

Matrix: Groundwater Collected: 4/26/2018 8:38

Sample Barcode: Sample Number: 2018-1790

Nitrate +Nitrite as N Method: SM 4500-NO3 F, 2011 Analyst: KH

Aliquot #: 2018-1790-1-3 Batch Number: AB-180427-004

Analyte(s)

Result
Units
Q
Limit
Dilution
Date and Time

Nitrite+Nitrate as Nitrogen

0.0941
mg/L
0.05
1
4/27/2018
8:39

pH Method: SM 4500-H+ B, 2000

Aliquot #: 2018-1790-1-6 Batch Number: AB-180501-020

Analyte(s) Result Units Q Limit Dilution Date and Time
pH 6.11 units 1 4/26/2018 8:36

Specific Conductance Method: EPA 120.1, 1982

Aliquot #: 2018-1790-1-9 Batch Number: AB-180501-023

Analyte(s) Result Units Q Limit Dilution Date and Time
Specific Conductance 317 uS/cm 1 1 4/26/2018 8:36

Water Temperature Method: SM 2550 B, 2000

Aliquot #: 2018-1790-1-7 Batch Number: AB-180501-022

Analyte(s) Result Units Q Limit Dilution Date and Time
Water Temperature 14.7 °C 1 4/26/2018 8:36

Total Organic Carbon Method: SM 5310 C, 2011 Analyst: PR

Aliquot #: 2018-1790-2-1 Batch Number: AB-180427-001

Analyte(s) Result Units Q Limit Dilution Date and Time
Total Organic Carbon <1.00 mg/L 1 1 4/27/2018 12:56

Collector: Associates, FTN Site: MW-18S Work Order Number: WO-180426-02

Sample Classification: Special Project: Old Midland

Matrix: Groundwater Collected: 4/26/2018 8:38

Sample Barcode: Sample Number: 2018-1790

Turbidity Method: EPA 2310 B, 2011

Aliquot #: 2018-1790-1-8 Batch Number: AB-180501-024

 Analyte(s)
 Result
 Units
 Q
 Limit
 Dilution
 Date and Time

 Turbidity
 1.20
 NTU
 1
 4/26/2018
 8:33

Collector: Associates, FTN Site: MW-18D Work Order Number: WO-180426-02

Sample Classification: Special Project: Old Midland

Matrix: Groundwater Collected: 4/26/2018 9:25

Sample Barcode: Sample Number: 2018-1791

Alkalinity as CaCO3 Method: EPA 310.2 (Rev. 1974) Analyst: KH

Aliquot #: 2018-1791-1-1 Batch Number: AB-180426-035

		Reporting			Analysis	
Analyte(s)	Result	Units	Q	Limit	Dilution	Date and Time
Alkalinity	142	mg/L		6	1	4/27/2018 10:44

Anions Method: EPA 300.0 (Rev.2.1, 1993) Analyst: PR

Aliquot #: 2018-1791-1-2 Batch Number: AB-180427-002

				Reporting		Analysis
Analyte(s)	Result	Units	Q	Limit	Dilution	Date and Time
Chloride	33.1	mg/L		0.5	1	4/27/2018 14:19
Sulfate	1.86	mg/L		0.5	1	4/27/2018 14:19

Dissolved Oxygen Method: SM 4500-O G, 2011

Aliquot #: 2018-1791-1-5 Batch Number: AB-180501-021

				Reporting		Analysis
Analyte(s)	Result	Units	Q	Limit	Dilution	Date and Time
Dissolved Oxygen	0.580	mg/L			1	4/26/2018 9:23

Ferrous Iron Method: HACH Color disc/1,10 Phenanthroline

Aliquot #: 2018-1791-1-4 Batch Number: AB-180503-016

				Reporting	Analysis	
Analyte(s)	Result	Units	Q	Limit	Dilution	Date and Time
Iron (Ferrous)	0.500	mg/L		0.5	1	4/26/2018 9:23

ICP/MS Metals (Total) Method: EPA 200.8 (Rev. 5.4, 1994) Analyst: PR

Aliquot #: 2018-1791-3-1 Batch Number: AB-180509-008

		Reporting			Analysis	
Analyte(s)	Result	Units	Q	Limit	Dilution	Date and Time
Iron	731	ug/L		5	1	5/9/2018 15:17

Collector: Associates, FTN Site: MW-18D Work Order Number: WO-180426-02

Sample Classification: Special Project: Old Midland

Matrix: Groundwater Collected: 4/26/2018 9:25

Sample Barcode: Sample Number: 2018-1791

Nitrate +Nitrite as N Method: SM 4500-NO3 F, 2011 Analyst: KH

Aliquot #: 2018-1791-1-3 Batch Number: AB-180427-004

Analyte(s)

Result
Units
Q
Limit
Dilution
Date and Time

Analysis
Analyte(s)

Nitrite+Nitrate as Nitrogen

mg/L
0.05
1
4/27/2018
8:40

pH Method: SM 4500-H+ B, 2000

Aliquot #: 2018-1791-1-6 Batch Number: AB-180501-020

Analyte(s) Result Units Q Limit Dilution Date and Time
pH 6.78 units 1 4/26/2018 9:23

Specific Conductance Method: EPA 120.1, 1982

Aliquot #: 2018-1791-1-9 Batch Number: AB-180501-023

Analyte(s)

Result
Units
Q
Limit
Dilution
Date and Time
Specific Conductance
302
uS/cm
1
1
4/26/2018
9:23

Water Temperature Method: SM 2550 B, 2000

Aliquot #: 2018-1791-1-7 Batch Number: AB-180501-022

Analyte(s) Result Units Q Limit Dilution Date and Time
Water Temperature 14.7 °C 1 4/26/2018 9:23

Total Organic Carbon Method: SM 5310 C, 2011 Analyst: PR

Aliquot #: 2018-1791-2-1 Batch Number: AB-180427-001

Analyte(s)
Result Units Q Limit Dilution Date and Time
Total Organic Carbon <1.00 mg/L 1 1 4/27/2018 13:16

This analytical report must be reproduced in its entirety

Collector: Associates, FTN Site: MW-18D Work Order Number: WO-180426-02

Sample Classification: Special Project: Old Midland

Matrix: Groundwater Collected: 4/26/2018 9:25

Sample Barcode: Sample Number: 2018-1791

Turbidity Method: EPA 2310 B, 2011

Aliquot #: 2018-1791-1-8 Batch Number: AB-180501-024

Analyte(s) Result Units Q Limit Dilution Date and Time
Turbidity 7.98 NTU 1 4/26/2018 9:23

Collector: Associates, FTN Site: MW-3D Work Order Number: WO-180426-02

Sample Classification: Special Project: Old Midland

Matrix: Groundwater Collected: 4/26/2018 9:26

Sample Barcode: Sample Number: 2018-1792

Alkalinity as CaCO3 Method: EPA 310.2 (Rev. 1974) Analyst: KH

Aliquot #: 2018-1792-1-1 Batch Number: AB-180427-005

Analyte(s) Result Units Q Limit Dilution Date and Time

Alkalinity 160 mg/L 6 1 4/27/2018 10:45

Anions Method: EPA 300.0 (Rev.2.1, 1993) Analyst: PR

Aliquot #: 2018-1792-1-2 Batch Number: AB-180427-003

				Reporting		Analysis
Analyte(s)	Result	Units	Q	Limit	Dilution	Date and Time
Chloride	108	mg/L		2.5	5	4/27/2018 17:23
Sulfate	<0.500	mg/L		0.5	1	4/27/2018 14:41

Dissolved Oxygen Method: SM 4500-O G, 2011

Aliquot #: 2018-1792-1-5 Batch Number: AB-180501-021

				Reporting		Analysis
Analyte(s)	Result	Units	Q	Limit	Dilution	Date and Time
Dissolved Oxygen	0.360	mg/L			1	4/26/2018 9:24

Ferrous Iron Method: HACH Color disc/1,10 Phenanthroline

Aliquot #: 2018-1792-1-4 Batch Number: AB-180503-016

				Reporting		Analysis
Analyte(s)	Result	Units	Q	Limit	Dilution	Date and Time
Iron (Ferrous)	1.50	mg/L		0.5	1	4/26/2018 9:24

ICP/MS Metals (Total) Method: EPA 200.8 (Rev. 5.4, 1994) Analyst: PR

Aliquot #: 2018-1792-3-1 Batch Number: AB-180509-008

Analyte(s) Result Units Q Limit Dilution Date and Time
Iron 5230 ug/L 50 10 5/10/2018 11:55

Collector: Associates, FTN Site: MW-3D Work Order Number: WO-180426-02

Sample Classification: Special Project: Old Midland

Matrix: Groundwater Collected: 4/26/2018 9:26

Sample Barcode: Sample Number: 2018-1792

Nitrate +Nitrite as N Method: SM 4500-NO3 F, 2011 Analyst: KH

Aliquot #: 2018-1792-1-3 Batch Number: AB-180427-004

Analyte(s)

Result
Units
Q
Limit
Dilution
Date and Time

VIIITIE+Nitrate as Nitrogen
Analysis
Units
Q
Limit
Dilution
Date and Time

4/27/2018
8:42

pH Method: SM 4500-H+ B, 2000

Aliquot #: 2018-1792-1-6 Batch Number: AB-180501-020

Analyte(s) Result Units Q Limit Dilution Date and Time
pH 6.77 units 1 4/26/2018 9:24

Specific Conductance Method: EPA 120.1, 1982

Aliquot #: 2018-1792-1-9 Batch Number: AB-180501-023

Analyte(s) Result Units Q Limit Dilution Date and Time
Specific Conductance 684 uS/cm 1 1 4/26/2018 9:24

Water Temperature Method: SM 2550 B, 2000

Aliquot #: 2018-1792-1-7 Batch Number: AB-180501-022

Analyte(s) Result Units Q Limit Dilution Date and Time
Water Temperature 15.4 °C 1 4/26/2018 9:24

Total Organic Carbon Method: SM 5310 C, 2011 Analyst: PR

Aliquot #: 2018-1792-2-1 Batch Number: AB-180427-001

Analyte(s) Result Units Q Limit Dilution Date and Time
Total Organic Carbon 2.44 mg/L 1 1 4/27/2018 13:34

This analytical report must be reproduced in its entirety

Collector: Associates, FTN Site: MW-3D Work Order Number: WO-180426-02

Sample Classification: Special Project: Old Midland

Matrix: Groundwater Collected: 4/26/2018 9:26

Sample Barcode: Sample Number: 2018-1792

Turbidity Method: EPA 2310 B, 2011

Aliquot #: 2018-1792-1-8 Batch Number: AB-180501-024

Analyte(s) Result Units Q Limit Dilution Date and Time
Turbidity 1.92 NTU 1 4/26/2018 9:24

Collector: Associates, FTN Site: MW-3S Work Order Number: WO-180426-02

Sample Classification: Special Project: Old Midland

Matrix: Groundwater Collected: 4/26/2018 8:48

Sample Barcode: Sample Number: 2018-1793

Alkalinity as CaCO3 Method: EPA 310.2 (Rev. 1974) Analyst: KH

Aliquot #: 2018-1793-1-1 Batch Number: AB-180427-005

				Reporting		Analysis
Analyte(s)	Result	Units	Q	Limit	Dilution	Date and Time
Alkalinity	510	mg/L		30	5	4/27/2018 10:55

Anions Method: EPA 300.0 (Rev.2.1, 1993) Analyst: PR

Aliquot #: 2018-1793-1-2 Batch Number: AB-180427-003

				Reporting		Analysis
Analyte(s)	Result	Units	Q	Limit	Dilution	Date and Time
Sulfate	854	mg/L		0.5	1	4/27/2018 14:49
Chloride	435	mg/L		0.5	1	4/27/2018 14:49

Dissolved Oxygen Method: SM 4500-O G, 2011

Aliquot #: 2018-1793-1-5 Batch Number: AB-180501-021

				Reporting		Analysis
Analyte(s)	Result	Units	Q	Limit	Dilution	Date and Time
Dissolved Oxygen	0.960	mg/L			1	4/26/2018 8:46

Ferrous Iron Method: HACH Color disc/1,10 Phenanthroline

Aliquot #: 2018-1793-1-4 Batch Number: AB-180503-016

				Reporting	Analysis	
Analyte(s)	Result	Units	Q	Limit	Dilution	Date and Time
Iron (Ferrous)	2.00	mg/L		0.5	1	4/26/2018 8:46

ICP/MS Metals (Total) Method: EPA 200.8 (Rev. 5.4, 1994) Analyst: PR

Aliquot #: 2018-1793-3-1 Batch Number: AB-180509-008

		Reporting			Analysis	
Analyte(s)	Result	Units	Q	Limit	Dilution	Date and Time
Iron	5800	ug/L		50	10	5/10/2018 12:12

Collector: Associates, FTN Site: MW-3S Work Order Number: WO-180426-02

Sample Classification: Special Project: Old Midland
Matrix: Groundwater Collected: 4/26/2018 8:48

Sample Barcode: Sample Number: 2018-1793

Nitrate +Nitrite as N Method: SM 4500-NO3 F, 2011 Analyst: KH

Aliquot #: 2018-1793-1-3 Batch Number: AB-180427-004

pH Method: SM 4500-H+ B, 2000

Aliquot #: 2018-1793-1-6 Batch Number: AB-180501-020

Analyte(s) Result Units Q Limit Dilution Date and Time
pH 6.19 units 1 4/26/2018 8:46

Specific Conductance Method: EPA 120.1, 1982

Aliquot #: 2018-1793-1-9 Batch Number: AB-180501-023

Analyte(s)

Result
Units
Q
Limit
Dilution
Date and Time
Specific Conductance
3460
uS/cm
1
1
4/26/2018
8:46

Water Temperature Method: SM 2550 B, 2000

Aliquot #: 2018-1793-1-7 Batch Number: AB-180501-022

Analyte(s) Result Units Q Limit Dilution Date and Time
Water Temperature 14.7 °C 1 4/26/2018 8:46

Total Organic Carbon Method: SM 5310 C, 2011 Analyst: PR

Aliquot #: 2018-1793-2-1 Batch Number: AB-180427-001

Analyte(s)
Result Units Q Limit Dilution Date and Time
Total Organic Carbon 8.73 mg/L 1 1 4/27/2018 13:51

This analytical report must be reproduced in its entirety

Collector: Associates, FTN Site: MW-3S Work Order Number: WO-180426-02

Sample Classification: Special Project: Old Midland

Matrix: Groundwater Collected: 4/26/2018 8:48

Sample Barcode: Sample Number: 2018-1793

Turbidity Method: EPA 2310 B, 2011

Aliquot #: 2018-1793-1-8 Batch Number: AB-180501-024

Analyte(s) Result Units Q Limit Dilution Date and Time
Turbidity 3.42 NTU 1 4/26/2018 8:46

Collector: Associates, FTN Site: MW-8S Work Order Number: WO-180426-02

Sample Classification: Special Project: Old Midland

Matrix: Groundwater Collected: 4/26/2018 12:47

Sample Barcode: Sample Number: 2018-1794

Alkalinity as CaCO3 Method: EPA 310.2 (Rev. 1974) Analyst: KH

Aliquot #: 2018-1794-1-1 Batch Number: AB-180427-005

Analyte(s) Result Units Q Limit Dilution Date and Time
Alkalinity 57.1 mg/L 6 1 4/27/2018 10:52

Anions Method: EPA 300.0 (Rev.2.1, 1993) Analyst: PR

Aliquot #: 2018-1794-1-2 Batch Number: AB-180427-003

Reporting **Analysis** Result Units Q Limit **Dilution Date and Time** Analyte(s) Sulfate 261 2.5 5 4/27/2018 17:52 mg/L 74.6 0.5 1 4/27/2018 14:56 Chloride mg/L

Dissolved Oxygen Method: SM 4500-O G, 2011

Aliquot #: 2018-1794-1-5 Batch Number: AB-180501-021

Analyte(s) Result Units Q Limit Dilution Date and Time

Dissolved Oxygen 0.680 mg/L 1 4/26/2018 12:45

Ferrous Iron Method: HACH Color disc/1,10 Phenanthroline

Aliquot #: 2018-1794-1-4 Batch Number: AB-180503-016

 Analyte(s)
 Result
 Units
 Q
 Limit
 Dilution
 Date and Time

 Iron (Ferrous)
 <0.500</td>
 mg/L
 0.5
 1
 4/26/2018
 12:45

ICP/MS Metals (Total) Method: EPA 200.8 (Rev. 5.4, 1994) Analyst: PR

Aliquot #: 2018-1794-3-1 Batch Number: AB-180509-008

 Analyte(s)
 Result
 Units
 Q
 Limit
 Dilution
 Date and Time

 Iron
 63.4
 ug/L
 5
 1
 5/9/2018
 15:34

Collector: Associates, FTN Site: MW-8S Work Order Number: WO-180426-02

Sample Classification: Special Project: Old Midland
Matrix: Groundwater Collected: 4/26/2018 12:47

Sample Barcode: Sample Number: 2018-1794

Nitrate +Nitrite as N Method: SM 4500-NO3 F, 2011 Analyst: KH

Aliquot #: 2018-1794-1-3 Batch Number: AB-180427-004

Analyte(s)

Result
Units
Q
Limit
Dilution
Date and Time

Nitrite+Nitrate as Nitrogen

0.198
mg/L
0.05
1
4/27/2018
8:44

pH Method: SM 4500-H+ B, 2000

Aliquot #: 2018-1794-1-6 Batch Number: AB-180501-020

 Analyte(s)
 Result
 Units
 Q
 Limit
 Dilution
 Date and Time

 pH
 5.64
 units
 1
 4/26/2018
 12:45

Specific Conductance Method: EPA 120.1, 1982

Aliquot #: 2018-1794-1-9 Batch Number: AB-180501-023

Analyte(s) Result Units Q Limit Dilution Date and Time
Specific Conductance 888 uS/cm 1 1 4/26/2018 12:45

Water Temperature Method: SM 2550 B, 2000

Aliquot #: 2018-1794-1-7 Batch Number: AB-180501-022

Analyte(s)ResultUnitsQLimitDilutionDate and TimeWater Temperature16.0°C14/26/201812:45

Total Organic Carbon Method: SM 5310 C, 2011 Analyst: PR

Aliquot #: 2018-1794-2-1 Batch Number: AB-180427-001

Analyte(s)
Result
Units
Q
Limit
Dilution
Date and Time
Total Organic Carbon

1.16
mg/L
1
1
4/27/2018
14:11

This analytical report must be reproduced in its entirety

Collector: Associates, FTN Site: MW-8S Work Order Number: WO-180426-02

Sample Classification: Special Project: Old Midland

Matrix: Groundwater Collected: 4/26/2018 12:47

Sample Barcode: Sample Number: 2018-1794

Turbidity Method: EPA 2310 B, 2011

Aliquot #: 2018-1794-1-8 Batch Number: AB-180501-024

Analyte(s) Result Units Q Limit Dilution Date and Time
Turbidity 2.24 NTU 1 4/26/2018 12:45

Collector: Associates, FTN Site: MW-8D Work Order Number: WO-180426-02

Sample Classification: Special Project: Old Midland

Matrix: Groundwater Collected: 4/26/2018 13:05

Sample Barcode: Sample Number: 2018-1795

Alkalinity as CaCO3 Method: EPA 310.2 (Rev. 1974) Analyst: KH

Aliquot #: 2018-1795-1-1 Batch Number: AB-180427-005

Analyte(s) Result Units Q Limit Dilution Date and Time
Alkalinity 186 mg/L 6 1 4/27/2018 10:48

Anions Method: EPA 300.0 (Rev.2.1, 1993) Analyst: PR

Aliquot #: 2018-1795-1-2 Batch Number: AB-180427-003

				Reporting		Analysis
Analyte(s)	Result	Units	Q	Limit	Dilution	Date and Time
Sulfate	24.4	mg/L		0.5	1	4/27/2018 15:18
Chloride	20.1	mg/L		0.5	1	4/27/2018 15:18

Dissolved Oxygen Method: SM 4500-O G, 2011

Aliquot #: 2018-1795-1-5 Batch Number: AB-180501-021

				Reporting		Analysis
Analyte(s)	Result	Units	Q	Limit	Dilution	Date and Time
Dissolved Oxygen	1.77	mg/L			1	4/26/2018 13:03

Ferrous Iron Method: HACH Color disc/1,10 Phenanthroline

Aliquot #: 2018-1795-1-4 Batch Number: AB-180503-016

				Reporting		Analysis
Analyte(s)	Result	Units	Q	Limit	Dilution	Date and Time
Iron (Ferrous)	<0.500	mg/L		0.5	1	4/26/2018 13:03

ICP/MS Metals (Total) Method: EPA 200.8 (Rev. 5.4, 1994) Analyst: PR

Aliquot #: 2018-1795-3-1 Batch Number: AB-180509-008

Analyte(s) Result Units Q Limit Dilution Date and Time
Iron 362 ug/L 5 1 5/9/2018 15:40

Collector: Associates, FTN Site: MW-8D Work Order Number: WO-180426-02

Sample Classification: Special Project: Old Midland

Matrix: Groundwater Collected: 4/26/2018 13:05

Sample Barcode: Sample Number: 2018-1795

Nitrate +Nitrite as N Method: SM 4500-NO3 F, 2011 Analyst: KH

Aliquot #: 2018-1795-1-3 Batch Number: AB-180427-004

Analyte(s)

Result
Units
Q
Limit
Dilution
Date and Time

Nitrite+Nitrate as Nitrogen

0.139
mg/L
0.05
1
4/27/2018
8:45

pH Method: SM 4500-H+ B, 2000

Aliquot #: 2018-1795-1-6 Batch Number: AB-180501-020

 Analyte(s)
 Result
 Units
 Q
 Limit
 Dilution
 Date and Time

 pH
 7.51
 units
 1
 4/26/2018 13:03

Specific Conductance Method: EPA 120.1, 1982

Aliquot #: 2018-1795-1-9 Batch Number: AB-180501-023

Analyte(s) Result Units Q Limit Dilution Date and Time
Specific Conductance 382 uS/cm 1 1 4/26/2018 13:03

Water Temperature Method: SM 2550 B, 2000

Aliquot #: 2018-1795-1-7 Batch Number: AB-180501-022

Analyte(s) Result Units Q Limit Dilution Date and Time
Water Temperature 16.8 °C 1 4/26/2018 13:03

Total Organic Carbon Method: SM 5310 C, 2011 Analyst: PR

Aliquot #: 2018-1795-2-1 Batch Number: AB-180427-001

Analyte(s)
Result
Units
Q
Limit
Dilution
Date and Time

1 1 4/27/2018 14:30

This analytical report must be reproduced in its entirety

Collector: Associates, FTN Site: MW-8D Work Order Number: WO-180426-02

Sample Classification: Special Project: Old Midland

Matrix: Groundwater Collected: 4/26/2018 13:05

Sample Barcode: Sample Number: 2018-1795

Turbidity Method: EPA 2310 B, 2011

Aliquot #: 2018-1795-1-8 Batch Number: AB-180501-024

Analyte(s) Result Units Q Limit Dilution Date and Time
Turbidity 7.38 NTU 1 4/26/2018 13:03

Collector: Associates, FTN Site: EB-9 Work Order Number: WO-180426-02

Sample Classification: Special Project: Old Midland

Matrix: Groundwater Collected: 4/26/2018 14:20

Sample Barcode: Sample Number: 2018-1796

Alkalinity as CaCO3 Method: EPA 310.2 (Rev. 1974) Analyst: KH

Aliquot #: 2018-1796-1-1 Batch Number: AB-180427-005

				Reporting		Analysis
Analyte(s)	Result	Units	Q	Limit	Dilution	Date and Time
Alkalinity	40.6	mg/L		6	1	4/27/2018 10:56

Anions Method: EPA 300.0 (Rev.2.1, 1993) Analyst: PR

Aliquot #: 2018-1796-1-2 Batch Number: AB-180427-003

				Reporting		Analysis
Analyte(s)	Result	Units	Q	Limit	Dilution	Date and Time
Sulfate	<0.500	mg/L		0.5	1	4/27/2018 15:48
Chloride	<0.500	mg/L		0.5	1	4/27/2018 15:48

ICP/MS Metals (Total) Method: EPA 200.8 (Rev. 5.4, 1994) Analyst: PR

Aliquot #: 2018-1796-3-1 Batch Number: AB-180509-008

				Reporting		Analysis
Analyte(s)	Result	Units	Q	Limit	Dilution	Date and Time
Iron	<5.00	ug/L		5	1	5/9/2018 15:46

Nitrate +Nitrite as N Method: SM 4500-NO3 F, 2011 Analyst: KH

Aliquot #: 2018-1796-1-3 Batch Number: AB-180427-004

				Reporting		Analysis
Analyte(s)	Result	Units	Q	Limit	Dilution	Date and Time
Nitrite+Nitrate as Nitrogen	<0.0500	mg/L		0.05	1	4/27/2018 8:46

Total Organic Carbon Method: SM 5310 C, 2011 Analyst: PR

Aliquot #: 2018-1796-2-1 Batch Number: AB-180427-001

				Reporting		Anaiysis
Analyte(s)	Result	Units	Q	Limit	Dilution	Date and Time
Total Organic Carbon	<1.00	mg/L		1	1	4/27/2018 15:24

Collector: Associates, FTN Site: EB-10 Work Order Number: WO-180426-02

Sample Classification: Special Project: Old Midland

Matrix: Groundwater Collected: 4/26/2018 13:40

Sample Barcode: Sample Number: 2018-1797

Alkalinity as CaCO3 Method: EPA 310.2 (Rev. 1974) Analyst: KH

Aliquot #: 2018-1797-1-1 Batch Number: AB-180427-005

				Reporting		Analysis
Analyte(s)	Result	Units	Q	Limit	Dilution	Date and Time
Alkalinity	<6.00	mg/L		6	1	4/27/2018 10:57

Anions Method: EPA 300.0 (Rev.2.1, 1993) Analyst: PR

Aliquot #: 2018-1797-1-2 Batch Number: AB-180427-003

				Reporting		Analysis
Analyte(s)	Result	Units	Q	Limit	Dilution	Date and Time
Sulfate	<0.500	mg/L		0.5	1	4/27/2018 15:55
Chloride	<0.500	mg/L		0.5	1	4/27/2018 15:55

ICP/MS Metals (Total) Method: EPA 200.8 (Rev. 5.4, 1994) Analyst: PR

Aliquot #: 2018-1797-3-1 Batch Number: AB-180509-008

				Reporting		Analysis
Analyte(s)	Result	Units	Q	Limit	Dilution	Date and Time
Iron	<5.00	ug/L		5	1	5/9/2018 15:52

Nitrate +Nitrite as N Method: SM 4500-NO3 F, 2011 Analyst: KH

Aliquot #: 2018-1797-1-3 Batch Number: AB-180427-004

				Reporting		Analysis
Analyte(s)	Result	Units	Q	Limit	Dilution	Date and Time
Nitrite+Nitrate as Nitrogen	<0.0500	mg/L		0.05	1	4/27/2018 8:48

Total Organic Carbon Method: SM 5310 C, 2011 Analyst: PR

Aliquot #: 2018-1797-2-1 Batch Number: AB-180427-001

				Reporting		Analysis
Analyte(s)	Result	Units	Q	Limit	Dilution	Date and Time
Total Organic Carbon	<1.00	mg/L		1	1	4/27/2018 15:44

Collector: Associates, FTN Site: IDW-1 Work Order Number: WO-180426-02

Sample Classification: Special Project: Old Midland

Matrix: Groundwater Collected: 4/26/2018 14:10

Sample Barcode: Sample Number: 2018-1798

Alkalinity as CaCO3 Method: EPA 310.2 (Rev. 1974) Analyst: KH

Aliquot #: 2018-1798-1-1 Batch Number: AB-180427-005

				Reporting		Analysis
Analyte(s)	Result	Units	Q	Limit	Dilution	Date and Time
Alkalinity	150	mg/L		6	1	4/27/2018 10:58

Anions Method: EPA 300.0 (Rev.2.1, 1993) Analyst: PR

Aliquot #: 2018-1798-1-2 Batch Number: AB-180427-003

				Reporting		Analysis
Analyte(s)	Result	Units	Q	Limit	Dilution	Date and Time
Sulfate	86.5	mg/L		0.5	1	4/27/2018 16:02
Chloride	85.7	mg/L		0.5	1	4/27/2018 16:02

ICP/MS Metals (Total) Method: EPA 200.8 (Rev. 5.4, 1994) Analyst: PR

Aliquot #: 2018-1798-3-1 Batch Number: AB-180509-008

				Reporting		Analysis
Analyte(s)	Result	Units	Q	Limit	Dilution	Date and Time
Iron	13800	ug/L		50	10	5/10/2018 12:30

Nitrate +Nitrite as N Method: SM 4500-NO3 F, 2011 Analyst: KH

Aliquot #: 2018-1798-1-3 Batch Number: AB-180427-004

				Reporting		Analysis
Analyte(s)	Result	Units	Q	Limit	Dilution	Date and Time
Nitrite+Nitrate as Nitrogen	0.0845	mg/L		0.05	1	4/27/2018 8:51

Total Organic Carbon Method: SM 5310 C, 2011 Analyst: PR

Aliquot #: 2018-1798-2-1 Batch Number: AB-180427-001

				Reporting		Anaiysis
Analyte(s)	Result	Units	Q	Limit	Dilution	Date and Time
Total Organic Carbon	2.30	mg/L		1	1	4/27/2018 16:01

QUALITY CONTROL REPORT

Project: Old Midland 2018 1785-1798

Date and Time Received: 04/26/2018 16:14

Analyte	Units	Method Blank	Reporting Limit	% Recovery LCS/LCSD		% RPD Lab Dup Result	Limits	% Recovery % RPD MS/MSD	Limits	% RPD	Limits	Qualifiers
Alkalinity as CaCO3		EPA 31	10.2 (Rev.	1974)	Batch #:	AB-180426-035		Parent Sample:	2018-1772			
Alkalinity	mg/L	<6.00	6.00	99.6 /	90-110	107	0-20	6.9 /	-		0-20	
Total Organic Carbon		SM 531	10 C, 2011		Batch #:	AB-180427-001		Parent Sample:	2018-1785			
Total Organic Carbon	mg/L	<1.00	1.00	104.2 /	85-115	I	-	N/A 103.1 / 101.1	80-120	1.9	-	
Anions		EPA 30 1993)	00.0 (Rev.2	2.1,	Batch #:	AB-180427-002		Parent Sample:	2018-1772			
Chloride	mg/L	<0.500	0.50	101.8 /	90-110	89.6	0-20	0.3 85.9 / 86.2	80-120	0.0	0-20	
Sulfate	mg/L	<0.500	0.50	102.5 /	90-110	158	0-20	0.2 MBA/MBA	80-120	0.0	0-20	MBA
Anions		EPA 3(1993)	00.0 (Rev.	2.1,	Batch #:	AB-180427-003		Parent Sample:	2018-1795			
Chloride	mg/L	<0.500	0.50	101.9 /	90-110	20.2	0-20	0.3 91.0 / 97.4	80-120	2.4	0-20	
Sulfate	mg/L	<0.500	0.50	102.4 /	90-110	24.4	0-20	0.4 88.5 / 94.8	80-120	1.9	0-20	
Nitrate +Nitrite as N		SM 450	00-NO3 F,	2011	Batch #:	AB-180427-004		Parent Sample:	2018-1785			
Nitrate +Nitrite as N Nitrite+Nitrate as Nitrogen	mg/L	<0.0500	0.05	101.0 /	80-120	0.297	0-20	0.7 102.3 / 99.0	80-120	2.2	0-20	ı
	mg/L			1				•				ı
Alkalinity as CaCO3	_	EPA 31	10.2 (Rev.		Batch #:	AB-180427-005		Parent Sample:	2018-1795		0.00	
Alkalinity	mg/L			1	-	190	0-20	2.1 /	-		0-20	I
ICP/MS Metals (Total)		EPA 20 1994)	00.8 (Rev.	5.4,	Batch #:	AB-180509-008		Parent Sample:	2018-1801			
Iron	ug/L	<5.00	5.00	105.0 /	85-115	1	-	103.4 / 100.5	70-130	2.7	-	R

Arkansas Department Environmental Quality for Compliance, Enforcement, or Emergency Samples

WO-180426-02

Facility or Project Name		AFIN # / County		Sar	mple	- 1		Parai	neters	Requ	ested			ntainer Ty			Media Code	Preserv	ation Code
Old Midland Products			С	harac	terist	ics		Total	No. of	f Conta	iners			Polyethylene/Plastic W = water			A = Cool	to ≤ 6°C	
Ola, Arkansa		75-00049	(2)					Ŧ,	it.	(-)			G = G		-1	G =	groundwater	B = Sulfu	ric Acid
Function Code 5	0014		ite					P	fate calir				1 1 1	mber Glas			liquid (not wate		11/20 20812089
Printed Name of Sampler(s)			sodi			be		SP	sul all				0 = 01	ther (Spec	ify)	No. of Concession, Name of Street, or other Designation, Name of Street, Name	soil or solid	D = NaO	H
			Jom C	be /be		Ty		S (P	ide, e-N							STATE OF STATE	edible tissue	E = Sodium	
			Grab (1) or Composite (2)	Container Type	apc	Preservation Type		Semivolatiles (PCP, PAH, Carbazole)	Anions chloride, sulfate, nitrate+ nitrite-N, alkalinity	ا ہ ا			Instantan	eous =			whole fish	F = Othe	r (specify)
	D . O	- 0	Ξ	aine	Media Code	erva	1	vola	IS C e+ r	Total Iron			Flow	Field May			other		Lab#
Sample ID	Date Collected	Time Collected	irab	ont	ledi	res	100	emi	nior	otal			DO (mg/L)	pH (SU)	Temp (*C)	Time	Latitude (dd.ddddd)	Longitude (dd.ddddd)	2018
1	(mm/dd/yy)	(hh:mm)						00			-	-					(dd.ddddd)	(uu.uuuu)	
MW-175	4/25/18	1439	1	0	G	F	1	1	1	1			0.64		14.8	1521			1785
RW-1		1448		- 4									0.70	6.70	15.6	1446	1		1786
EB-7		1535											NA	N/A	NIA	NA			1787
EB-8	V	1930											1	1		1			1788
NEELEX	4/26/18	1120											0,26	6.99	14,4	1119			1789
MW-185		0 938											0.56	6.11	14,7	0836			1790
MW-18D		0925											0,58	6.78	14,7	0973			1791
MW-03D		0926											0.36	6.77	15,4	0974			1792
MW-035		0848											0.96	6.19	14,7	0846			1793
Mw-085		1247											0.68	5,64	16.0	1245			1794
MU-08D		1305											1,77	7.51	16.8	1303			1795
EB-9		1420											N/4	NIA	NIA	NIA			1796
EB-10		1340												- 1).	3"			1797
IDW-1		1410											1	1	1	4			1798
															ž				i.e.
ie.															4.				
															, ,				
SAMPLE CONDITION UPON RECEIPT IN LAB REMARKS / SAMPLE COMMENTS 1. Containers Correct ✓ Yes No Report results to Dianna Kilburn 682-0844 or Tyler Wright 683-0068; ADEQ Laboratory number 501-682-0955;																			
1. Containers Correct		eport results to Dia harge time to fun	anna	Kilbu	rn 682	2-0844	4 or Ty	ler Wr	ght 68	33-006	3; ADEQ) Lat	oratory n	umber 501	-682-0955	<u>;</u>			
2. COC & Labels Agree		narge time to fun	ction	coa	e 500	14													
3. Received On Ice	Yes No																	((7)
	3.50€																		0
FOR COMPLETION BY L	AB ONLY																		

	Arkansas Department C Chain-o			TAL QUALIT	Y	
Date 4/26/14	Sampler	(print)	ALEX	HAMLEN.	ELIZABETH	STUDEBAKER
Site Identification	Old Midland Products; A	FIN 7	5-000	049; EPA	Id# ARD	980745665
Site Address	Hwy 10 Ola, AR 72853					
Sample ID	Sample Remarks	Time (h	hmm)	Latitude	Longitude	Lab.ID
MW-175		1439				19
RW-1	in a second of the second of t	144	ક			9 (²⁾
EB-7		1535	-			
EB-8		1530				
NEELEX		1170	i i	147		
MW-185		0839	В			
MW-181)		092	Ş			
MW-031)		09	26			
MW-035		0848	S			
MW-085		1245	7-			
MW-08D		1305	_			
EB-9	EWS END OF MAY BLANK	142	e)		£	
EB-10	ASH END of DAY BLANK	1340)			
Inw-1	*	1410	,			
	,				15	
	tody seal on each container?: YES	s No		els/COC agr	ee?: (YE) 1	NO
Date/Time	Relinquished By			ived By		
1/76/18	Name/Title ALEX HAMIEN		Name/I	Jim CRAC	FIL	
Time	Signature		Signatur	TO CRAYO	FIRE	
1431	ales Han			tini (
Date 4/26/18	Name/Title		Name	a / /	0 ,	
Time	Signature Signature		Signatu	Patrick 1	Rawhouges	
1614	The Constant		1	h Fe		
Date	Name/Title		Name/1	itle		
Time	Signature		Signatu	re		
Date	Name/Title		Name/T	itle		,
Time	, Signature		Signatu	re		

Legal COC Form Revision 001 Effective Date: 04/16/2018

Sample ID: 2018-1700 Operator: Ed Harris

Instrument ID: MS Instrument #1
Last Calibration:

Last Calibration: 5/23/2018 12:35 Acquisition Date: 5/23/2018 16:32

64 4-6-Dintro-2-methylpheno

Target Compounds

Extracted Sample EB-2 Extracted Date 04-25-2018 Extracted by EH, JR

Acceptance Reported Peaks: 91("#" Criteria % Rec. % Recovery Result Amount Units Qualifier 7 2-Fluorophenol (Surr.) 15-80 55.88 ug/L 8 Nitrobenzene-d5 (Surr.) 50-150 98.84 ug/L 9 2-Fluorobiphenyl (Surr.) 50-150 90.21 ug/L 10 2-4-6-Tribromophenol (Su 50-150 79.77 ug/L 11 Terphenyl-d14 (Surr.) 50-150 131.51 ug/L 12 Methyl Methanesulfonate < 0.2 ug/L 13 Ethyl methanesulfonate < 0.2 ug/L 14 Phenol < 0.2 ug/L 15 Aniline < 0.2 ug/L ug/L 16 Bis(2-chloroethyl) ether < 0.2 17 2-Chlorophenol < 0.2 ug/L 18 1,3-Dichlorobenzene < 0.2 ug/L 19 1.4-Dichlorobenzene < 0.2 ug/L 20 Benzyl Alcohol < 0.2 ug/L 21 1,2-Dichlorobenzene < 0.2 ug/L 22 2-Methylphenol < 0.2 ug/L 23 4-Methylphenol < 0.2 ug/L 24 Acetophenone < 0.2 ug/L 25 N-Nitroso-di-n-propylami < 0.2 ug/L 26 Hexachloroethane < 0.2 ug/L 27 Nitrobenzene < 0.2 ug/L 28 N-Nitrosopiperidine < 0.2 ug/L 29 Isophorone < 0.2 ug/L 30 2-Nitrophenol < 0.4 ug/L 31 2,4-Dimethylphenol < 0.2 ug/L 32 Bis(2-chloroethoxy) meth < 0.2 ug/L 33 2-4-Dichlorophenol < 0.2 ug/L 34 1-2-4-Trichlorobenzene < 0.2 ug/L 35 Naphthalene < 0.2 ug/L 36 4-Chloroaniline < 0.2 ug/L 37 2-6-Dichlorophenol < 0.2 ug/L 38 Hexachlorobutadiene < 0.2 ug/L 39 N-Nitrosodibutylamine < 0.2 ug/L 40 4-Chloro-3-methylphenol < 0.2 ug/L 41 2-Methylnaphthalene < 0.2 ug/L 42 1-2-4-5-Tetrachlorobenze < 0.2 ug/L 43 Hexachlorocyclopentadien < 0.2 ug/L 44 2,4,6-Trichlorophenol < 0.2 ug/L 45 2,4,5-Trichlorophenol < 0.2 ug/L 46 2-Chloronaphthalene < 0.2 ug/L 47 1-Chloronaphthalene < 0.2 ug/L 48 2-Nitroaniline < 0.2 ug/L 49 Dimethyl-phthalate < 0.2 ug/L < 0.2 50 Acenaphthylene ug/L 51 2-6-Dinitrotoluene < 0.2 ug/L 52 3-Nitroaniline < 0.2 ug/L 53 Acenaphthene < 0.2 ug/L 54 2-4-Dinitrophenol < 2.0 ug/L 55 Dibenzofuran < 0.2 ug/L 56 4-Nitrophenol < 1.0 ug/L 57 Pentachlorobenzene < 0.2 ug/L 58 2-4-Dinitrotoluene < 0.2 ug/L 59 2-3-4-6-Tetrachloropheno < 0.4 ug/L 60 Fluorene < 0.2 ug/L 61 Diethylphthalate < 0.2 ug/L 62 4-Chlorophenyl-phenyl et < 0.2 ug/L 63 4-Nitroaniline < 0.2 ug/L

< 2.0

ug/L

6	5 Diphenylamine	< 0.2	ug/L	
6	6 Azobenzene	< 0.2	ug/L	
6	7 4-Bromophenyl-phenyl eth	< 0.2	ug/L	
6	8 Hexachlorobenzene	< 0.2	ug/L	
6	9 Pentachlorophenol	< 1.0	ug/L	
7	0 Pentachloronitrobenzene	< 0.2	ug/L	
7	1 Pronamide	< 0.2	ug/L	
7	2 Phenanthrene	< 0.2	ug/L	
7	3 Anthracene	< 0.2	ug/L	
7	4 Carbazole	< 0.2	ug/L	
7	5 Di-n-butylphthalate	< 0.2	ug/L	
7	6 Fluoranthene	< 0.2	ug/L	
7	7 Pyrene	< 0.2	ug/L	
7	8 Dimethylaminoazobenzene	< 0.2	ug/L	
7	9 Butylbenzyl phthalate	< 0.2	ug/L	
8	0 Benz[a]anthracene	< 0.2	ug/L	
8	1 Chrysene	< 0.2	ug/L	
8	2 Bis(2-ethylhexyl) phthal	0.24	ug/L	B-Present
8	3 Di-n-octyl phthalate	< 0.2	ug/L	Lanalyte
8	4 Benzo[b]fluoranthene	< 0.2	ug/L	
8	5 Dimethylbenzo(a)anthrace	< 0.2	ug/L	
8	6 Benzo(k)fluoranthene	< 0.2	ug/L	
8	7 Benzo(a)pyrene	< 0.2	ug/L	
8	8 3-Methylcholanthrene	< 0.2	ug/L	
8	9 Indeno[1-2-3-cd]pyrene	< 0.2	ug/L	
9	0 Dibenz(a-h)anthracene	< 0.2	ug/L	Lanalyte
9	1 Benzo(ghi)perylene	< 0.2	ug/L	

B-Present in the Method Blank at 0.22 ug/L; L--analyte failed (high) to meet acceptance criteria in the LCS; result MAY be biased high L--analyte failed (high) to meet acceptance criteria in the LCS; failure has NO effect on non-detect results

L--analyte failed (high) to meet acceptance criteria in the LCS; failure has NO effect on non-detect results

2018-1701 Sample ID: Operator: Ed Harris Instrument ID:

MS Instrument #1

Last Calibration: 5/24/2018 11:27 Acquisition Date: 5/25/2018 10:31

Extracted Sample MW-23 Extracted Date 04-25-2018 Extracted by EH, JR

 $NOTE: MW-23 \ was \ used \ as \ the \ "parent" \ sample \ in \ the \ preparation \ of \ the \ Matrix \ Spike/Matrix \ Spike \ duplicate$

Target Compounds

Target Compour	nds					
		Acceptance		Reported		0.110
Peaks: 91("#"	Peak Name	Criteria % Rec.	% Recovery	Result	Amount Units	Qualifier
	7 2-Fluorophenol (Surr.)	15-80	51.9		ug/L	
	8 Nitrobenzene-d5 (Surr.)	50-150	78.7 79		ug/L	
	9 2-Fluorobiphenyl (Surr.)	50-150 50-150	89.6		ug/L	
	10 2-4-6-Tribromophenol (Su				ug/L	
	11 Terphenyl-d14 (Surr.)	50-150	102.6		ug/L	
	12 Methyl Methanesulfonate			< 0.2	ug/L	
	13 Ethyl methanesulfonate			< 0.2	ug/L	
	14 Phenol			< 0.2	ug/L	AA AA LA GUADA AA
	15 Aniline			< 0.2	ug/L	MAnalyte failed (low) to meet acceptance criteria for MS and/or MSD recovery; result MAY be biased low
	16 Bis(2-chloroethyl) ether			< 0.2	ug/L	
	17 2-Chlorophenol			< 0.2	ug/L	
	18 1,3-Dichlorobenzene			< 0.2	ug/L	
	19 1,4-Dichlorobenzene			< 0.2	ug/L	
	20 Benzyl Alcohol			< 0.2	ug/L	
	21 1,2-Dichlorobenzene			< 0.2	ug/L	
	22 2-Methylphenol			< 0.2	ug/L	
	23 4-Methylphenol			< 0.2	ug/L	
	24 Acetophenone			< 0.2	ug/L	
	25 N-Nitroso-di-n-propylami			< 0.2	ug/L	
	26 Hexachloroethane			< 0.2	ug/L	
	27 Nitrobenzene			< 0.2	ug/L	
	28 N-Nitrosopiperidine			< 0.2	ug/L	
	29 Isophorone			< 0.2	ug/L	
	30 2-Nitrophenol			< 0.4	ug/L	
	31 2,4-Dimethylphenol			< 0.2	ug/L	
	32 Bis(2-chloroethoxy) meth			< 0.2	ug/L	
	33 2-4-Dichlorophenol			< 0.2	ug/L	
	34 1-2-4-Trichlorobenzene			< 0.2	ug/L	
	35 Naphthalene			< 0.2	ug/L	
	36 4-Chloroaniline			< 0.2	ug/L	
	37 2-6-Dichlorophenol			< 0.2	ug/L	
	38 Hexachlorobutadiene			< 0.2	ug/L	
	39 N-Nitrosodibutylamine			< 0.2	ug/L	
	40 4-Chloro-3-methylphenol			< 0.2 < 0.2	ug/L	
	41 2-Methylnaphthalene				ug/L	
	42 1-2-4-5-Tetrachlorobenze			< 0.2	ug/L	
	43 Hexachlorocyclopentadien			< 0.2	ug/L	
	44 2,4,6-Trichlorophenol 45 2,4,5-Trichlorophenol			< 0.2 < 0.2	ug/L	
				< 0.2	ug/L	
	46 2-Chloronaphthalene 47 1-Chloronaphthalene			< 0.2	ug/L ug/L	
	48 2-Nitroaniline			< 0.2	ug/L ug/L	
	49 Dimethyl-phthalate			< 0.2		
	50 Acenaphthylene			< 0.2	ug/L	
	51 2-6-Dinitrotoluene			< 0.2	ug/L ug/L	
	52 3-Nitroaniline			< 0.2	ug/L	
	53 Acenaphthene			< 0.2	ug/L	
	54 2-4-Dinitrophenol			< 2.0	ug/L ug/L	
	55 Dibenzofuran			< 0.2	ug/L ug/L	
	56 4-Nitrophenol			< 1.0	ug/L ug/L	RRPD of MS/MSD failed to meet acceptance criteria
	57 Pentachlorobenzene			< 0.2	ug/L ug/L	in the or may made railed to meet acceptance criteria
	58 2-4-Dinitrotoluene			< 0.2	ug/L ug/L	
	59 2-3-4-6-Tetrachloropheno			< 0.4	ug/L ug/L	RRPD of MS/MSD failed to meet acceptance criteria
	60 Fluorene			< 0.4	ug/L ug/L	II. III. 5 5. III.5/III.55 falled to filect acceptance criteria
	61 Diethylphthalate			< 0.2	ug/L ug/L	
	62 4-Chlorophenyl-phenyl et			< 0.2	ug/L ug/L	
	63 4-Nitroaniline			< 0.2	ug/L ug/L	
	64 4-6-Dintro-2-methylpheno			< 2.0	ug/L ug/L	
	5 5 Dina 2 meanyipheno			. 2.0	~6/ L	

65 Diphenylamine	< 0.2	ug/L	
66 Azobenzene	< 0.2	ug/L	
67 4-Bromophenyl-phenyl eth	< 0.2	ug/L	
68 Hexachlorobenzene	< 0.2	ug/L	
69 Pentachlorophenol	< 1.0	ug/L	
70 Pentachloronitrobenzene	< 0.2	ug/L	
71 Pronamide	< 0.2	ug/L	
72 Phenanthrene	< 0.2	ug/L	
73 Anthracene	< 0.2	ug/L	
74 Carbazole	< 0.2	ug/L	
75 Di-n-butylphthalate	< 0.2	ug/L	
76 Fluoranthene	< 0.2	ug/L	
77 Pyrene	< 0.2	ug/L	
78 Dimethylaminoazobenzene	< 0.2	ug/L	
79 Butylbenzyl phthalate	< 0.2	ug/L	
80 Benz[a]anthracene	< 0.2	ug/L	
81 Chrysene	< 0.2	ug/L	
82 Bis(2-ethylhexyl) phthal	0.3	28 ug/L	Bpresent in the method blank at 0.22 ug/L; Lanalyte failed (high) to meet accepance criteria in the LCS; result MAY be biased high
83 Di-n-octyl phthalate	< 0.2	ug/L	Lanalyte failed (high) to meet accepance criteria in the LCS;; failure has NO effect on non-detect results
84 Benzo[b]fluoranthene	< 0.2	ug/L	
85 Dimethylbenzo(a)anthrace	< 0.2	ug/L	
86 Benzo(k)fluoranthene	< 0.2	ug/L	
87 Benzo(a)pyrene	< 0.2	ug/L	
88 3-Methylcholanthrene	< 0.2	ug/L	
89 Indeno[1-2-3-cd]pyrene	< 0.2	ug/L	
90 Dibenz(a-h)anthracene	< 0.2	ug/L	Lanalyte failed (high) to meet accepance criteria in the LCS; ; failure has NO effect on non-detect results
91 Benzo(ghi)perylene	< 0.2	ug/L	

Sample ID: 2018-1701 Dup Operator: Ed Harris

Extracted Sample MW-23 Extracted Date 04-25-2018 Instrument MS Instrument #1 Extracted by EH, JR

5/24/2018 11:27 Last Calibra 5/25/2018 11:00 Acquisition

Target	Compounds

Target Compounds	Acceptance		Reporte	d		RPD
Peaks: 91(" Peak Name	Criteria % Rec.	% Recovery	Result	Amount Ur RPE		Acc. Criteria Qualifier
7 2-Fluorophenol (Surr.)	15-80	48.9		ug/L	D (70)	Activities against
8 Nitrobenzene-d5 (Surr.)	50-150	75.8		ug/L		
9 2-Fluorobiphenyl (Surr.)	50-150	77.8		ug/L		NA target analyte was Non-detect in the sample and dup
10 2-4-6-Tribromophenol (Su	50-150	96.2		ug/L		the target analyte was non-detect in the sample and dap
11 Terphenyl-d14 (Surr.)	50-150	100.5		ug/L		
12 Methyl Methanesulfonate	30 130	100	< 0.2		NA	
13 Ethyl methanesulfonate			< 0.2		NA	
14 Phenol			< 0.2		NA	
15 Aniline			< 0.2		NA	MAnalyte failed (low) to meet acceptance criteria for MS and/or MSD recovery; result MAY be biased Low
16 Bis(2-chloroethyl) ether			< 0.2		NA	Wi-Arrangte failed (low) to friend acceptance criteria for wis analysis wisb recovery, result wint be blased low
17 2-Chlorophenol			< 0.2		NA	
18 1,3-Dichlorobenzene			< 0.2	0.	NA	
19 1,4-Dichlorobenzene			< 0.2		NA	
20 Benzyl Alcohol				-	NA	
21 1,2-Dichlorobenzene			< 0.2		NA	
22 2-Methylphenol 23 4-Methylphenol			< 0.2 < 0.2		NA NA	
24 Acetophenone			< 0.2	-	NA	
25 N-Nitroso-di-n-propylami			< 0.2		NA	
26 Hexachloroethane			< 0.2		NA	
27 Nitrobenzene			< 0.2		NA	
28 N-Nitrosopiperidine			< 0.2		NA	
29 Isophorone			< 0.2		NA	
30 2-Nitrophenol			< 0.4		NA	
31 2,4-Dimethylphenol			< 0.2		NA	
32 Bis(2-chloroethoxy) meth			< 0.2		NA	
33 2-4-Dichlorophenol			< 0.2	-	NA	
34 1-2-4-Trichlorobenzene			< 0.2		NA	
35 Naphthalene			< 0.2	0.	NA	
36 4-Chloroaniline			< 0.2		NA	
37 2-6-Dichlorophenol			< 0.2		NA	
38 Hexachlorobutadiene			< 0.2		NA	
39 N-Nitrosodibutylamine			< 0.2		NA	
40 4-Chloro-3-methylphenol			< 0.2		NA	
41 2-Methylnaphthalene			< 0.2		NA	
42 1-2-4-5-Tetrachlorobenze			< 0.2		NA	
43 Hexachlorocyclopentadien			< 0.2		NA	
44 2,4,6-Trichlorophenol			< 0.2	0.	NA	
45 2,4,5-Trichlorophenol			< 0.2		NA	
46 2-Chloronaphthalene			< 0.2		NA	
47 1-Chloronaphthalene			< 0.2		NA	
48 2-Nitroaniline			< 0.2		NA	
49 Dimethyl-phthalate			< 0.2		NA	
50 Acenaphthylene			< 0.2	- 01	NA	
51 2-6-Dinitrotoluene			< 0.2		NA	
52 3-Nitroaniline			< 0.2		NA	
53 Acenaphthene			< 0.2		NA	
54 2-4-Dinitrophenol			< 2.0		NA	
55 Dibenzofuran			< 0.2		NA	
56 4-Nitrophenol			< 1.0			RRPD of MS/MSD failed to meet acceptance criteria
57 Pentachlorobenzene			< 0.2		NA	
58 2-4-Dinitrotoluene			< 0.2		NA	
59 2-3-4-6-Tetrachloropheno			< 0.4	0.		RRPD of MS/MSD failed to meet acceptance criteria
60 Fluorene			< 0.2		NA	
61 Diethylphthalate			< 0.2		NA	
62 4-Chlorophenyl-phenyl et			< 0.2		NA	
63 4-Nitroaniline			< 0.2		NA	
64 4-6-Dintro-2-methylpheno			< 2.0	0.	NA	
65 Diphenylamine			< 0.2		NA	
66 Azobenzene			< 0.2	0.	NA	
67 4-Bromophenyl-phenyl eth			< 0.2	0.	NA	
68 Hexachlorobenzene			< 0.2		NA	
69 Pentachlorophenol			< 1.0		NA	
70 Pentachloronitrobenzene			< 0.2	ug/L	NA	

71 Pronamide	< 0.2	ug/L	NA		
72 Phenanthrene	< 0.2	ug/L	NA		
73 Anthracene	< 0.2	ug/L	NA		
74 Carbazole	< 0.2	ug/L	NA		
75 Di-n-butylphthalate	< 0.2	ug/L	NA		
76 Fluoranthene	< 0.2	ug/L	NA		
77 Pyrene	< 0.2	ug/L	NA		
78 Dimethylaminoazobenzene	< 0.2	ug/L	NA		
79 Butylbenzyl phthalate	< 0.2	ug/L	NA		
80 Benz[a]anthracene	< 0.2	ug/L	NA		
81 Chrysene	< 0.2	ug/L	NA		
82 Bis(2-ethylhexyl) phthal	0.	25 ug/L	13.5	0-20	BPresent in the MB at 0.22 ug/L; Lanalyte failed (high) to recover within acceptance criteria in the LCS; result MAY be biased high
82 Bis(2-ethylhexyl) phthal 83 Di-n-octyl phthalate	0. < 0.2	25 ug/L ug/L	13.5 0.93	0-20 0-20	BPresent in the MB at 0.22 ug/L; Lanalyte failed (high) to recover within acceptance criteria in the LCS; result MAY be biased high Lanalyte failed (high) to recover within acceptance criteria in the LCS; failure has NO effect on non-detect results
		-			
83 Di-n-octyl phthalate	< 0.2	ug/L	0.93		
83 Di-n-octyl phthalate 84 Benzo[b]fluoranthene	< 0.2 < 0.2	ug/L ug/L	0.93 NA		
83 Di-n-octyl phthalate 84 Benzo[b]fluoranthene 85 Dimethylbenzo(a)anthrace	< 0.2 < 0.2 < 0.2	ug/L ug/L ug/L	0.93 NA NA		
83 Di-n-octyl phthalate 84 Benzo[b]fluoranthene 85 Dimethylbenzo(a)anthrace 86 Benzo(k)fluoranthene	< 0.2 < 0.2 < 0.2 < 0.2	ug/L ug/L ug/L ug/L	0.93 NA NA NA		
83 Di-n-octyl phthalate 84 Benzo[b]fluoranthene 85 Dimethylbenzo(a)anthrace 86 Benzo(k)fluoranthene 87 Benzo(a)pyrene	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	ug/L ug/L ug/L ug/L ug/L	0.93 NA NA NA NA		
83 Di-n-octyl phthalate 84 Benzo[b]fluoranthene 85 Dimethylbenzo(a)anthrace 86 Benzo(k)fluoranthene 87 Benzo(a)pyrene 88 3-Methylcholanthrene	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	ug/L ug/L ug/L ug/L ug/L ug/L	0.93 NA NA NA NA NA		
83 Di-n-octyl phthalate 84 Benzo[b]fluoranthene 85 Dimethylbenzo(a)anthrace 86 Benzo(k)fluoranthene 87 Benzo(a)pyrene 83 3-Methylcholanthrene 89 Indeno[1-2-3-cd]pyrene	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.93 NA NA NA NA NA		L-analyte failed (high) to recover within acceptance criteria in the LCS; failure has NO effect on non-detect results

Sample ID: 2018-1702 Operator: Ed Harris

Instrument MS Instrument #1 Last Calibra

5/23/2018 12:35 Acquisition 5/23/2018 18:59

Target Compounds

	Acceptance		Reported		
Peaks: 91(' Peak Name	Criteria % Rec.	% Recovery	Result	Amount Units	Qualifier
7 2-Fluorophenol (Surr.)	15-80	40.15		ug/L	
8 Nitrobenzene-d5 (Surr.)	50-150	91.29		ug/L	
9 2-Fluorobiphenyl (Surr.)	50-150	86.92		ug/L	
10 2-4-6-Tribromophenol (Su	50-150	62.58		ug/L	
11 Terphenyl-d14 (Surr.)	50-150	104.23		ug/L	
12 Methyl Methanesulfonate			< 0.2	ug/L	
13 Ethyl methanesulfonate			< 0.2	ug/L	
14 Phenol			< 0.2	ug/L	
15 Aniline			< 0.2	ug/L	
16 Bis(2-chloroethyl) ether			< 0.2	ug/L	
17 2-Chlorophenol			< 0.2	ug/L	
18 1,3-Dichlorobenzene			< 0.2	ug/L	
19 1,4-Dichlorobenzene			< 0.2	ug/L	
20 Benzyl Alcohol			< 0.2	ug/L	
21 1,2-Dichlorobenzene			< 0.2	ug/L	
22 2-Methylphenol			< 0.2	ug/L	
23 4-Methylphenol			< 0.2	ug/L	
24 Acetophenone			< 0.2	ug/L	
25 N-Nitroso-di-n-propylami			< 0.2	ug/L	
26 Hexachloroethane			< 0.2	ug/L	
27 Nitrobenzene			< 0.2	ug/L	
28 N-Nitrosopiperidine			< 0.2	ug/L	
29 Isophorone			< 0.2	ug/L	
30 2-Nitrophenol			< 0.4	ug/L	
31 2,4-Dimethylphenol			< 0.2	ug/L	
32 Bis(2-chloroethoxy) meth			< 0.2	ug/L	
33 2-4-Dichlorophenol			< 0.2	ug/L	
34 1-2-4-Trichlorobenzene			< 0.2	ug/L	
35 Naphthalene			< 0.2	ug/L	
36 4-Chloroaniline			< 0.2	ug/L	
37 2-6-Dichlorophenol			< 0.2	ug/L	
38 Hexachlorobutadiene			< 0.2	ug/L	
39 N-Nitrosodibutylamine			< 0.2	ug/L	
40 4-Chloro-3-methylphenol			< 0.2	ug/L	
41 2-Methylnaphthalene			< 0.2	ug/L	
42 1-2-4-5-Tetrachlorobenze			< 0.2	ug/L	
43 Hexachlorocyclopentadien			< 0.2	ug/L	
44 2,4,6-Trichlorophenol			< 0.2	ug/L	
45 2,4,5-Trichlorophenol			< 0.2	ug/L	
46 2-Chloronaphthalene			< 0.2	ug/L	
47 1-Chloronaphthalene			< 0.2	ug/L	
48 2-Nitroaniline			< 0.2	ug/L	
49 Dimethyl-phthalate			< 0.2	ug/L	
50 Acenaphthylene			< 0.2	ug/L	
51 2-6-Dinitrotoluene			< 0.2	ug/L	
52 3-Nitroaniline			< 0.2	ug/L	
53 Acenaphthene			< 0.2	ug/L	
54 2-4-Dinitrophenol			< 2.0	ug/L	
55 Dibenzofuran			< 0.2	ug/L	
56 4-Nitrophenol			< 1.0	ug/L	
57 Pentachlorobenzene			< 0.2	ug/L	
58 2-4-Dinitrotoluene			< 0.2	ug/L	
59 2-3-4-6-Tetrachloropheno			< 0.4	ug/L	
60 Fluorene			< 0.2	ug/L	
61 Diethylphthalate			< 0.2	ug/L	
62 4-Chlorophenyl-phenyl et			< 0.2	ug/L	
oz i omorophenyi pilenyi et				6/	

Extracted Sample EB-1

Extracted by EH, JR

63	4-Nitroaniline	< 0.2	ug/L
64	4-6-Dintro-2-methylpheno	< 2.0	ug/L
65	Diphenylamine	< 0.2	ug/L
66	Azobenzene	< 0.2	ug/L
67	4-Bromophenyl-phenyl eth	< 0.2	ug/L
68	Hexachlorobenzene	< 0.2	ug/L
69	Pentachlorophenol	< 1.0	ug/L
70	Pentachloronitrobenzene	< 0.2	ug/L
71	Pronamide	< 0.2	ug/L
72	Phenanthrene	< 0.2	ug/L
73	Anthracene	< 0.2	ug/L
74	Carbazole	< 0.2	ug/L
75	Di-n-butylphthalate	< 0.2	ug/L
76	Fluoranthene	< 0.2	ug/L
77	Pyrene	< 0.2	ug/L
78	Dimethylaminoazobenzene	< 0.2	ug/L
79	Butylbenzyl phthalate	< 0.2	ug/L
80	Benz[a]anthracene	< 0.2	ug/L
81	Chrysene	< 0.2	ug/L
82	Bis(2-ethylhexyl) phthal	0.23	ug/L
83	Di-n-octyl phthalate	< 0.2	ug/L
84	Benzo[b]fluoranthene	< 0.2	ug/L
85	Dimethylbenzo(a)anthrace	< 0.2	ug/L
86	Benzo(k)fluoranthene	< 0.2	ug/L
87	Benzo(a)pyrene	< 0.2	ug/L
88	3-Methylcholanthrene	< 0.2	ug/L
89	Indeno[1-2-3-cd]pyrene	< 0.2	ug/L
90	Dibenz(a-h)anthracene	< 0.2	ug/L
91	Benzo(ghi)perylene	< 0.2	ug/L

B--Present in the MB at 0.22 ug/L; L-analyte failed (high) to meet acceptance criteria in the LCS; result MAY be biased high L--analyte failed (high) to meet acceptance criteria in the LCS; failure has NO effect on non-detect results

L--analyte failed (high) to meet acceptance criteria in the LCS; failure has NO effect on non-detect results

Sample ID: 2018-1703 Operator: Ed Harris

Operator: Ed Harris
Instrument MS Instrument #1

Last Calibra 5/24/2018 11:27 Acquisition 5/25/2018 12:28

Target Compounds

Target Compounds					
Peaks: 91(" Peak Name	Acceptance	9/ Basayanı	Reported	Amount Units	Qualifiers
7 2-Fluorophenol (Surr.)	Criteria % Rec. 15-80	% Recovery 42.08	Result	ug/L	Qualifiers
8 Nitrobenzene-d5 (Surr.)	50-150	56.86		ug/L ug/L	
9 2-Fluorobiphenyl (Surr.)	50-150	61.28		ug/L	
10 2-4-6-Tribromophenol (Su	50-150	63.35		ug/L ug/L	
11 Terphenyl-d14 (Surr.)	50-150	74.63		ug/L ug/L	
12 Methyl Methanesulfonate	30-130		< 0.2	ug/L	RRPD of MS/MSD failed to meet acceptance criteria
13 Ethyl methanesulfonate			< 0.2	ug/L	N=N D of Maj Mad falled to fileet acceptance Criteria
14 Phenol			< 0.2	ug/L ug/L	RRPD of MS/MSD failed to meet acceptance criteria; Manalyte failed (low) to recover within limits in the MS and/or MSD; result MAY be biased low
15 Aniline			< 0.2	ug/L	N=N D of MISH falled to friend acceptance Criteria, Mi=analyte falled (low) to recover within fillings in the MIS analyte MISD, result MIST be biased low
16 Bis(2-chloroethyl) ether			< 0.2	ug/L ug/L	RRPD of MS/MSD failed to meet acceptance criteria
17 2-Chlorophenol			< 0.2	ug/L ug/L	N-N-PD OF WIS/WISD falled to fileet acceptance criteria
18 1,3-Dichlorobenzene					D. D.D EAST (ASD failed to see the secretary principle M. such the failed (I am) to secretary within limited in the MC and (as MCD) and the MCD and
19 1,4-Dichlorobenzene			< 0.2	ug/L ug/L	RRPD of MS/MSD failed to meet acceptance criteria; Manalyte failed (low) to recover within limits in the MS and/or MSD; result MAY be biased low
20 Benzyl Alcohol			< 0.2	-	RRPD of MS/MSD failed to meet acceptance criteria
21 1,2-Dichlorobenzene			< 0.2	ug/L ug/L	KRPD OF MIS/MISD failed to meet acceptance criteria
· · · · · · · · · · · · · · · · · · ·			< 0.2		
22 2-Methylphenol 23 4-Methylphenol			< 0.2	ug/L ug/L	
15.5					
24 Acetophenone			< 0.2 < 0.2	ug/L	
25 N-Nitroso-di-n-propylami			< 0.2	ug/L	M. analysis failed (law) has an annual visiting limited in the NAC and law NACO, annuals NACO, the binned law.
26 Hexachloroethane				ug/L	Manalyte failed (low) to recover within limits in the MS and/or MSD; result MAY be biased low
27 Nitrobenzene			< 0.2	ug/L	
28 N-Nitrosopiperidine			< 0.2 < 0.2	ug/L	
29 Isophorone				ug/L	
30 2-Nitrophenol			< 0.4	ug/L	D DDD of MC/MCD fell of the second control of the file of the second control of the MCD
31 2,4-Dimethylphenol			< 0.2	ug/L	R-RPD of MS/MSD failed to meet acceptance criteria; M-analyte failed (low) to recover within limits in the MS and/or MSD; result MAY be biased low
32 Bis(2-chloroethoxy) meth			< 0.2 < 0.2	ug/L	
33 2-4-Dichlorophenol				ug/L	A COLOR OF THE ACCOUNT OF THE ACCOUN
34 1-2-4-Trichlorobenzene 35 Naphthalene			< 0.2 < 0.2	ug/L	Manalyte failed (low) to recover within limits in the MS and/or MSD; result MAY be biased low
·				ug/L	
36 4-Chloroaniline			< 0.2 < 0.2	ug/L	
37 2-6-Dichlorophenol				ug/L	M. analysis failed (law) has an annual visiting limited in the NAC and law NACO, annuals NACO, the binned law.
38 Hexachlorobutadiene			< 0.2	ug/L	Manalyte failed (low) to recover within limits in the MS and/or MSD; result MAY be biased low
39 N-Nitrosodibutylamine			< 0.2	ug/L	
40 4-Chloro-3-methylphenol 41 2-Methylnaphthalene			< 0.2 < 0.2	ug/L ug/L	
			< 0.2		
42 1-2-4-5-Tetrachlorobenze				ug/L	
43 Hexachlorocyclopentadien			< 0.2 < 0.2	ug/L	R-RPD of MS/MSD failed to meet acceptance criteria; M-analyte failed (low) to recover within limits in the MS and/or MSD; result MAY be biased low
44 2,4,6-Trichlorophenol			< 0.2	ug/L	
45 2,4,5-Trichlorophenol 46 2-Chloronaphthalene			< 0.2	ug/L	RRPD of MS/MSD failed to meet acceptance criteria
				ug/L	KRPD OF MIS/MISD failed to meet acceptance criteria
47 1-Chloronaphthalene 48 2-Nitroaniline			< 0.2 < 0.2	ug/L ug/L	
49 Dimethyl-phthalate			< 0.2	ug/L ug/L	
50 Acenaphthylene			< 0.2	ug/L ug/L	
51 2-6-Dinitrotoluene			< 0.2	ug/L	
52 3-Nitroaniline			< 0.2	ug/L ug/L	
53 Acenaphthene			< 0.2	ug/L ug/L	
54 2-4-Dinitrophenol			< 2.0	ug/L ug/L	
55 Dibenzofuran			< 0.2	ug/L	
56 4-Nitrophenol			< 1.0	ug/L ug/L	
57 Pentachlorobenzene			< 0.2	ug/L	
58 2-4-Dinitrotoluene			< 0.2	ug/L ug/L	
59 2-3-4-6-Tetrachloropheno			< 0.4	ug/L ug/L	
60 Fluorene			< 0.4	ug/L ug/L	
61 Diethylphthalate			< 0.2	ug/L ug/L	
62 4-Chlorophenyl-phenyl et			< 0.2	ug/L ug/L	
63 4-Nitroaniline			< 0.2	ug/L ug/L	
64 4-6-Dintro-2-methylpheno			< 2.0	ug/L ug/L	
65 Diphenylamine			< 0.2	ug/L ug/L	
66 Azobenzene			< 0.2	ug/L ug/L	
OO AZODEIIZEIIE			- 0.2	ug/L	

Extracted Sample MW-21S Extracted Date 04-25-2018

Extracted by EH, JR

67	4-Bromophenyl-phenyl eth	< 0.2	ug/L	
68	Hexachlorobenzene	< 0.2	ug/L	
69	Pentachlorophenol	< 1.0	ug/L	
70	Pentachloronitrobenzene	< 0.2	ug/L	
71	Pronamide	< 0.2	ug/L	
72	Phenanthrene	< 0.2	ug/L	
73	Anthracene	< 0.2	ug/L	
74	Carbazole	< 0.2	ug/L	
75	Di-n-butylphthalate	< 0.2	ug/L	
76	Fluoranthene	< 0.2	ug/L	
77	Pyrene	< 0.2	ug/L	
78	Dimethylaminoazobenzene	< 0.2	ug/L	
79	Butylbenzyl phthalate	< 0.2	ug/L	
80	Benz[a]anthracene	< 0.2	ug/L	
81	Chrysene	< 0.2	ug/L	
82	Bis(2-ethylhexyl) phthal		0.2 ug/L	BPresent in the MB a
83	Di-n-octyl phthalate	< 0.2	ug/L	Lanalyte failed (high)
84	Benzo[b]fluoranthene	< 0.2	ug/L	
85	Dimethylbenzo(a)anthrace	< 0.2	ug/L	
86	Benzo(k)fluoranthene	< 0.2	ug/L	
87	Benzo(a)pyrene	< 0.2	ug/L	
88	3-Methylcholanthrene	< 0.2	ug/L	
89	Indeno[1-2-3-cd]pyrene	< 0.2	ug/L	
90	Dibenz(a-h)anthracene	< 0.2	ug/L	Lanalyte failed (high)
91	Benzo(ghi)perylene	< 0.2	ug/L	

--Present in the MB at 0.22 ug/L; L-analyte failed (high) to meet acceptance criteria in the LCS; result MAY be biased high --analyte failed (high) to meet acceptance criteria in the LCS; failure has NO effect on non-detect results

L--analyte failed (high) to meet acceptance criteria in the LCS; failure has NO effect on non-detect results

Sample ID: 2018-1703 Dup Operator: Ed Harris Instrument ID: MS Instrument #1

Last Calibration 5/24/2018 11:27 Acquisition Date 5/25/2018 12:57 Extracted Sample MW-21S Extracted Date 04-25-2018 Extracted by EH, JR

Target Compounds

		Acceptance	Reported			RPD	A 1/2
	Peak Name	Criteria % Rec.	% Recovery Result	Amount Units	RPD (%)	Acc. Criteria	Qualifier
	7 2-Fluorophenol (Surr.)	15-80	39.21	ug/L			
	8 Nitrobenzene-d5 (Surr.)	50-150	55.27	ug/L			
	9 2-Fluorobiphenyl (Surr.)	50-150	54.64	ug/L		NA target a	ınalyte was Non-detect in the sample and dup
	0 2-4-6-Tribromophenol (Su	50-150	53.23	ug/L			
	1 Terphenyl-d14 (Surr.)	50-150	73.38	ug/L			
	2 Methyl Methanesulfonate		< 0.2	ug/L	NA		RRPD of MS/MSD failed to meet acceptance criteria
	3 Ethyl methanesulfonate		< 0.2	ug/L	NA		
1	4 Phenol		< 0.2	ug/L	NA		RRPD of MS/MSD failed to meet acceptance criteria; Manalyte failed (low) to recover within limits in the MS and/or MSD; result MAY be biased
1	5 Aniline		< 0.2	ug/L	NA		
1	.6 Bis(2-chloroethyl) ether		< 0.2	ug/L	NA		RRPD of MS/MSD failed to meet acceptance criteria
1	7 2-Chlorophenol		< 0.2	ug/L	NA		
1	8 1,3-Dichlorobenzene		< 0.2	ug/L	12.46	0-20	RRPD of MS/MSD failed to meet acceptance criteria; Manalyte failed (low) to recover within limits in the MS and/or MSD; result MAY be biased
1	9 1,4-Dichlorobenzene		< 0.2	ug/L	NA		
2	0 Benzyl Alcohol		< 0.2	ug/L	NA		RRPD of MS/MSD failed to meet acceptance criteria
2	1 1,2-Dichlorobenzene		< 0.2	ug/L	NA		
2	2 2-Methylphenol		< 0.2	ug/L	NA		
2	3 4-Methylphenol		< 0.2	ug/L	NA		
2	4 Acetophenone		< 0.2	ug/L	NA		
2	5 N-Nitroso-di-n-propylami		< 0.2	ug/L	NA		
	6 Hexachloroethane		< 0.2	ug/L	NA		Manalyte failed (low) to recover within limits in the MS and/or MSD; result MAY be biased low
	7 Nitrobenzene		< 0.2	ug/L	NA		
	8 N-Nitrosopiperidine		< 0.2	ug/L	NA		
	9 Isophorone		< 0.2	ug/L	NA		
	0 2-Nitrophenol		< 0.4	ug/L	NA		
	1 2,4-Dimethylphenol		< 0.2	ug/L	NA		RRPD of MS/MSD failed to meet acceptance criteria; Manalyte failed (low) to recover within limits in the MS and/or MSD; result MAY be biased
	2 Bis(2-chloroethoxy) meth		< 0.2	ug/L	NA		in the original factor of the content of the conten
	3 2-4-Dichlorophenol		< 0.2	ug/L	NA.		
	4 1-2-4-Trichlorobenzene		< 0.2	ug/L ug/L	NA NA		Manalyte failed (low) to recover within limits in the MS and/or MSD; result MAY be biased low
	5 Naphthalene		< 0.2	ug/L	NA		We analyse failed flow) to recover within mints in the WS and Or WSS, result with the blased low
	6 4-Chloroaniline		< 0.2	ug/L ug/L	NA NA		
	7 2-6-Dichlorophenol		< 0.2	ug/L ug/L	NA NA		
	8 Hexachlorobutadiene		< 0.2	ug/L ug/L	NA NA		Ad analysis failed (law) to see you within limits in the ASC and (as MCD, south MAY be broad law.
				-			Manalyte failed (low) to recover within limits in the MS and/or MSD; result MAY be biased low
	9 N-Nitrosodibutylamine		< 0.2	ug/L	NA		
	0 4-Chloro-3-methylphenol		< 0.2	ug/L	NA		
	1 2-Methylnaphthalene		< 0.2	ug/L	NA		
	2 1-2-4-5-Tetrachlorobenze		< 0.2	ug/L	NA		
	3 Hexachlorocyclopentadien		< 0.2	ug/L	NA		R-RPD of MS/MSD failed to meet acceptance criteria; Manalyte failed (low) to recover within limits in the MS and/or MSD; result MAY be biased
	4 2,4,6-Trichlorophenol		< 0.2	ug/L	NA		
	5 2,4,5-Trichlorophenol		< 0.2	ug/L	NA		
	6 2-Chloronaphthalene		< 0.2	ug/L	NA		RRPD of MS/MSD failed to meet acceptance criteria
	7 1-Chloronaphthalene		< 0.2	ug/L	NA		
	8 2-Nitroaniline		< 0.2	ug/L	NA		
	9 Dimethyl-phthalate		< 0.2	ug/L	NA		
5	0 Acenaphthylene		< 0.2	ug/L	NA		
5	1 2-6-Dinitrotoluene		< 0.2	ug/L	NA		
5	2 3-Nitroaniline		< 0.2	ug/L	NA		
5	3 Acenaphthene		< 0.2	ug/L	NA		
5	4 2-4-Dinitrophenol		< 2.0	ug/L	NA		
5	5 Dibenzofuran		< 0.2	ug/L	NA		
5	6 4-Nitrophenol		< 1.0	ug/L	NA		
5	7 Pentachlorobenzene		< 0.2	ug/L	NA		
5	8 2-4-Dinitrotoluene		< 0.2	ug/L	NA		
	9 2-3-4-6-Tetrachloropheno		< 0.4	ug/L	NA		
	0 Fluorene		< 0.2	ug/L	NA		
	i Diethylphthalate		< 0.2	ug/L	NA		
	2 4-Chlorophenyl-phenyl et		< 0.2	ug/L	NA		
	3 4-Nitroaniline		< 0.2	ug/L	NA		
	4 4-6-Dintro-2-methylpheno		< 2.0	ug/L	NA		
	5 Diphenylamine		< 0.2	ug/L	NA.		
	6 Azobenzene		< 0.2	ug/L ug/L	NA NA		
	7 4-Bromophenyl-phenyl eth		< 0.2	ug/L ug/L	NA NA		
	8 Hexachlorobenzene		< 0.2		NA NA		
				ug/L	NA NA		
	9 Pentachlorophenol		< 1.0	ug/L			
	O Pentachloronitrobenzene		< 0.2	ug/L	NA		
	1 Pronamide		< 0.2	ug/L	NA		
7	2 Phenanthrene		< 0.2	ug/L	NA		
_			< 0.2	ug/L	NA		
	3 Anthracene 4 Carbazole		< 0.2	ug/L	NA		

75 Di-n-butylphthalate	< 0.2	ug/L	NA		
76 Fluoranthene	< 0.2	ug/L	NA		
77 Pyrene	< 0.2	ug/L	NA		
78 Dimethylaminoazobenzene	< 0.2	ug/L	NA		
79 Butylbenzyl phthalate	< 0.2	ug/L	NA		
80 Benz[a]anthracene	< 0.2	ug/L	NA		
81 Chrysene	< 0.2	ug/L	NA		
82 Bis(2-ethylhexyl) phthal	< 0.2	ug/L	3.94	0-20	Lanalyte failed (high) to meet acceptance criteria in the LCS; failure has NO effect on non-detect results
83 Di-n-octyl phthalate	< 0.2	ug/L	NA		Lanalyte failed (high) to meet acceptance criteria in the LCS; failure has NO effect on non-detect results
84 Benzo[b]fluoranthene	< 0.2	ug/L	NA		
85 Dimethylbenzo(a)anthrace	< 0.2	ug/L	NA		
86 Benzo(k)fluoranthene	< 0.2	ug/L	NA		
87 Benzo(a)pyrene	< 0.2	ug/L	NA		
88 3-Methylcholanthrene	< 0.2	ug/L	NA		
89 Indeno[1-2-3-cd]pyrene	< 0.2	ug/L	NA		
90 Dibenz(a-h)anthracene	< 0.2	ug/L	NA		Lanalyte failed (high) to meet acceptance criteria in the LCS; failure has NO effect on non-detect results
91 Benzo(ghi)perylene	< 0.2	ug/L	NA		

Sample ID: 2018-1704 Operator: Ed Harris

Instrument MS Instrument #1

Last Calibra 5/23/2018 12:35 Acquisition 5/23/2018 21:25 Extracted Sample MW-21D Extracted Date 04-25-2018 Extracted by EH, JR

Target Compounds 	Acceptance		Reporte	d	
Peaks: 91(" Peak Name	Criteria % Rec.	% Recovery	Result	Amount Units	Qualifie
7 2-Fluorophenol (Surr.)	15-80	33.56		ug/L	
8 Nitrobenzene-d5 (Surr.)	50-150	62.26		ug/L	
9 2-Fluorobiphenyl (Surr.)	50-150	60.9		ug/L	
10 2-4-6-Tribromophenol (Su	50-150	65.73		ug/L	
11 Terphenyl-d14 (Surr.)	50-150	73.74		ug/L	
12 Methyl Methanesulfonate			< 0.2	ug/L	
13 Ethyl methanesulfonate			< 0.2	ug/L	
14 Phenol			< 0.2	ug/L	
15 Aniline			< 0.2	ug/L	
16 Bis(2-chloroethyl) ether			< 0.2	ug/L	
17 2-Chlorophenol			< 0.2	ug/L	
18 1,3-Dichlorobenzene			1	21 ug/L	
19 1,4-Dichlorobenzene			< 0.2	ug/L	
20 Benzyl Alcohol			< 0.2	ug/L	
21 1,2-Dichlorobenzene			< 0.2	ug/L	
22 2-Methylphenol			< 0.2	ug/L	
23 4-Methylphenol			< 0.2	ug/L	
24 Acetophenone			< 0.2	ug/L	
25 N-Nitroso-di-n-propylami			< 0.2	ug/L	
26 Hexachloroethane			< 0.2	ug/L	
27 Nitrobenzene			< 0.2	ug/L	
28 N-Nitrosopiperidine			< 0.2	ug/L	
29 Isophorone			< 0.2	ug/L	
30 2-Nitrophenol			< 0.4	ug/L	
31 2,4-Dimethylphenol			< 0.2	ug/L	
32 Bis(2-chloroethoxy) meth			< 0.2	ug/L	
33 2-4-Dichlorophenol			< 0.2	ug/L	
34 1-2-4-Trichlorobenzene			< 0.2	ug/L	
35 Naphthalene			< 0.2	ug/L	
36 4-Chloroaniline			< 0.2	ug/L	
37 2-6-Dichlorophenol			< 0.2	ug/L	
38 Hexachlorobutadiene			< 0.2	ug/L	
39 N-Nitrosodibutylamine			< 0.2	ug/L	
40 4-Chloro-3-methylphenol			< 0.2	ug/L	
41 2-Methylnaphthalene			< 0.2	ug/L	
42 1-2-4-5-Tetrachlorobenze			< 0.2	ug/L	
43 Hexachlorocyclopentadien			< 0.2	ug/L	
44 2,4,6-Trichlorophenol			< 0.2	ug/L	
45 2,4,5-Trichlorophenol			< 0.2	ug/L	
46 2-Chloronaphthalene			< 0.2	ug/L	
47 1-Chloronaphthalene			< 0.2	ug/L	
48 2-Nitroaniline			< 0.2	ug/L	
49 Dimethyl-phthalate			< 0.2	ug/L	
50 Acenaphthylene			< 0.2	ug/L	
51 2-6-Dinitrotoluene			< 0.2	ug/L	
52 3-Nitroaniline			< 0.2	ug/L	
53 Acenaphthene			< 0.2	ug/L	
54 2-4-Dinitrophenol			< 2.0	ug/L	
55 Dibenzofuran			< 0.2	ug/L	
56 4-Nitrophenol			1	.4 ug/L	
30 + Milliophichol				. - 46/-	

58	2-4-Dinitrotoluene	< 0.2	ug/L
59	2-3-4-6-Tetrachloropheno	< 0.4	ug/L
60	Fluorene	< 0.2	ug/L
61	Diethylphthalate	< 0.2	ug/L
62	4-Chlorophenyl-phenyl et	< 0.2	ug/L
63	4-Nitroaniline	< 0.2	ug/L
64	4-6-Dintro-2-methylpheno	< 2.0	ug/L
65	Diphenylamine	< 0.2	ug/L
66	Azobenzene	< 0.2	ug/L
67	4-Bromophenyl-phenyl eth	< 0.2	ug/L
68	Hexachlorobenzene	< 0.2	ug/L
69	Pentachlorophenol	< 1.0	ug/L
70	Pentachloronitrobenzene	< 0.2	ug/L
71	Pronamide	< 0.2	ug/L
72	Phenanthrene	< 0.2	ug/L
73	Anthracene	< 0.2	ug/L
74	Carbazole	< 0.2	ug/L
75	Di-n-butylphthalate	< 0.2	ug/L
76	Fluoranthene	< 0.2	ug/L
77	Pyrene	< 0.2	ug/L
78	Dimethylaminoazobenzene	< 0.2	ug/L
79	Butylbenzyl phthalate	< 0.2	ug/L
80	Benz[a]anthracene	< 0.2	ug/L
81	Chrysene	< 0.2	ug/L
82	Bis(2-ethylhexyl) phthal	0.	28 ug/L
83	Di-n-octyl phthalate	< 0.2	ug/L
84	Benzo[b]fluoranthene	< 0.2	ug/L
85	Dimethylbenzo(a)anthrace	< 0.2	ug/L
86	Benzo(k)fluoranthene	< 0.2	ug/L
87	Benzo(a)pyrene	< 0.2	ug/L
88	3-Methylcholanthrene	< 0.2	ug/L
89	Indeno[1-2-3-cd]pyrene	< 0.2	ug/L
	Dibenz(a-h)anthracene	< 0.2	ug/L
91	Benzo(ghi)perylene	< 0.2	ug/L

B--Present in the MB at 0.22 ug/L; L--analyte failed (high) to meet acceptance criteria in the LCS; result MAY be biased high L--analyte failed (high) to meet acceptance criteria in the LCS; failure has NO effect on non-detect results

L--analyte failed (high) to meet acceptance criteria in the LCS; failure has NO effect on non-detect results

Sample ID: 2018-1705 Operator: Ed Harris

Instrument MS Instrument #1

Last Calibra 5/23/2018 12:35 Acquisition 5/23/2018 21:55

Target Compounds

Target Com		Acceptance		Reported		
Peaks: 91('	Peak Name	Criteria % Rec.	% Recovery	Result	Amount Units	Qualifier
7	2-Fluorophenol (Surr.)	15-80	33.86		ug/L	
8	Nitrobenzene-d5 (Surr.)	50-150	59.27		ug/L	
9	2-Fluorobiphenyl (Surr.)	50-150	58.19		ug/L	
10	2-4-6-Tribromophenol (Su	50-150	58.78		ug/L	
11	Terphenyl-d14 (Surr.)	50-150	67.64		ug/L	
12	Methyl Methanesulfonate			< 0.2	ug/L	
13	Ethyl methanesulfonate			< 0.2	ug/L	
14	Phenol			< 0.2	ug/L	
15	Aniline			< 0.2	ug/L	
16	Bis(2-chloroethyl) ether			< 0.2	ug/L	
17	2-Chlorophenol			< 0.2	ug/L	
18	1,3-Dichlorobenzene				ug/L	
19	1,4-Dichlorobenzene			< 0.2	ug/L	
20	Benzyl Alcohol			< 0.2	ug/L	
21	1,2-Dichlorobenzene			< 0.2	ug/L	
22	2-Methylphenol			< 0.2	ug/L	
23	4-Methylphenol			< 0.2	ug/L	
24	Acetophenone			< 0.2	ug/L	
25	N-Nitroso-di-n-propylami			< 0.2	ug/L	
26	Hexachloroethane			< 0.2	ug/L	
27	Nitrobenzene			< 0.2	ug/L	
28	N-Nitrosopiperidine			< 0.2	ug/L	
29	Isophorone			< 0.2	ug/L	
30	2-Nitrophenol			< 0.4	ug/L	
31	2,4-Dimethylphenol			< 0.2	ug/L	
32	Bis(2-chloroethoxy) meth			< 0.2	ug/L	
33	2-4-Dichlorophenol			< 0.2	ug/L	
34	1-2-4-Trichlorobenzene			< 0.2	ug/L	
35	Naphthalene			< 0.2	ug/L	
36	4-Chloroaniline			< 0.2	ug/L	
37	2-6-Dichlorophenol			< 0.2	ug/L	
38	Hexachlorobutadiene			< 0.2	ug/L	
	N-Nitrosodibutylamine			< 0.2	ug/L	
	4-Chloro-3-methylphenol			< 0.2	ug/L	
41	2-Methylnaphthalene			< 0.2	ug/L	
42	1-2-4-5-Tetrachlorobenze			< 0.2	ug/L	
	Hexachlorocyclopentadien			< 0.2	ug/L	
	2,4,6-Trichlorophenol			< 0.2	ug/L	
	2,4,5-Trichlorophenol			< 0.2	ug/L	
	2-Chloronaphthalene			< 0.2	ug/L	
	1-Chloronaphthalene			< 0.2	ug/L	
	2-Nitroaniline			< 0.2	ug/L	
	Dimethyl-phthalate			< 0.2	ug/L	
	Acenaphthylene			< 0.2	ug/L	
	2-6-Dinitrotoluene			< 0.2	ug/L	
	3-Nitroaniline			< 0.2	ug/L	
	Acenaphthene			< 0.2	ug/L	
	2-4-Dinitrophenol			< 2.0	ug/L	
	Dibenzofuran			< 0.2	ug/L	
	4-Nitrophenol			< 1.0	ug/L	
	Pentachlorobenzene			< 0.2	ug/L	
	2-4-Dinitrotoluene			< 0.2	ug/L	
	2-3-4-6-Tetrachloropheno			< 0.4	ug/L	
	Fluorene			< 0.2	ug/L	
61	Diethylphthalate			< 0.2	ug/L	

Extracted Sample EB-3

Extracted by EH, JR

Extracted Date 04-25-2018

62	4-Chlorophenyl-phenyl et	< 0.2	ug/L
63	4-Nitroaniline	< 0.2	ug/L
64	4-6-Dintro-2-methylpheno	< 2.0	ug/L
65	Diphenylamine	< 0.2	ug/L
66	Azobenzene	< 0.2	ug/L
67	4-Bromophenyl-phenyl eth	< 0.2	ug/L
68	Hexachlorobenzene	< 0.2	ug/L
69	Pentachlorophenol	< 1.0	ug/L
70	Pentachloronitrobenzene	< 0.2	ug/L
71	Pronamide	< 0.2	ug/L
72	Phenanthrene	< 0.2	ug/L
73	Anthracene	< 0.2	ug/L
74	Carbazole	< 0.2	ug/L
75	Di-n-butylphthalate	< 0.2	ug/L
76	Fluoranthene	< 0.2	ug/L
77	Pyrene	< 0.2	ug/L
78	Dimethylaminoazobenzene	< 0.2	ug/L
79	Butylbenzyl phthalate	< 0.2	ug/L
80	Benz[a]anthracene	< 0.2	ug/L
81	Chrysene	< 0.2	ug/L
82	Bis(2-ethylhexyl) phthal	0.2	2 ug/L
83	Di-n-octyl phthalate	< 0.2	ug/L
84	Benzo[b]fluoranthene	< 0.2	ug/L
85	Dimethylbenzo(a)anthrace	< 0.2	ug/L
86	Benzo(k)fluoranthene	< 0.2	ug/L
87	Benzo(a)pyrene	< 0.2	ug/L
88	3-Methylcholanthrene	< 0.2	ug/L
89	Indeno[1-2-3-cd]pyrene	< 0.2	ug/L
90	Dibenz(a-h)anthracene	< 0.2	ug/L
91	Benzo(ghi)perylene	< 0.2	ug/L

B--Present in the MB at 0.22 ug/L; L--analyte failed (high) to meet acceptance criteria in LCS; result MAY be biased high L--analyte failed (high) to meet acceptance criteria in LCS; failure has NO effect on non-detect results

L--analyte failed (high) to meet acceptance criteria in LCS; failure has NO effect on non-detect results

Sample ID: 2018-1706 Operator: Ed Harris

Instrument MS Instrument #1

Last Calibra 5/23/2018 12:35 Acquisition 5/23/2018 22:24 Extracted Sample EB-4 Extracted Date 04-25-2018 Extracted by EH, JR

Target Compounds

7 2-Fluorophenol (Surr.) 50-150 66.43 ug/L 8 Nitrobenzene d5 (Surr.) 50-150 66.43 ug/L 9 2-Fluorophenol (Surr.) 50-150 68.6 ug/L 10 2-4-6-fribromophenol (Su 50-150 70.24 ug/L 11 Terphenyl-d14 (Surr.) 50-150 85.44 ug/L 12 Methyl Methanesulfonate			Acceptance	Reported		
8 Nitrobenzene-d5 (Surr.) 50-150 66.43 ug/L 9 2-Fluroniphenyl (Surr.) 50-150 68.6 ug/L 10 2-4-6-Tribromophenol (Su 50-150 70.24 ug/L 11 Terphenyl-d14 (Surr.) 50-150 85.44 ug/L 12 Methyl Methanesulfonate			Criteria % Rec.	% Recoven Result	Amount Units	Qualifier
9 2-Fluorobiphenyl (Surr.) 10 2-4-6-Tribromophenol (Su 10 2-4-6-Tribromophenol (Su 11 Terphenyl-d14 (Surr.) 12 Methyl Methanesulfonate 12 Methyl Methanesulfonate 13 Ethyl methanesulfonate 14 Phenol 15 Aniline 16 Bis(2-chloroethyl) ether 17 2-Chlorophenol 18 13-3-Dichlorobenzene 19 1,4-Dichlorobenzene 10 20 ug/L 19 1,4-Dichlorobenzene 10 20 ug/L 21 1,2-Dichlorobenzene 20 2 ug/L 21 1,2-Dichlorobenzene 20 2 ug/L 22 2-Methylphenol 23 4-Methylphenol 24 Acetophenone 25 N-Nitroso-di-n-propylami 26 Hexachloroethane 27 Nitrobenzene 20 2 ug/L 28 N-Nitrosopiperidine 20 30 -Nitrophenol 20 30 2-Nitrophenol 21 2,4-Dimethylphenol 22 2 ug/L 23 1,4-Dimethylphenol 24 N-Nitrosopiperidine 25 N-Nitrosopiperidine 26 0,2 ug/L 27 Nitrobenzene 20 0,2 ug/L 28 N-Nitrospiperidine 20 0,2 ug/L 29 Isophorone 20 0,2 ug/L 30 32-Nitrophenol 20 0,2 ug/L 31 2,4-Dimethylphenol 20 0,2 ug/L 32 1,2-Dimethylphenol 20 0,2 ug/L 31 2,4-Dimethylphenol 20 0,2 ug/L 20 0,2 ug/L 21 2,4-S-Trichlorobenzene 20 0,2 ug/L 21 2-4-S-Tertachlorobenzene 20 0,2 ug/L 21 2-4-Dichtyl-Dichte	7	2-Fluorophenol (Surr.)	15-80	37.21	ug/L	
10 2-4-6-Tribromophenol (Su 50-150 70.24 ug/L 11 Terphenyl-d14 (Surr.) 50-150 85.44 ug/L 12 Methyl Methanesulfonate			50-150		-	
11 Terphemyl-d14 (Surr.) 50-150 85.44 ug/L 12 Methyl Methanesulfonate			50-150		ug/L	
12 Methy Methanesulfonate	10	2-4-6-Tribromophenol (Su	50-150	70.24	ug/L	
13 Ethyl methanesulfonate			50-150		-	
14 Phenol					ug/L	
15 Aniline		•			ug/L	
16 Bis(2-chlorophenol				< 0.2	ug/L	
17 2-Chlorophenol					-	
18 1,3-Dichlorobenzene < 0.2					ug/L	
19 1,4-Dichlorobenzene		·				
20 Benzyl Alcohol	18	1,3-Dichlorobenzene				
21 1,2-Dichlorobenzene < 0.2					ug/L	
22 2-Methylphenol <0.2	20	Benzyl Alcohol			ug/L	
23 4-Methylphenol	21	1,2-Dichlorobenzene		< 0.2	ug/L	
24 Acetophenone < 0.2	22	2-Methylphenol		< 0.2	ug/L	
25 N-Nitroso-di-n-propylami	23	4-Methylphenol		< 0.2	ug/L	
26 Hexachloroethane < 0.2	24	Acetophenone		< 0.2	ug/L	
27 Nitrobenzene	25	N-Nitroso-di-n-propylami		< 0.2	ug/L	
28 N-Nitrosopiperidine < 0.2	26	Hexachloroethane		< 0.2	ug/L	
29 sophorone	27	Nitrobenzene		< 0.2	ug/L	
30 2-Nitrophenol	28	N-Nitrosopiperidine		< 0.2	ug/L	
31 2,4-Dimethylphenol < 0.2	29	Isophorone		< 0.2	ug/L	
32 Bis(2-chloroethoxy) meth < 0.2	30	2-Nitrophenol		< 0.4	ug/L	
33 2-4-Dichlorophenol < 0.2	31	2,4-Dimethylphenol		< 0.2	ug/L	
34 1-2-4-Trichlorobenzene < 0.2	32	Bis(2-chloroethoxy) meth		< 0.2	ug/L	
35 Naphthalene < 0.2	33	2-4-Dichlorophenol		< 0.2	ug/L	
36 4-Chloroaniline < 0.2	34	1-2-4-Trichlorobenzene		< 0.2	ug/L	
37 2-6-Dichlorophenol < 0.2	35	Naphthalene		< 0.2	ug/L	
38 Hexachlorobutadiene < 0.2	36	4-Chloroaniline		< 0.2	ug/L	
39 N-Nitrosodibutylamine < 0.2	37	2-6-Dichlorophenol		< 0.2	ug/L	
40 4-Chloro-3-methylphenol < 0.2	38	Hexachlorobutadiene		< 0.2	ug/L	
41 2-Methylnaphthalene < 0.2	39	N-Nitrosodibutylamine		< 0.2	ug/L	
42 1-2-4-5-Tetrachlorobenze < 0.2	40	4-Chloro-3-methylphenol		< 0.2	ug/L	
43 Hexachlorocyclopentadien < 0.2	41	2-Methylnaphthalene		< 0.2	ug/L	
44 2,4,6-Trichlorophenol < 0.2	42	1-2-4-5-Tetrachlorobenze		< 0.2	ug/L	
45 2,4,5-Trichlorophenol < 0.2	43	Hexachlorocyclopentadien		< 0.2	ug/L	
46 2-Chloronaphthalene < 0.2	44	2,4,6-Trichlorophenol		< 0.2	ug/L	
47 1-Chloronaphthalene < 0.2	45	2,4,5-Trichlorophenol		< 0.2	ug/L	
48 2-Nitroaniline < 0.2	46	2-Chloronaphthalene		< 0.2	ug/L	
49 Dimethyl-phthalate < 0.2 ug/L	47	1-Chloronaphthalene		< 0.2	ug/L	
50 Acenaphthylene < 0.2	48	2-Nitroaniline		< 0.2	ug/L	
51 2-6-Dinitrotoluene < 0.2	49	Dimethyl-phthalate		< 0.2	ug/L	
52 3-Nitroaniline < 0.2	50	Acenaphthylene		< 0.2	ug/L	
53 Acenaphthene < 0.2	51	2-6-Dinitrotoluene		< 0.2	ug/L	
54 2-4-Dinitrophenol < 2.0	52	3-Nitroaniline		< 0.2	ug/L	
55 Dibenzofuran < 0.2 ug/L	53	Acenaphthene		< 0.2	ug/L	
56 4-Nitrophenol < 1.0	54	2-4-Dinitrophenol		< 2.0	ug/L	
57 Pentachlorobenzene < 0.2 ug/L	55	Dibenzofuran		< 0.2	ug/L	
58 2-4-Dinitrotoluene < 0.2	56	4-Nitrophenol		< 1.0	ug/L	
58 2-4-Dinitrotoluene < 0.2	57	Pentachlorobenzene		< 0.2	ug/L	
59 2-3-4-6-Tetrachloropheno < 0.4 ug/L	58	2-4-Dinitrotoluene		< 0.2		
	59	2-3-4-6-Tetrachloropheno		< 0.4		
00 Tradicite 10.2 ug/L	60	Fluorene		< 0.2	ug/L	

61	Diethylphthalate	< 0.2	ug/L
62	4-Chlorophenyl-phenyl et	< 0.2	ug/L
63	4-Nitroaniline	< 0.2	ug/L
64	4-6-Dintro-2-methylpheno	< 2.0	ug/L
65	Diphenylamine	< 0.2	ug/L
66	Azobenzene	< 0.2	ug/L
67	4-Bromophenyl-phenyl eth	< 0.2	ug/L
68	Hexachlorobenzene	< 0.2	ug/L
69	Pentachlorophenol	< 1.0	ug/L
70	Pentachloronitrobenzene	< 0.2	ug/L
71	Pronamide	< 0.2	ug/L
72	Phenanthrene	< 0.2	ug/L
73	Anthracene	< 0.2	ug/L
74	Carbazole	< 0.2	ug/L
75	Di-n-butylphthalate	< 0.2	ug/L
76	Fluoranthene	< 0.2	ug/L
77	Pyrene	< 0.2	ug/L
78	Dimethylaminoazobenzene	< 0.2	ug/L
79	Butylbenzyl phthalate	< 0.2	ug/L
80	Benz[a]anthracene	< 0.2	ug/L
81	Chrysene	< 0.2	ug/L
82	Bis(2-ethylhexyl) phthal	C).27 ug/L
83	Di-n-octyl phthalate		0.2 ug/L
84	Benzo[b]fluoranthene	< 0.2	ug/L
85	Dimethylbenzo(a)anthrace	< 0.2	ug/L
86	Benzo(k)fluoranthene	< 0.2	ug/L
87	Benzo(a)pyrene	< 0.2	ug/L
88	3-Methylcholanthrene	< 0.2	ug/L
89	Indeno[1-2-3-cd]pyrene	< 0.2	ug/L
90	Dibenz(a-h)anthracene	< 0.2	ug/L
91	Benzo(ghi)perylene	< 0.2	ug/L

B--Present in the MB at 0.22 ug/L; L--analyte failed (high) to meet acceptance criteria in the LCS; result MAY be biased high L--analyte failed (high) to meet acceptance criteria in the LCS; result MAY be biased high

L--analyte failed (high) to meet acceptance criteria in the LCS; failure has NO effect on non-detect results

Sample ID: 2018-1708 Operator: Ed Harris

Instrument MS Instrument #1

Last Calibra 5/23/2018 12:35 Acquisition 5/23/2018 23:23

Target	Compounds
Idiget	Compounds

	Acceptance		Reported		
Peaks: 91(" Peak Name	Criteria % Rec.	% Recovery	Result	Amount Units	Qualific
7 2-Fluorophenol (Surr.)	15-80	34.9		ug/L	
8 Nitrobenzene-d5 (Surr.)	50-150	62.4		ug/L	
9 2-Fluorobiphenyl (Surr.)	50-150	61.6		ug/L	
10 2-4-6-Tribromophenol (Su	50-150	71.5		ug/L	
11 Terphenyl-d14 (Surr.)	50-150	87.9		ug/L	
12 Methyl Methanesulfonate			< 0.2	ug/L	
13 Ethyl methanesulfonate			< 0.2	ug/L	
14 Phenol			< 0.2	ug/L	
15 Aniline			< 0.2	ug/L	
16 Bis(2-chloroethyl) ether			< 0.2	ug/L	
17 2-Chlorophenol			< 0.2	ug/L	
18 1,3-Dichlorobenzene			< 0.2	ug/L	
19 1,4-Dichlorobenzene			< 0.2	ug/L	
20 Benzyl Alcohol			< 0.2	ug/L	
21 1,2-Dichlorobenzene			< 0.2	ug/L	
22 2-Methylphenol			< 0.2	ug/L	
23 4-Methylphenol			< 0.2	ug/L	
24 Acetophenone			< 0.2	ug/L	
25 N-Nitroso-di-n-propylami			< 0.2	ug/L	
26 Hexachloroethane			< 0.2	ug/L	
27 Nitrobenzene			< 0.2	ug/L	
28 N-Nitrosopiperidine			< 0.2	ug/L	
29 Isophorone			< 0.2	ug/L	
30 2-Nitrophenol			< 0.4	ug/L	
31 2,4-Dimethylphenol			< 0.4	ug/L ug/L	
32 Bis(2-chloroethoxy) meth			< 0.2	ug/L	
33 2-4-Dichlorophenol			< 0.2	ug/L	
34 1-2-4-Trichlorobenzene			< 0.2	ug/L	
35 Naphthalene			< 0.2	ug/L ug/L	
36 4-Chloroaniline			< 0.2	ug/L	
37 2-6-Dichlorophenol			< 0.2	ug/L ug/L	
•				-	
38 Hexachlorobutadiene			< 0.2	ug/L	
39 N-Nitrosodibutylamine			< 0.2	ug/L	
40 4-Chloro-3-methylphenol			< 0.2	ug/L	
41 2-Methylnaphthalene			< 0.2	ug/L	
42 1-2-4-5-Tetrachlorobenze			< 0.2	ug/L	
43 Hexachlorocyclopentadien			< 0.2	ug/L	
44 2,4,6-Trichlorophenol			< 0.2	ug/L	
45 2,4,5-Trichlorophenol			< 0.2	ug/L	
46 2-Chloronaphthalene			< 0.2	ug/L	
47 1-Chloronaphthalene			< 0.2	ug/L	
48 2-Nitroaniline			< 0.2	ug/L	
49 Dimethyl-phthalate			< 0.2	ug/L	
50 Acenaphthylene			< 0.2	ug/L	
51 2-6-Dinitrotoluene			< 0.2	ug/L	
52 3-Nitroaniline			< 0.2	ug/L	
53 Acenaphthene			< 0.2	ug/L	
54 2-4-Dinitrophenol			< 2.0	ug/L	
55 Dibenzofuran			< 0.2	ug/L	
56 4-Nitrophenol			< 1.0	ug/L	
57 Pentachlorobenzene			< 0.2	ug/L	
58 2-4-Dinitrotoluene			< 0.2	ug/L	

Extracted Sample MW-16D

Extracted Date 04-25-2018 Extracted by EH, JR

5	9 2-3-4-6-Tetrachloropheno	< 0.4	ug/L
6	60 Fluorene	< 0.2	ug/L
6	1 Diethylphthalate	< 0.2	ug/L
6	2 4-Chlorophenyl-phenyl et	< 0.2	ug/L
6	3 4-Nitroaniline	< 0.2	ug/L
6	64 4-6-Dintro-2-methylpheno	< 2.0	ug/L
6	5 Diphenylamine	< 0.2	ug/L
6	66 Azobenzene	< 0.2	ug/L
6	7 4-Bromophenyl-phenyl eth	< 0.2	ug/L
6	8 Hexachlorobenzene	< 0.2	ug/L
6	9 Pentachlorophenol	< 1.0	ug/L
7	O Pentachloronitrobenzene	< 0.2	ug/L
7	'1 Pronamide	< 0.2	ug/L
7	72 Phenanthrene	< 0.2	ug/L
7	73 Anthracene	< 0.2	ug/L
7	'4 Carbazole	< 0.2	ug/L
7	'5 Di-n-butylphthalate	< 0.2	ug/L
7	'6 Fluoranthene	< 0.2	ug/L
7	7 Pyrene	< 0.2	ug/L
7	78 Dimethylaminoazobenzene	< 0.2	ug/L
7	'9 Butylbenzyl phthalate	< 0.2	ug/L
8	30 Benz[a]anthracene	< 0.2	ug/L
8	1 Chrysene	< 0.2	ug/L
8	32 Bis(2-ethylhexyl) phthal	0.39	ug/L
8	3 Di-n-octyl phthalate	< 0.2	ug/L
8	4 Benzo[b]fluoranthene	< 0.2	ug/L
8	5 Dimethylbenzo(a)anthrace	< 0.2	ug/L
8	6 Benzo(k)fluoranthene	< 0.2	ug/L
8	37 Benzo(a)pyrene	< 0.2	ug/L
8	88 3-Methylcholanthrene	< 0.2	ug/L
8	9 Indeno[1-2-3-cd]pyrene	< 0.2	ug/L
9	0 Dibenz(a-h)anthracene	< 0.2	ug/L
9	1 Benzo(ghi)perylene	< 0.2	ug/L

B--Present in the MB at 0.22 ug/L; L--analyte failed (high) to meet acceptance criteria in the LCS; result MAY be biased high L--analyte failed (high) to meet acceptance criteria in the LCS; failure has NO effect on non-detect results

L--analyte failed (high) to meet acceptance criteria in the LCS; failure has NO effect on non-detect results

Sample ID: 2018-1701 MS Operator: Ed Harris

Instrument MS Instrument #1

Last Calibra 5/24/2018 11:27 Acquisition 5/25/2018 11:29

Target Compounds

rarget Con	ipourius		Ass Critoria
Dooks: 01/"	Peak Name	9/ Posovoru	Acc. Criteria % recovery
•	2-Fluorophenol (Surr.)	% Recovery 49.7	15-80
	Nitrobenzene-d5 (Surr.)	77.2	50-150
	2-Fluorobiphenyl (Surr.)	77.2	50-150
	2-4-6-Tribromophenol (Su	73.4	50-150
	Terphenyl-d14 (Surr.)	73.8 91.7	50-150
	Methyl Methanesulfonate	72.6	50-150
	Ethyl methanesulfonate	90.0	50-150
	Phenol	47.2	30-130
	Aniline	29.1	50-150
	Bis(2-chloroethyl) ether	91.8	50-150
	2-Chlorophenol	77.2	30-120
	1,3-Dichlorobenzene	61.5	50-150
	1,4-Dichlorobenzene	69.0	50-150
	Benzyl Alcohol	82.1	50-150
	1,2-Dichlorobenzene	68.6	50-150
	2-Methylphenol	76.4	30-120
	4-Methylphenol	69.4	30-120
	Acetophenone	78.0	50-150
	N-Nitroso-di-n-propylami	82.8	50-150
	Hexachloroethane	58.4	50-150
27	Nitrobenzene	80.7	50-150
28	N-Nitrosopiperidine	99.8	50-150
29	Isophorone	85.4	50-150
30	2-Nitrophenol	81.0	30-120
31	2,4-Dimethylphenol	63.5	30-120
32	Bis(2-chloroethoxy) meth	77.9	50-150
33	2-4-Dichlorophenol	76.8	30-120
34	1-2-4-Trichlorobenzene	68.2	50-150
35	Naphthalene	75.1	50-150
36	4-Chloroaniline	52.3	50-150
37	2-6-Dichlorophenol	79.5	30-120
38	Hexachlorobutadiene	57.5	50-150
39	N-Nitrosodibutylamine	89.4	50-150
40	4-Chloro-3-methylphenol	84.2	30-120
	2-Methylnaphthalene	79.6	50-150
42	1-2-4-5-Tetrachlorobenze	71.2	50-150
	Hexachlorocyclopentadien	72.3	50-150
44	2,4,6-Trichlorophenol	89.2	30-120

Extracted Sample MW-23 Spike Extracted Date 04-25-2018 Extracted by EH, JR

Qualifier

M--Analyte failed to meet acceptance criteria for MS/MSD recovery

45	2,4,5-Trichlorophenol	89.4	30-120
46	2-Chloronaphthalene	81.4	50-150
47	1-Chloronaphthalene	83.8	50-150
48	2-Nitroaniline	95.0	50-150
49	Dimethyl-phthalate	91.6	50-150
50	Acenaphthylene	83.6	50-150
	2-6-Dinitrotoluene	90.5	50-150
	3-Nitroaniline	68.9	50-150
	Acenaphthene	86.1	50-150
	2-4-Dinitrophenol	100.6	30-120
	Dibenzofuran	89.3	50-150
	4-Nitrophenol	82.6	30-120
	Pentachlorobenzene	79.8	50-120
	2-4-Dinitrotoluene	97.6	50-150
	2-3-4-6-Tetrachloropheno	186.2	30-130
	Fluorene	92.1	50-120
		92.1 89.3	50-150
	Diethylphthalate		
	4-Chlorophenyl-phenyl et	85.5	50-150
	4-Nitroaniline	67.5	50-150
	4-6-Dintro-2-methylpheno	96.9	30-120
	Diphenylamine	75.9	50-150
	Azobenzene	78.5	50-150
	4-Bromophenyl-phenyl eth	76.9	50-150
	Hexachlorobenzene	80.6	50-150
69	Pentachlorophenol	83.5	30-120
70	Pentachloronitrobenzene	79.1	50-150
71	Pronamide	98.2	50-150
72	Phenanthrene	84.1	50-150
73	Anthracene	79.2	50-150
74	Carbazole	78.1	50-150
75	Di-n-butylphthalate	80.7	50-150
76	Fluoranthene	84.7	50-150
77	Pyrene	85.8	50-150
78	Dimethylaminoazobenzene	113.3	50-150
79	Butylbenzyl phthalate	126.1	50-150
80	Benz[a]anthracene	121.3	50-150
81	Chrysene	115.2	50-150
82	Bis(2-ethylhexyl) phthal	107.8	50-150
	Di-n-octyl phthalate	144.0	50-150
	Benzo[b]fluoranthene	146.5	50-150
	Dimethylbenzo(a)anthrace	95.9	50-150
	Benzo(k)fluoranthene	121.5	50-150
	Benzo(a)pyrene	107.9	50-150
	3-Methylcholanthrene	110.6	50-150
	Indeno[1-2-3-cd]pyrene	108.6	50-150
	Dibenz(a-h)anthracene	111.2	50-150
	Benzo(ghi)perylene	100.8	50-150
-	2520(Bin/ber/liene	100.0	30 130

R--RPD of MS/MSD failed to meet acceptance criteria

R--RPD of MS/MSD failed to meet acceptance criteria

Sample ID: 2018-1701 MSD

Operator: Ed Harris

Instrument MS Instrument #1

Last Calibra 5/24/2018 11:27 Acquisition 5/25/2018 11:59

44 2,4,6-Trichlorophenol

Extracted Sample MW-23 Plus Spike

Qualifier

Extracted Date 04-25-2018 Extracted by EH, JR

Target Con	npounas			Acc. Criteria	RPD Criteri
 Peaks: 91("	Peak Name	% Recovery	RPD (%)	% recovery	Citteri
	2-Fluorophenol (Surr.)	47.43	2 (/0/	15-80	0-20
	Nitrobenzene-d5 (Surr.)	80.22		50-150	0-20
	2-Fluorobiphenyl (Surr.)	67.26		50-150	0-20
	2-4-6-Tribromophenol (Su	69.57		50-150	0-20
	Terphenyl-d14 (Surr.)	90.69		50-150	0-20
	Methyl Methanesulfonate	71.54	1.53		0-20
	Ethyl methanesulfonate	83.47	7.48	50-150	0-20
	Phenol	54.76	14.85	30-120	0-20
15	Aniline	25.12	14.76	50-150	0-20
16	Bis(2-chloroethyl) ether	80.95	12.59	50-150	0-20
	2-Chlorophenol	73.15	5.39	30-120	0-20
18	1,3-Dichlorobenzene	55.88	9.65	50-150	0-20
19	1,4-Dichlorobenzene	62.46	10	50-150	0-20
20	Benzyl Alcohol	78.56	4.41	50-150	0-20
21	1,2-Dichlorobenzene	65.13	5.14	50-150	0-20
22	2-Methylphenol	71.56	6.49	30-120	0-20
23	4-Methylphenol	65.54	5.66	30-120	0-20
24	Acetophenone	81.73	4.63	50-150	0-20
25	N-Nitroso-di-n-propylami	87.77	5.84	50-150	0-20
26	Hexachloroethane	58.4	0.01	50-150	0-20
27	Nitrobenzene	83.72	3.73	50-150	0-20
28	N-Nitrosopiperidine	103.8	3.91	50-150	0-20
29	Isophorone	90.41	5.68	50-150	0-20
30	2-Nitrophenol	86.76	6.91	30-120	0-20
31	2,4-Dimethylphenol	64.79	2.03	30-120	0-20
32	Bis(2-chloroethoxy) meth	79.14	1.54	50-150	0-20
33	2-4-Dichlorophenol	80.01	4.04	30-120	0-20
34	1-2-4-Trichlorobenzene	70.01	2.64	50-150	0-20
35	Naphthalene	78.43	4.33	50-150	0-20
36	4-Chloroaniline	51.87	0.84	50-150	0-20
37	2-6-Dichlorophenol	80.99	1.85	30-120	0-20
	Hexachlorobutadiene	60.59	5.23		0-20
	N-Nitrosodibutylamine	91.04	1.82		0-20
	4-Chloro-3-methylphenol	86.1	2.18	30-120	0-20
41	2-Methylnaphthalene	80.71	1.4	50-150	0-20
	1-2-4-5-Tetrachlorobenze	67.57			0-20
43	Hexachlorocyclopentadien	70.23	2.93	50-150	0-20

83.45

6.67

30-120

0-20

M--Analyte failed to meet acceptance criteria for MS/MSD recovery

45 2,4,5-Trichlorophenol	84.44	5.69	30-120	0-20
46 2-Chloronaphthalene	76.21	6.64	50-150	0-20
47 1-Chloronaphthalene	78.06	7.12	50-150	0-20
48 2-Nitroaniline	86.91	8.91	50-150	0-20
49 Dimethyl-phthalate	85.8	6.53	50-150	0-20
50 Acenaphthylene	77.41	7.68	50-150	0-20
51 2-6-Dinitrotoluene	82.95	8.75	50-150	0-20
52 3-Nitroaniline	59.09	15.27	50-150	0-20
53 Acenaphthene	80.15	7.14	50-150	0-20
54 2-4-Dinitrophenol	99.9	0.68	30-120	0-20
55 Dibenzofuran	85.76	4.03	50-150	0-20
56 4-Nitrophenol	64.95	23.87	30-120	0-20
57 Pentachlorobenzene	74.04	7.45	50-150	0-20
58 2-4-Dinitrotoluene	88.27	10.06	50-150	0-20
59 2-3-4-6-Tetrachloropheno	82.7	76.96	30-130	0-20
60 Fluorene	86.54	6.23	50-120	0-20
61 Diethylphthalate	83.85	6.34	50-150	0-20
62 4-Chlorophenyl-phenyl et	78.9	8.06	50-150	0-20
63 4-Nitroaniline	58.37	14.51	50-150	0-20
64 4-6-Dintro-2-methylpheno	94.25	2.73	30-120	0-20
65 Diphenylamine	75.43	0.67	50-150	0-20
66 Azobenzene	81.38	3.55	50-150	0-20
67 4-Bromophenyl-phenyl eth	78.62	2.15	50-150	0-20
68 Hexachlorobenzene	79.15	1.85	50-150	0-20
69 Pentachlorophenol	84.71	1.48	30-120	0-20
70 Pentachloronitrobenzene	76.8	2.91	50-150	0-20
71 Pronamide	86.17	13.04	50-150	0-20
72 Phenanthrene	80.75	4.04	50-150	0-20
73 Anthracene	78.8	0.49	50-150	0-20
74 Carbazole	78.6	0.61	50-150	0-20
75 Di-n-butylphthalate	75.25	6.97	50-150	0-20
76 Fluoranthene	79.01	6.93	50-150	0-20
77 Pyrene	85.48	0.35	50-150	0-20
78 Dimethylaminoazobenzene	115.76	2.12	50-150	0-20
79 Butylbenzyl phthalate	130.98	3.78	50-150	0-20
80 Benz[a]anthracene	123.48	1.8	50-150	0-20
81 Chrysene	119.63	3.75	50-150	0-20
82 Bis(2-ethylhexyl) phthal	111.9	3.7	50-150	0-20
83 Di-n-octyl phthalate	152.82	5.97	50-150	0-20
84 Benzo[b]fluoranthene	146.08	0.27	50-150	0-20
85 Dimethylbenzo(a)anthrace	99.56	3.77	50-150	0-20
86 Benzo(k)fluoranthene	115.21	5.28	50-150	0-20
• •		5.28		0-20
87 Benzo(a)pyrene	113.82		50-150	
88 3-Methylcholanthrene	118.6	6.99	50-150	0-20
89 Indeno[1-2-3-cd]pyrene	110.98	2.15	50-150	0-20
90 Dibenz(a-h)anthracene	113.51	2.06	50-150	0-20
91 Benzo(ghi)perylene	101.37	0.55	50-150	0-20

R--RPD of MS/MSD failed to meet acceptance criteria

R--RPD of MS/MSD failed to meet acceptance criteria

Sample ID: 2018-1703 MS Operator: Ed Harris Extracted Sample MW-21S Plus Spike
Extracted Date 04-25-2018
Extracted by EH, JR

Instrument MS Instrument #1

Last Calibra 5/24/2018 11:27 Acquisition 5/25/2018 13:27

Target Compounds

		Acceptance	
Peaks: 91(" Peak Name	% Recovery	Criteria % Rec.	Qualifier
7 2-Fluorophenol (Surr.)	48.06	15-80	
8 Nitrobenzene-d5 (Surr.)	70.12	50-150	
9 2-Fluorobiphenyl (Surr.)	62.11	50-150	
10 2-4-6-Tribromophenol (Su	68.35	50-150	
11 Terphenyl-d14 (Surr.)	79.86	50-150	
12 Methyl Methanesulfonate	66.49	50-150	RRPD of MS/MSD failed to meet acceptance criteria
13 Ethyl methanesulfonate	78.61	50-150	
14 Phenol	35.54	30-120	RRPD of MS/MSD failed to meet acceptance criteria
15 Aniline	41.83	50-150	
16 Bis(2-chloroethyl) ether	78.18	50-150	RRPD of MS/MSD failed to meet acceptance criteria
17 2-Chlorophenol	64.72	30-120	
18 1,3-Dichlorobenzene	147.85	50-150	RRPD of MS/MSD failed to meet acceptance criteria
19 1,4-Dichlorobenzene	56.49	50-150	
20 Benzyl Alcohol	82.74	50-150	RRPD of MS/MSD failed to meet acceptance criteria
21 1,2-Dichlorobenzene	62.15	50-150	
22 2-Methylphenol	58.24	30-120	
23 4-Methylphenol	50.9	30-120	
24 Acetophenone	72.05	50-150	
25 N-Nitroso-di-n-propylami	76.47	50-150	
26 Hexachloroethane	51.22	50-150	
27 Nitrobenzene	68.7	50-150	
28 N-Nitrosopiperidine	89.38	50-150	
29 Isophorone	75.56	50-150	
30 2-Nitrophenol	76.97	30-120	
31 2,4-Dimethylphenol	22.08	30-120	RRPD of MS/MSD failed to meet acceptance criteria; Manalyte failed to recover within limits in the MS/MSD
32 Bis(2-chloroethoxy) meth	72.57	50-150	
33 2-4-Dichlorophenol	70.27	30-120	
34 1-2-4-Trichlorobenzene	63.84	50-150	
35 Naphthalene	70.82	50-150	
36 4-Chloroaniline	55.06	50-150	
37 2-6-Dichlorophenol	71.9	30-120	
38 Hexachlorobutadiene	50.54	50-150	
39 N-Nitrosodibutylamine	73.48	50-150	
40 4-Chloro-3-methylphenol	66.36	30-120	
41 2-Methylnaphthalene	68.33	50-150	
42 1-2-4-5-Tetrachlorobenze	62.32	50-150	
43 Hexachlorocyclopentadien	56.6	50-150	RRPD of MS/MSD failed to meet acceptance criteria
44 2,4,6-Trichlorophenol	71.34	30-120	
45 2,4,5-Trichlorophenol	70.25	30-120	
46 2-Chloronaphthalene	74.33	50-150	RRPD of MS/MSD failed to meet acceptance criteria

47 1-Chloronaphthalene	68.41	50-150
48 2-Nitroaniline	75.88	50-150
49 Dimethyl-phthalate	76.7	50-150
50 Acenaphthylene	73.32	50-150
51 2-6-Dinitrotoluene	75.51	50-150
52 3-Nitroaniline	66.23	50-150
53 Acenaphthene	69.99	50-150
54 2-4-Dinitrophenol	80.38	30-120
55 Dibenzofuran	71.35	50-150
56 4-Nitrophenol	48.1	30-120
57 Pentachlorobenzene	65.03	50-150
58 2-4-Dinitrotoluene	71.48	50-150
59 2-3-4-6-Tetrachloropheno	73.1	30-120
60 Fluorene	72.39	50-150
61 Diethylphthalate	74.49	50-150
62 4-Chlorophenyl-phenyl et	67.85	50-150
63 4-Nitroaniline	59.28	50-150
64 4-6-Dintro-2-methylpheno	72.79	30-120
65 Diphenylamine	67.42	50-150
66 Azobenzene	67.31	50-150
67 4-Bromophenyl-phenyl eth	66.81	50-150
68 Hexachlorobenzene	67.97	50-150
69 Pentachlorophenol	77.73	30-120
70 Pentachloronitrobenzene	65.49	50-150
71 Pronamide	78.63	50-150
72 Phenanthrene	66.8	50-150
73 Anthracene	66.05	50-150
74 Carbazole	66.45	50-150
75 Di-n-butylphthalate	80.14	50-150
76 Fluoranthene	73.56	50-150
77 Pyrene	75.8	50-150
78 Dimethylaminoazobenzene	103.98	50-150
79 Butylbenzyl phthalate	119.9	50-150
80 Benz[a]anthracene	111.83	50-150
81 Chrysene	111.95	50-150
82 Bis(2-ethylhexyl) phthal	130.12	50-150
83 Di-n-octyl phthalate	135.85	50-150
84 Benzo[b]fluoranthene	111.17	50-150
85 Dimethylbenzo(a)anthrace	99.83	50-150
86 Benzo(k)fluoranthene	98.36	50-150
87 Benzo(a)pyrene	99.27	50-150
88 3-Methylcholanthrene	90.36	50-150
89 Indeno[1-2-3-cd]pyrene	92.55	50-150
90 Dibenz(a-h)anthracene	92.73	50-150
91 Benzo(ghi)perylene	87.85	50-150

Sample ID: 2018-1703 MSD

Operator: Ed Harris Instrument MS Instrument #1

Last Calibra 5/24/2018 11:27 Acquisition 5/25/2018 13:56 Extracted Sample MW-21S Plus Spike

Extracted Date 04-25-2018 Extracted by EH, JR

Target Compounds				RPD	
			Acc. Criteria	Criteria	
Peaks: 91(" Peak Name	% Recovery	RPD (%)	% recovery		Qualifier
7 2-Fluorophenol (Surr.)		42	15-80	0-20	
8 Nitrobenzene-d5 (Surr.)		0.8	50-150	0-20	
9 2-Fluorobiphenyl (Surr.)		1.7	50-150	0-20	
10 2-4-6-Tribromophenol (Su		0.9	50-150	0-20	
11 Terphenyl-d14 (Surr.)		1.6	50-150	0-20	
12 Methyl Methanesulfonate	5	3.6 21 .	50-150	0-20	RRPD of MS/MSD failed to meet acceptance criteria
13 Ethyl methanesulfonate	6	5.7 17.	50-150	0-20	
14 Phenol	2	8.0 21.	30-120	0-20	RRPD of MS/MSD failed to meet acceptance criteria; Manalyte failed to recover within limits in the MS and/or MSD
15 Aniline	3	5.4 13.	1 50-150	0-20	
16 Bis(2-chloroethyl) ether	ϵ	2.3 22.	50-150	0-20	RRPD of MS/MSD failed to meet acceptance criteria
17 2-Chlorophenol	5	6.6 13.	30-120	0-20	
18 1,3-Dichlorobenzene	3	8.9 47.	50-150	0-20	RRPD of MS/MSD failed to meet acceptance criteria; Manalyte failed to recover within limits in the MS and/or MSD
19 1,4-Dichlorobenzene	4	8.6 15.	50-150	0-20	
20 Benzyl Alcohol	5	7.0 24.	50-150	0-20	RRPD of MS/MSD failed to meet acceptance criteria
21 1,2-Dichlorobenzene	5	1.6 18.	5 50-150	0-20	
22 2-Methylphenol	5	4.3 7.	30-120	0-20	
23 4-Methylphenol	4	7.7 6.	30-120	0-20	
24 Acetophenone	6	4.4 11.	2 50-150	0-20	
25 N-Nitroso-di-n-propylami	6	8.7 10.	3 50-150	0-20	
26 Hexachloroethane	4	4.8 13.4	50-150	0-20	Manalyte failed to recover within limits in the MS and/or MSD
27 Nitrobenzene	ϵ	3.6 7.	5 50-150	0-20	
28 N-Nitrosopiperidine	8	1.3 9.	5 50-150	0-20	
29 Isophorone	6	7.8 10.	3 50-150	0-20	
30 2-Nitrophenol	ϵ	6.7 14.	30-120	0-20	
31 2,4-Dimethylphenol	3	7.6 52.	30-120	0-20	RRPD of MS/MSD failed to meet acceptance criteria; Manalyte failed to recover within limits in the MS and/or MSD
32 Bis(2-chloroethoxy) meth	ϵ	2.4 10.	3 50-150	0-20	
33 2-4-Dichlorophenol	ϵ	4.1 6.	30-120	0-20	
34 1-2-4-Trichlorobenzene	5	4.8 15.	2 50-150	0-20	Manalyte failed to recover within limits in the MS and/or MSD
35 Naphthalene	ϵ	0.8 15.	2 50-150	0-20	
36 4-Chloroaniline	5	1.2 7.	2 50-150	0-20	
37 2-6-Dichlorophenol	6	7.9 5.	30-120	0-20	
38 Hexachlorobutadiene	4	2.5 17.		0-20	Manalyte failed to recover within limits in the MS and/or MSD
39 N-Nitrosodibutylamine	6	4.6 12.	9 50-150	0-20	
40 4-Chloro-3-methylphenol	6	8.1 2.	30-120	0-20	
41 2-Methylnaphthalene	5	9.5 13.	9 50-150	0-20	
42 1-2-4-5-Tetrachlorobenze	5	1.1 19.	3 50-150	0-20	
43 Hexachlorocyclopentadien		1.3 31.		0-20	R-RPD of MS/MSD failed to meet acceptance criteria; M-analyte failed to recover within limits in the MS and/or MSD
44 2,4,6-Trichlorophenol		2.4 13.		0-20	
45 2,4,5-Trichlorophenol		6.7 5.		0-20	
46 2-Chloronaphthalene		8.7 23.		0-20	RRPD of MS/MSD failed to meet acceptance criteria
47 1-Chloronaphthalene		9.6 13.		0-20	
48 2-Nitroaniline		8.4 10.		0-20	
49 Dimethyl-phthalate		6.7 14.		0-20	
50 Acenaphthylene		0.7 18.		0-20	
51 2-6-Dinitrotoluene		7.1 11.		0-20	

52	3-Nitroaniline	64.8	2.1	50-150	0-20
53	Acenaphthene	62.2	11.8	50-150	0-20
54	2-4-Dinitrophenol	68.5	15.9	30-120	0-20
55	Dibenzofuran	61.6	14.7	50-150	0-20
56	4-Nitrophenol	44.2	8.4	30-120	0-20
57	Pentachlorobenzene	56.6	13.8	50-150	0-20
58	2-4-Dinitrotoluene	68.3	4.5	50-150	0-20
59	2-3-4-6-Tetrachloropheno	70.8	3.2	30-120	0-20
60	Fluorene	69.1	4.6	50-150	0-20
61	Diethylphthalate	72.5	2.8	50-150	0-20
62	4-Chlorophenyl-phenyl et	61.2	10.3	50-150	0-20
63	4-Nitroaniline	59.9	1.0	50-150	0-20
64	4-6-Dintro-2-methylpheno	67.0	8.2	30-120	0-20
65	Diphenylamine	62.6	7.4	50-150	0-20
66	Azobenzene	57.6	15.5	50-150	0-20
67	4-Bromophenyl-phenyl eth	61.4	8.4	50-150	0-20
68	Hexachlorobenzene	64.6	5.1	50-150	0-20
69	Pentachlorophenol	74.7	4.0	30-120	0-20
70	Pentachloronitrobenzene	67.9	3.6	50-150	0-20
71	Pronamide	76.0	3.4	50-150	0-20
72	Phenanthrene	65.8	1.5	50-150	0-20
73	Anthracene	63.0	4.8	50-150	0-20
74	Carbazole	66.0	0.6	50-150	0-20
75	Di-n-butylphthalate	73.6	0.9	50-150	0-20
76	Fluoranthene	75.6	2.8	50-150	0-20
77	Pyrene	67.7	11.3	50-150	0-20
78	Dimethylaminoazobenzene	93.0	11.1	50-150	0-20
79	Butylbenzyl phthalate	115.2	4.0	50-150	0-20
80	Benz[a]anthracene	109.9	1.7	50-150	0-20
81	Chrysene	107.8	3.8	50-150	0-20
82	Bis(2-ethylhexyl) phthal	114.3	1.1	50-150	0-20
83	Di-n-octyl phthalate	122.8	1.6	50-150	0-20
84	Benzo[b]fluoranthene	112.3	1.0	50-150	0-20
85	Dimethylbenzo(a)anthrace	97.3	2.6	50-150	0-20
86	Benzo(k)fluoranthene	113.1	13.9	50-150	0-20
87	Benzo(a)pyrene	103.5	4.2	50-150	0-20
88	3-Methylcholanthrene	94.4	4.3	50-150	0-20
89	Indeno[1-2-3-cd]pyrene	94.7	2.3	50-150	0-20
90	Dibenz(a-h)anthracene	97.6	5.1	50-150	0-20
91	Benzo(ghi)perylene	89.8	2.2	50-150	0-20

Sample ID: Extracted MB 4-25-18

Operator: Ed Harris

Instrument MS Instrument #1

Last Calibra 5/23/2018 12:35 Acquisition 5/23/2018 15:04

Target Compounds

		Reporte	d	
Peaks: 91(" Peak Name	Acc. Criteria % Rec.	% Recovery Result	Amount Units	Qualifier
7 2-Fluorophenol (Surr.)	15-80	59.7	ug/L	
8 Nitrobenzene-d5 (Surr.)	50-150	95.67	ug/L	
9 2-Fluorobiphenyl (Surr.)	50-150	86.07	ug/L	
10 2-4-6-Tribromophenol (Su	50-150	78.51	ug/L	
11 Terphenyl-d14 (Surr.)	50-150	120.63	ug/L	
12 Methyl Methanesulfonate		< 0.2	ug/L	
13 Ethyl methanesulfonate		< 0.2	ug/L	
14 Phenol		< 0.2	ug/L	
15 Aniline		< 0.2	ug/L	
16 Bis(2-chloroethyl) ether		< 0.2	ug/L	
17 2-Chlorophenol		< 0.2	ug/L	
18 1,3-Dichlorobenzene		< 0.2	ug/L	
19 1,4-Dichlorobenzene		< 0.2	ug/L	
20 Benzyl Alcohol		< 0.2	ug/L	
21 1,2-Dichlorobenzene		< 0.2	ug/L	
22 2-Methylphenol		< 0.2	ug/L	
23 4-Methylphenol		< 0.2	ug/L	
24 Acetophenone		< 0.2	ug/L	
25 N-Nitroso-di-n-propylami		< 0.2	ug/L	
26 Hexachloroethane		< 0.2	ug/L	
27 Nitrobenzene		< 0.2	ug/L	
28 N-Nitrosopiperidine		< 0.2	ug/L	
29 Isophorone		< 0.2	ug/L	
30 2-Nitrophenol		< 0.4	ug/L	
31 2,4-Dimethylphenol		< 0.2	ug/L	
32 Bis(2-chloroethoxy) meth		< 0.2	ug/L	
33 2-4-Dichlorophenol		< 0.2	ug/L	
34 1-2-4-Trichlorobenzene		< 0.2	ug/L	
35 Naphthalene		< 0.2	ug/L	
36 4-Chloroaniline		< 0.2	ug/L	
37 2-6-Dichlorophenol		< 0.2	ug/L	
38 Hexachlorobutadiene		< 0.2	ug/L	
39 N-Nitrosodibutylamine		< 0.2	ug/L	
40 4-Chloro-3-methylphenol		< 0.2	ug/L	
41 2-Methylnaphthalene		< 0.2	ug/L	
42 1-2-4-5-Tetrachlorobenze		< 0.2	ug/L	
43 Hexachlorocyclopentadien		< 0.2	ug/L	
44 2,4,6-Trichlorophenol		< 0.2	ug/L	
45 2,4,5-Trichlorophenol		< 0.2	ug/L	
46 2-Chloronaphthalene		< 0.2	ug/L	
47 1-Chloronaphthalene		< 0.2	ug/L	
48 2-Nitroaniline		< 0.2	ug/L	

Extracted Method Blank

Extracted by EH, JR

Extracted Date 04-25-2018

49	Dimethyl-phthalate	< 0.2	ug/L
50	Acenaphthylene	< 0.2	ug/L
51	2-6-Dinitrotoluene	< 0.2	ug/L
52	3-Nitroaniline	< 0.2	ug/L
53	Acenaphthene	< 0.2	ug/L
54	2-4-Dinitrophenol	< 2.4	ug/L
55	Dibenzofuran	< 0.2	ug/L
56	4-Nitrophenol	< 1.2	ug/L
57	Pentachlorobenzene	< 0.2	ug/L
58	2-4-Dinitrotoluene	< 0.2	ug/L
59	2-3-4-6-Tetrachloropheno	< 0.4	ug/L
60	Fluorene	< 0.2	ug/L
61	Diethylphthalate	< 0.2	ug/L
62	4-Chlorophenyl-phenyl et	< 0.2	ug/L
63	4-Nitroaniline	< 0.2	ug/L
64	4-6-Dintro-2-methylpheno	< 2.4	ug/L
65	Diphenylamine	< 0.2	ug/L
66	Azobenzene	< 0.2	ug/L
67	4-Bromophenyl-phenyl eth	< 0.2	ug/L
68	Hexachlorobenzene	< 0.2	ug/L
69	Pentachlorophenol	< 1.0	ug/L
70	Pentachloronitrobenzene	< 0.2	ug/L
71	Pronamide	< 0.2	ug/L
72	Phenanthrene	< 0.2	ug/L
73	Anthracene	< 0.2	ug/L
74	Carbazole	< 0.2	ug/L
75	Di-n-butylphthalate		0.54 ug/L
76	Fluoranthene	< 0.2	ug/L
77	Pyrene	< 0.2	ug/L
78	Dimethylaminoazobenzene	< 0.2	ug/L
79	Butylbenzyl phthalate	< 0.2	ug/L
80	Benz[a]anthracene	< 0.2	ug/L
81	Chrysene	< 0.2	ug/L
82	Bis(2-ethylhexyl) phthal		0.22 ug/L
83	Di-n-octyl phthalate	< 0.2	ug/L
84	Benzo[b]fluoranthene	< 0.2	ug/L
85	Dimethylbenzo(a)anthrace	< 0.2	ug/L
86	Benzo(k)fluoranthene	< 0.2	ug/L
87	Benzo(a)pyrene	< 0.2	ug/L
88	3-Methylcholanthrene	< 0.2	ug/L
89	Indeno[1-2-3-cd]pyrene	< 0.2	ug/L
90	Dibenz(a-h)anthracene	< 0.2	ug/L
91	Benzo(ghi)perylene	< 0.2	ug/L

B = Target analyte present in Method Blank; any positive results for this analyte will be qualified by "B"

B = Target analyte present in Method Blank; any positive results for this analyte will be qualified by "B"

Sample ID: Extracted LCS 4-25-18

Operator: Ed Harris

Instrument MS Instrument #1

Last Calibra 5/23/2018 12:35 Acquisition 5/23/2018 16:02

Target Compounds

		А	.cc. Criteri	
Peaks: 91(" Peak Name	% Recovery	%	6 Rec.	Qualifier
7 2-Fluorophenol (Surr.)		55.9	15-80	
8 Nitrobenzene-d5 (Surr.)		94.1	50-150	
9 2-Fluorobiphenyl (Surr.)		77.6	50-150	
10 2-4-6-Tribromophenol (Su		98.7	50-150	
11 Terphenyl-d14 (Surr.)		116.3	50-150	
12 Methyl Methanesulfonate		84.2	50-150	
13 Ethyl methanesulfonate		103.8	50-150	
14 Phenol		49.1	30-120	
15 Aniline		70.2	50-150	
16 Bis(2-chloroethyl) ether		102.9	50-150	
17 2-Chlorophenol		91.7	30-120	
18 1,3-Dichlorobenzene		68.2	50-150	
19 1,4-Dichlorobenzene		70.4	50-150	
20 Benzyl Alcohol		104.4	50-150	
21 1,2-Dichlorobenzene		73.5	50-150	
22 2-Methylphenol		87.9	30-120	
23 4-Methylphenol		80.9	30-120	
24 Acetophenone		100.2	50-150	
25 N-Nitroso-di-n-propylami		105.6	50-150	
26 Hexachloroethane		57.0	50-150	
27 Nitrobenzene		97.6	50-150	
28 N-Nitrosopiperidine		128.4	50-150	
29 Isophorone		108.1	50-150	
30 2-Nitrophenol		100.5	30-120	
31 2,4-Dimethylphenol		80.0	30-120	
32 Bis(2-chloroethoxy) meth		96.6	50-150	
33 2-4-Dichlorophenol		92.0	30-120	
34 1-2-4-Trichlorobenzene		76.8	50-150	
35 Naphthalene		87.4	50-150	
36 4-Chloroaniline		90.9	50-150	
37 2-6-Dichlorophenol		95.5	30-120	
38 Hexachlorobutadiene		55.4	50-150	
39 N-Nitrosodibutylamine		105.9	50-150	
40 4-Chloro-3-methylphenol		97.4	30-120	
41 2-Methylnaphthalene		90.5	50-150	
42 1-2-4-5-Tetrachlorobenze		79.1	50-150	
43 Hexachlorocyclopentadien		67.2	50-150	
44 2,4,6-Trichlorophenol		100.2	30-120	

Extracted LCS

Extracted Date 04-25-2018

Extracted by EH, JR

45 2,4,5-Trichlorophenol	94.3	30-120	
46 2-Chloronaphthalene	91.5	50-150	
47 1-Chloronaphthalene	79.9	50-150	
48 2-Nitroaniline	108.9	50-150	
49 Dimethyl-phthalate	103.7	50-150	
50 Acenaphthylene	95.2	50-150	
51 2-6-Dinitrotoluene	103.0	50-150	
52 3-Nitroaniline	104.3	50-150	
53 Acenaphthene	93.7	50-150	
54 2-4-Dinitrophenol	65.0	30-120	
55 Dibenzofuran	99.2	50-150	
56 4-Nitrophenol	49.2	30-120	
57 Pentachlorobenzene	83.3	50-150	
58 2-4-Dinitrotoluene	100.8	50-150	
59 2-3-4-6-Tetrachloropheno	96.4	30-120	
60 Fluorene	97.3	50-150	
61 Diethylphthalate	106.9	50-150	
62 4-Chlorophenyl-phenyl et	94.3	50-150	
63 4-Nitroaniline	110.9	50-150	
64 4-6-Dintro-2-methylpheno	98.3	30-120	
65 Diphenylamine	109.9	50-150	
66 Azobenzene	107.4	50-150	
67 4-Bromophenyl-phenyl eth	104.4	50-150	
68 Hexachlorobenzene	101.0	50-150	
69 Pentachlorophenol	106.6	30-120	
70 Pentachloronitrobenzene	103.3	50-150	
71 Pronamide	109.2	50-150	
72 Phenanthrene	106.2	50-150	
73 Anthracene	104.4	50-150	
74 Carbazole	119.1	50-150	
			Descrition the Mathed Displace O. E.A. vol.
75 Di-n-butylphthalate	141.6	50-150	Present in the Method Blank at 0.54 ug/L
76 Fluoranthene	100.8	50-150	
77 Pyrene	117.4	50-150	
78 Dimethylaminoazobenzene	129.4	50-150	
79 Butylbenzyl phthalate	138.3	50-150	
80 Benz[a]anthracene	120.7	50-150	
81 Chrysene	121.1	50-150	
82 Bis(2-ethylhexyl) phthal	157.0	50-150	Present in the Method Blank at 0.22 ug/L; L = analyte failed (high) to meet acceptance criteria in the LCS
83 Di-n-octyl phthalate	158.2	50-150	L = analyte failed (high) to meet acceptance criteria in the LCS
84 Benzo[b]fluoranthene	139.5	50-150	
85 Dimethylbenzo(a)anthrace	119.2	50-150	
86 Benzo(k)fluoranthene	123.7	50-150	
* *	137.1	50-150	
87 Benzo(a)pyrene			
88 3-Methylcholanthrene	137.8	50-150	
89 Indeno[1-2-3-cd]pyrene	148.6	50-150	
90 Dibenz(a-h)anthracene	154.7	50-150	L = analyte failed (high) to meet acceptance criteria in the LCS
91 Benzo(ghi)perylene	142.6	50-150	

Sample ID: 2018-1709 Dup Operator: Ed Harris

Instrument ID: MS Instrument #1

Last Calibration: 5/24/2018 11:27 Acquisition Date 5/24/2018 15:04

Target Compounds

Target Compo						
			Acc. Criteria	Reported		- 16
Peaks: 91("#"		% Recovery		Result	Amount Units	Qualifier
	7 2-Fluorophenol (Surr.)	45.25			ug/L	
	8 Nitrobenzene-d5 (Surr.)	62.12			ug/L	
	9 2-Fluorobiphenyl (Surr.)	54.96			ug/L	
	10 2-4-6-Tribromophenol (Su	57.82			ug/L	
	11 Terphenyl-d14 (Surr.)	82.38	50-150		ug/L	
	12 Methyl Methanesulfonate			< 0.2	ug/L	
	13 Ethyl methanesulfonate			< 0.2	ug/L	
	14 Phenol			< 0.2	ug/L	
	15 Aniline			< 0.2	ug/L	Manalyte failed (low) to recover within acceptance criteria in the MS and/or MSD; result MAY be biased lov
	16 Bis(2-chloroethyl) ether			< 0.2	ug/L	
	17 2-Chlorophenol			< 0.2	ug/L	
	18 1,3-Dichlorobenzene				7 ug/L	Manalyte failed (low) to recover within acceptance criteria in the MS and/or MSD; result MAY be biased low
	19 1,4-Dichlorobenzene			< 0.2	ug/L	Manalyte failed (low) to recover within acceptance criteria in the MS and/or MSD; result MAY be biased low
	20 Benzyl Alcohol			< 0.2	ug/L	
	21 1,2-Dichlorobenzene			< 0.2	ug/L	
	22 2-Methylphenol			< 0.2	ug/L	RRPD failed to meet acceptance criteria
	23 4-Methylphenol			< 0.2	ug/L	RRPD failed to meet acceptance criteria
	24 Acetophenone			< 0.2	ug/L	
	25 N-Nitroso-di-n-propylami			< 0.2	ug/L	
	26 Hexachloroethane			< 0.2	ug/L	
	27 Nitrobenzene			< 0.2	ug/L	
	28 N-Nitrosopiperidine			< 0.2	ug/L	
	29 Isophorone			< 0.2	ug/L	
	30 2-Nitrophenol			< 0.4	ug/L	
	31 2,4-Dimethylphenol			< 0.2	ug/L	Manalyte failed (low) to recover within acceptance criteria in the MS and/or MSD; result MAY be biased low
	32 Bis(2-chloroethoxy) meth			< 0.2	ug/L	
	33 2-4-Dichlorophenol			< 0.2	ug/L	
	34 1-2-4-Trichlorobenzene			< 0.2	ug/L	
	35 Naphthalene			< 0.2	ug/L	
	36 4-Chloroaniline			< 0.2	ug/L	Manalyte failed (low) to recover within acceptance criteria in the MS and/or MSD; result MAY be biased low
	37 2-6-Dichlorophenol			< 0.2	ug/L	
	38 Hexachlorobutadiene			< 0.2	ug/L	Manalyte failed (low) to recover within acceptance criteria in the MS and/or MSD; result MAY be biased lov
	39 N-Nitrosodibutylamine			< 0.2	ug/L	
	40 4-Chloro-3-methylphenol			< 0.2	ug/L	
	41 2-Methylnaphthalene			< 0.2	ug/L	
	42 1-2-4-5-Tetrachlorobenze			< 0.2	ug/L	
	43 Hexachlorocyclopentadien			< 0.2	ug/L	Manalyte failed (low) to recover within acceptance criteria in the MS and/or MSD; result MAY be biased low
	44 2,4,6-Trichlorophenol			< 0.2	ug/L	
	45 2,4,5-Trichlorophenol			< 0.2	ug/L	
	46 2-Chloronaphthalene			< 0.2	ug/L	
	47 1-Chloronaphthalene			< 0.2	ug/L	
	48 2-Nitroaniline			< 0.2	ug/L	
	49 Dimethyl-phthalate			< 0.2	ug/L	
	50 Acenaphthylene			< 0.2	ug/L	
	51 2-6-Dinitrotoluene			< 0.2	ug/L	
	52 3-Nitroaniline			< 0.2	ug/L	

Extracted Sample MW-12S

Extracted Date 04-26-2018 Extracted by EH, JR

53 Acenaphthene	< 0.2	ug/L
54 2-4-Dinitrophenol	< 2.0	ug/L
55 Dibenzofuran	< 0.2	ug/L
56 4-Nitrophenol	< 1.0	ug/L
57 Pentachlorobenzene	< 0.2	ug/L
58 2-4-Dinitrotoluene	< 0.2	ug/L
59 2-3-4-6-Tetrachloropheno	< 0.4	ug/L
60 Fluorene	< 0.2	ug/L
61 Diethylphthalate	< 0.2	ug/L
62 4-Chlorophenyl-phenyl et	< 0.2	ug/L
63 4-Nitroaniline	< 0.2	ug/L
64 4-6-Dintro-2-methylpheno	< 2.0	ug/L
65 Diphenylamine	< 0.2	ug/L
66 Azobenzene	< 0.2	ug/L
67 4-Bromophenyl-phenyl eth	< 0.2	ug/L
68 Hexachlorobenzene	< 0.2	ug/L
69 Pentachlorophenol	< 1.0	ug/L
70 Pentachloronitrobenzene	< 0.2	ug/L
71 Pronamide	< 0.2	ug/L
72 Phenanthrene	< 0.2	ug/L
73 Anthracene	< 0.2	ug/L
74 Carbazole	< 0.2	ug/L
75 Di-n-butylphthalate	< 0.2	ug/L
76 Fluoranthene	< 0.2	ug/L
77 Pyrene	< 0.2	ug/L
78 Dimethylaminoazobenzene	< 0.2	ug/L
79 Butylbenzyl phthalate	< 0.2	ug/L
80 Benz[a]anthracene	< 0.2	ug/L
81 Chrysene	< 0.2	ug/L
82 Bis(2-ethylhexyl) phthal	< 0.2	ug/L
83 Di-n-octyl phthalate	< 0.2	ug/L
84 Benzo[b]fluoranthene	< 0.2	ug/L
85 Dimethylbenzo(a)anthrace	< 0.2	ug/L
86 Benzo(k)fluoranthene	< 0.2	ug/L
87 Benzo(a)pyrene	< 0.2	ug/L
88 3-Methylcholanthrene	< 0.2	ug/L
89 Indeno[1-2-3-cd]pyrene	< 0.2	ug/L
90 Dibenz(a-h)anthracene	< 0.2	ug/L
91 Benzo(ghi)perylene	< 0.2	ug/L

R--RPD of MS/MSD failed to meet acceptance criteria

R--RPD failed to meet acceptance criteria

Sample ID: 2018-1710 Operator: Ed Harris

Instrument ID: MS Instrument #1

Last Calibration: 5/24/2018 11:27 Acquisition Date: 5/24/2018 16:32

Target Compounds

			Acc. Criteria	Reported	
Peaks: 91("#"	Peak Name	% Recovery	% Recovery	Result	Amount Units
,	7 2-Fluorophenol (Surr.)	41.34	· ·		ug/L
	8 Nitrobenzene-d5 (Surr.)	62.87	50-150		ug/L
	9 2-Fluorobiphenyl (Surr.)	62.83	50-150		ug/L
	10 2-4-6-Tribromophenol (Su	66.01	50-150		ug/L
	11 Terphenyl-d14 (Surr.)	69.08	50-150		ug/L
	12 Methyl Methanesulfonate			< 0.2	ug/L
	13 Ethyl methanesulfonate			< 0.2	ug/L
	14 Phenol			< 0.2	ug/L
	15 Aniline			< 0.2	ug/L
	16 Bis(2-chloroethyl) ether			< 0.2	ug/L
	17 2-Chlorophenol			< 0.2	ug/L
	18 1,3-Dichlorobenzene			< 0.2	ug/L
	19 1,4-Dichlorobenzene			< 0.2	ug/L
	20 Benzyl Alcohol			0.3	9 ug/L
	21 1,2-Dichlorobenzene			< 0.2	ug/L
	22 2-Methylphenol			< 0.2	ug/L
	23 4-Methylphenol			< 0.2	ug/L
	24 Acetophenone			< 0.2	ug/L
	25 N-Nitroso-di-n-propylami			< 0.2	ug/L
	26 Hexachloroethane			< 0.2	ug/L
	27 Nitrobenzene			< 0.2	ug/L
	28 N-Nitrosopiperidine			< 0.2	ug/L
	29 Isophorone			< 0.2	ug/L
	30 2-Nitrophenol			< 0.4	ug/L
	31 2,4-Dimethylphenol			< 0.2	ug/L
	32 Bis(2-chloroethoxy) meth			< 0.2	ug/L
	33 2-4-Dichlorophenol			< 0.2	ug/L
	34 1-2-4-Trichlorobenzene			< 0.2	ug/L
	35 Naphthalene			< 0.2	ug/L
	36 4-Chloroaniline			< 0.2	ug/L
	37 2-6-Dichlorophenol			< 0.2	ug/L
	38 Hexachlorobutadiene			< 0.2	ug/L
	39 N-Nitrosodibutylamine			< 0.2	ug/L
	40 4-Chloro-3-methylphenol			< 0.2	ug/L
	41 2-Methylnaphthalene			< 0.2	ug/L
	42 1-2-4-5-Tetrachlorobenze			< 0.2	ug/L
	43 Hexachlorocyclopentadien			< 0.2	ug/L
	44 2,4,6-Trichlorophenol			< 0.2	ug/L

Extracted Sample MW-22D

Extracted Date 04-26-2018 Extracted by EH, JR

45 2,4,5-Trichlorophenol	< 0.2	ug/L
46 2-Chloronaphthalene	< 0.2	ug/L
47 1-Chloronaphthalene	< 0.2	ug/L
48 2-Nitroaniline	< 0.2	ug/L
49 Dimethyl-phthalate	< 0.2	ug/L
50 Acenaphthylene	< 0.2	ug/L
51 2-6-Dinitrotoluene	< 0.2	ug/L
52 3-Nitroaniline	< 0.2	ug/L
53 Acenaphthene	< 0.2	ug/L
54 2-4-Dinitrophenol	< 2.0	ug/L
55 Dibenzofuran	< 0.2	ug/L
56 4-Nitrophenol	< 1.0	ug/L
57 Pentachlorobenzene	< 0.2	ug/L
58 2-4-Dinitrotoluene	< 0.2	ug/L
59 2-3-4-6-Tetrachloropheno	< 0.4	ug/L
60 Fluorene	< 0.2	ug/L
61 Diethylphthalate	< 0.2	ug/L
62 4-Chlorophenyl-phenyl et	< 0.2	ug/L
63 4-Nitroaniline	< 0.2	ug/L
64 4-6-Dintro-2-methylpheno	< 2.0	ug/L
65 Diphenylamine	< 0.2	ug/L
66 Azobenzene	< 0.2	ug/L
67 4-Bromophenyl-phenyl eth	< 0.2	ug/L
68 Hexachlorobenzene	< 0.2	ug/L
69 Pentachlorophenol	< 1.0	ug/L
70 Pentachlorophenol	< 0.2	ug/L
71 Pronamide	< 0.2	ug/L
72 Phenanthrene	< 0.2	ug/L
73 Anthracene	< 0.2	ug/L
74 Carbazole	< 0.2	ug/L
75 Di-n-butylphthalate	< 0.2	ug/L
76 Fluoranthene	< 0.2	ug/L ug/L
77 Pyrene	< 0.2	ug/L
78 Dimethylaminoazobenzene	< 0.2	ug/L
79 Butylbenzyl phthalate	< 0.2	ug/L
80 Benz[a]anthracene	< 0.2	ug/L
81 Chrysene	< 0.2	
•		ug/L).25 ug/L
82 Bis(2-ethylhexyl) phthal	< 0.2	•
83 Di-n-octyl phthalate	< 0.2	ug/L
84 Benzo[b]fluoranthene	< 0.2	ug/L
85 Dimethylbenzo(a)anthrace		ug/L
86 Benzo(k)fluoranthene	< 0.2	ug/L
87 Benzo(a)pyrene	< 0.2	ug/L
88 3-Methylcholanthrene	< 0.2	ug/L
89 Indeno[1-2-3-cd]pyrene	< 0.2	ug/L
90 Dibenz(a-h)anthracene	< 0.2	ug/L
91 Benzo(ghi)perylene	< 0.2	ug/L

Sample ID: 2018-1711

Operator: Ed Harris

Instrument MS Instrument #1

Last Calibra 5/24/2018 11:27 Acquisition 5/24/2018 17:02

Target Compounds

		Acc. Criteria	Reported	
Peaks: 91(" Peak Name % Recovery		% Recovery	Result	Amount Units
7 2-Fluoropheno	41.92	15-80		ug/L
8 Nitrobenzene-c	55.82	50-150		ug/L
9 2-Fluorobipher	54.53	50-150		ug/L
10 2-4-6-Tribromc	60.56	50-150		ug/L
11 Terphenyl-d14	72.63	50-150		ug/L
12 Methyl Methanesulfonate			< 0.2	ug/L
13 Ethyl methanesulfonate			< 0.2	ug/L
14 Phenol			< 0.2	ug/L
15 Aniline			< 0.2	ug/L
16 Bis(2-chloroethyl) ether			< 0.2	ug/L
17 2-Chlorophenol			< 0.2	ug/L
18 1,3-Dichlorobenzene			< 0.2	ug/L
19 1,4-Dichlorobenzene			< 0.2	ug/L
20 Benzyl Alcohol			< 0.2	ug/L
21 1,2-Dichlorobenzene			< 0.2	ug/L
22 2-Methylphenol			< 0.2	ug/L
23 4-Methylphenol			< 0.2	ug/L
24 Acetophenone			< 0.2	ug/L
25 N-Nitroso-di-n-propylami			< 0.2	ug/L
26 Hexachloroethane			< 0.2	ug/L
27 Nitrobenzene			< 0.2	ug/L
28 N-Nitrosopiperidine			< 0.2	ug/L
29 Isophorone			< 0.2	ug/L
30 2-Nitrophenol			< 0.4	ug/L
31 2,4-Dimethylphenol			< 0.2	ug/L
32 Bis(2-chloroethoxy) meth			< 0.2	ug/L
33 2-4-Dichlorophenol			< 0.2	ug/L
34 1-2-4-Trichlorobenzene			< 0.2	ug/L
35 Naphthalene			< 0.2	ug/L
36 4-Chloroaniline			< 0.2	ug/L
37 2-6-Dichlorophenol			< 0.2	ug/L
38 Hexachlorobutadiene			< 0.2	ug/L
39 N-Nitrosodibutylamine			< 0.2	ug/L
40 4-Chloro-3-methylphenol			< 0.2	ug/L
41 2-Methylnaphthalene			< 0.2	ug/L
42 1-2-4-5-Tetrachlorobenze			< 0.2	ug/L
43 Hexachlorocyclopentadien			< 0.2	ug/L
44 2,4,6-Trichlorophenol			< 0.2	ug/L

Extracted Sample MW-22S

Extracted Date 04-26-2018 Extracted by EH, JR

45 2,4,5-Trichlorophenol	< 0.2	ug/L
46 2-Chloronaphthalene	< 0.2	ug/L
47 1-Chloronaphthalene	< 0.2	ug/L
48 2-Nitroaniline	< 0.2	ug/L
49 Dimethyl-phthalate	< 0.2	ug/L
50 Acenaphthylene	< 0.2	ug/L
51 2-6-Dinitrotoluene	< 0.2	ug/L
52 3-Nitroaniline	< 0.2	ug/L
53 Acenaphthene	< 0.2	ug/L
54 2-4-Dinitrophenol	< 2.0	ug/L
55 Dibenzofuran	< 0.2	ug/L
56 4-Nitrophenol	< 1.0	ug/L
57 Pentachlorobenzene	< 0.2	ug/L
58 2-4-Dinitrotoluene	< 0.2	ug/L
59 2-3-4-6-Tetrachloropheno	< 0.4	ug/L
60 Fluorene	< 0.2	ug/L
61 Diethylphthalate	< 0.2	ug/L
62 4-Chlorophenyl-phenyl et	< 0.2	ug/L
63 4-Nitroaniline	< 0.2	ug/L
64 4-6-Dintro-2-methylpheno	< 2.0	ug/L
65 Diphenylamine	< 0.2	ug/L
66 Azobenzene	< 0.2	ug/L
67 4-Bromophenyl-phenyl eth	< 0.2	ug/L
68 Hexachlorobenzene	< 0.2	ug/L
69 Pentachlorophenol	< 1.0	ug/L
70 Pentachloronitrobenzene	< 0.2	ug/L
71 Pronamide	< 0.2	ug/L
72 Phenanthrene	< 0.2	ug/L
73 Anthracene	< 0.2	ug/L
74 Carbazole	< 0.2	ug/L
75 Di-n-butylphthalate	< 0.2	ug/L
76 Fluoranthene	< 0.2	ug/L
77 Pyrene	< 0.2	ug/L
78 Dimethylaminoazobenzene	< 0.2	ug/L
79 Butylbenzyl phthalate	< 0.2	ug/L
80 Benz[a]anthracene	< 0.2	ug/L
81 Chrysene	< 0.2	ug/L
82 Bis(2-ethylhexyl) phthal	< 0.2	ug/L
83 Di-n-octyl phthalate	< 0.2	ug/L
84 Benzo[b]fluoranthene	< 0.2	ug/L
85 Dimethylbenzo(a)anthrace	< 0.2	ug/L
86 Benzo(k)fluoranthene	< 0.2	ug/L
87 Benzo(a)pyrene	< 0.2	ug/L
88 3-Methylcholanthrene	< 0.2	ug/L
89 Indeno[1-2-3-cd]pyrene	< 0.2	ug/L
90 Dibenz(a-h)anthracene	< 0.2	ug/L
91 Benzo(ghi)perylene	< 0.2	ug/L
/		0,

Sample ID: 2018-1712 Operator: Ed Harris

Instrument ID: MS Instrument #1

Last Calibration: 5/24/2018 11:27 Acquisition Date: 5/24/2018 17:31

Target Compounds

			Acc. Criteria	Reported	
Peaks: 91("#"	Peak Name	% Recovery	% Recovery	Result	Amount Units
	' 2-Fluorophenol (Surr.)	45.63	15-80		ug/L
8	B Nitrobenzene-d5 (Surr.)	65.37	50-150		ug/L
9	2-Fluorobiphenyl (Surr.)	63.71	50-150		ug/L
10	2-4-6-Tribromophenol (Su	73.85	50-150		ug/L
11	. Terphenyl-d14 (Surr.)	74.39	50-150		ug/L
12	! Methyl Methanesulfonate			< 0.2	ug/L
13	Ethyl methanesulfonate			< 0.2	ug/L
14	Phenol			< 0.2	ug/L
15	5 Aniline			< 0.2	ug/L
16	Bis(2-chloroethyl) ether			< 0.2	ug/L
17	' 2-Chlorophenol			< 0.2	ug/L
18	3 1,3-Dichlorobenzene			2.92	l ug/L
19	1,4-Dichlorobenzene			< 0.2	ug/L
20	Benzyl Alcohol			< 0.2	ug/L
21	. 1,2-Dichlorobenzene			< 0.2	ug/L
22	2 2-Methylphenol			< 0.2	ug/L
23	4-Methylphenol			< 0.2	ug/L
24	Acetophenone			< 0.2	ug/L
25	N-Nitroso-di-n-propylami			< 0.2	ug/L
26	Hexachloroethane			< 0.2	ug/L
27	' Nitrobenzene			< 0.2	ug/L
28	N-Nitrosopiperidine			< 0.2	ug/L
29	Isophorone			< 0.2	ug/L
30	2-Nitrophenol			< 0.4	ug/L
31	. 2,4-Dimethylphenol			< 0.2	ug/L
32	Bis(2-chloroethoxy) meth			< 0.2	ug/L
33	3 2-4-Dichlorophenol			< 0.2	ug/L
34	1-2-4-Trichlorobenzene			< 0.2	ug/L
35	Naphthalene			< 0.2	ug/L
36	6 4-Chloroaniline			< 0.2	ug/L
37	' 2-6-Dichlorophenol			< 0.2	ug/L
38	B Hexachlorobutadiene			< 0.2	ug/L
39	N-Nitrosodibutylamine			< 0.2	ug/L
40	4-Chloro-3-methylphenol			< 0.2	ug/L
41	. 2-Methylnaphthalene			< 0.2	ug/L
42	1-2-4-5-Tetrachlorobenze			< 0.2	ug/L
43	Hexachlorocyclopentadien			< 0.2	ug/L
44	2,4,6-Trichlorophenol			< 0.2	ug/L

Extracted Sample MW-9S

Extracted by EH, JR

Extracted Date 04-26-2018

45	2,4,5-Trichlorophenol	< 0.2	ug/L
46	2-Chloronaphthalene	< 0.2	ug/L
47	1-Chloronaphthalene	< 0.2	ug/L
48	2-Nitroaniline	< 0.2	ug/L
49	Dimethyl-phthalate	< 0.2	ug/L
50	Acenaphthylene	< 0.2	ug/L
51	2-6-Dinitrotoluene	< 0.2	ug/L
52	3-Nitroaniline	< 0.2	ug/L
53	Acenaphthene	< 0.2	ug/L
	2-4-Dinitrophenol	< 2.0	ug/L
55	Dibenzofuran	< 0.2	ug/L
56	4-Nitrophenol	< 1.0	ug/L
57	Pentachlorobenzene	< 0.2	ug/L
58	2-4-Dinitrotoluene	< 0.2	ug/L
	2-3-4-6-Tetrachloropheno	< 0.4	ug/L
	Fluorene	< 0.2	ug/L
	Diethylphthalate	< 0.2	ug/L
	4-Chlorophenyl-phenyl et	< 0.2	ug/L
	4-Nitroaniline	< 0.2	ug/L
	4-6-Dintro-2-methylpheno	< 2.0	ug/L
	Diphenylamine	< 0.2	ug/L
	Azobenzene	< 0.2	ug/L
	4-Bromophenyl-phenyl eth	< 0.2	ug/L
	Hexachlorobenzene	< 0.2	ug/L
	Pentachlorophenol	< 1.0	ug/L
	Pentachloronitrobenzene	< 0.2	ug/L
	Pronamide	< 0.2	ug/L
	Phenanthrene	< 0.2	ug/L
	Anthracene	< 0.2	ug/L
	Carbazole	< 0.2	ug/L
	Di-n-butylphthalate	< 0.2	ug/L
	Fluoranthene	< 0.2	ug/L
77	Pyrene	< 0.2	ug/L
	Dimethylaminoazobenzene	< 0.2	ug/L
	Butylbenzyl phthalate	< 0.2	ug/L
	Benz[a]anthracene	< 0.2	ug/L
	Chrysene	< 0.2	ug/L
	Bis(2-ethylhexyl) phthal	< 0.2	ug/L
	Di-n-octyl phthalate	< 0.2	ug/L
	Benzo[b]fluoranthene	< 0.2	ug/L
	Dimethylbenzo(a)anthrace	< 0.2	ug/L
	Benzo(k)fluoranthene	< 0.2	ug/L
	Benzo(a)pyrene	< 0.2	ug/L
	3-Methylcholanthrene	< 0.2	ug/L
	Indeno[1-2-3-cd]pyrene	< 0.2	ug/L
	Dibenz(a-h)anthracene	< 0.2	ug/L
	Benzo(ghi)perylene	< 0.2	ug/L
	S n r		3,

Sample ID: 2018-1713 Operator: Ed Harris

Instrument MS Instrument #1

Last Calibra 5/24/2018 11:27 Acquisition 5/24/2018 18:00 Extracted Sample MW-9D Extracted Date 04-26-2018 Extracted by EH, JR

Target Compounds

		Acc. Criteria	Reported		
Peaks: 91("Peak Name	% Recovery	% Recovery	Result	Amount Units	Qualifier
7 2-Fluorophenol (Surr.)	47.32	15-80		ug/L	
8 Nitrobenzene-d5 (Surr.)	71.85	50-150		ug/L	
9 2-Fluorobiphenyl (Surr.)	71.27	50-150		ug/L	
10 2-4-6-Tribromophenol (Su	70.37	50-150		ug/L	
11 Terphenyl-d14 (Surr.)	67.48	50-150		ug/L	
12 Methyl Methanesulfonate			< 0.2	ug/L	
13 Ethyl methanesulfonate			< 0.2	ug/L	
14 Phenol			< 0.2	ug/L	
15 Aniline			< 0.2	ug/L	MAnalyte failed (low) to meet acceptance criteria for MS and/or MSD recovery; result MAY be biased low
16 Bis(2-chloroethyl) ether			< 0.2	ug/L	
17 2-Chlorophenol			< 0.2	ug/L	
18 1,3-Dichlorobenzene			3.89	9 ug/L	Over Range; analyzed a 1/5 dilution
19 1,4-Dichlorobenzene			< 0.2	ug/L	MAnalyte failed (low) to meet acceptance criteria for MS and/or MSD recovery; result MAY be biased low
20 Benzyl Alcohol			< 0.2	ug/L	
21 1,2-Dichlorobenzene			< 0.2	ug/L	
22 2-Methylphenol			< 0.2	ug/L	RRPD of MS/MSD failed to meet acceptance criteria
23 4-Methylphenol			< 0.2	ug/L	RRPD of MS/MSD failed to meet acceptance criteria
24 Acetophenone			< 0.2	ug/L	
25 N-Nitroso-di-n-propylami			< 0.2	ug/L	
26 Hexachloroethane			< 0.2	ug/L	
27 Nitrobenzene			< 0.2	ug/L	
28 N-Nitrosopiperidine			< 0.2	ug/L	
29 Isophorone			< 0.2	ug/L	
30 2-Nitrophenol			< 0.4	ug/L	
31 2,4-Dimethylphenol			< 0.2	ug/L	MAnalyte failed (low) to meet acceptance criteria for MS and/or MSD recovery; result MAY be biased low
32 Bis(2-chloroethoxy) meth			< 0.2	ug/L	
33 2-4-Dichlorophenol			< 0.2	ug/L	
34 1-2-4-Trichlorobenzene			< 0.2	ug/L	
35 Naphthalene			< 0.2	ug/L	
36 4-Chloroaniline			< 0.2	ug/L	MAnalyte failed (low) to meet acceptance criteria for MS and/or MSD recovery; result MAY be biased low
37 2-6-Dichlorophenol			< 0.2	ug/L	
38 Hexachlorobutadiene			< 0.2	ug/L	MAnalyte failed (low) to meet acceptance criteria for MS and/or MSD recovery; result MAY be biased low
39 N-Nitrosodibutylamine			< 0.2	ug/L	
40 4-Chloro-3-methylphenol			< 0.2	ug/L	
41 2-Methylnaphthalene			< 0.2	ug/L	
42 1-2-4-5-Tetrachlorobenze			< 0.2	ug/L	
43 Hexachlorocyclopentadien			< 0.2	ug/L	MAnalyte failed (low) to meet acceptance criteria for MS and/or MSD recovery; result MAY be biased low
44 2,4,6-Trichlorophenol			< 0.2	ug/L	
45 2,4,5-Trichlorophenol			< 0.2	ug/L	
46 2-Chloronaphthalene			< 0.2	ug/L	
47 1-Chloronaphthalene			< 0.2	ug/L	
48 2-Nitroaniline			< 0.2	ug/L	
49 Dimethyl-phthalate			< 0.2	ug/L	
50 Acenaphthylene			< 0.2	ug/L	
			< 0.2	ug/L	

	52 3-Nitroaniline	< 0.2	ug/L	
	53 Acenaphthene	< 0.2	ug/L	
	54 2-4-Dinitrophenol	< 2.0	ug/L	
	55 Dibenzofuran	< 0.2	ug/L	
	56 4-Nitrophenol	< 1.0	ug/L	RRPD of MS/MSD failed to meet acceptance criteria
	57 Pentachlorobenzene	< 0.2	ug/L	
	58 2-4-Dinitrotoluene	< 0.2	ug/L	
	59 2-3-4-6-Tetrachloropheno	< 0.4	ug/L	
	60 Fluorene	< 0.2	ug/L	
	61 Diethylphthalate	< 0.2	ug/L	
	62 4-Chlorophenyl-phenyl et	< 0.2	ug/L	
	63 4-Nitroaniline	< 0.2	ug/L	
	64 4-6-Dintro-2-methylpheno	< 2.0	ug/L	
	65 Diphenylamine	< 0.2	ug/L	
	66 Azobenzene	< 0.2	ug/L	
	67 4-Bromophenyl-phenyl eth	< 0.2	ug/L	
	68 Hexachlorobenzene	< 0.2	ug/L	
	69 Pentachlorophenol	< 1.0	ug/L	
	70 Pentachloronitrobenzene	< 0.2	ug/L	
	71 Pronamide	< 0.2	ug/L	
	72 Phenanthrene	< 0.2	ug/L	
	73 Anthracene	< 0.2	ug/L	
	74 Carbazole	< 0.2	ug/L	
	75 Di-n-butylphthalate	< 0.2	ug/L	
	76 Fluoranthene	< 0.2	ug/L	
	77 Pyrene	< 0.2	ug/L	
	78 Dimethylaminoazobenzene	< 0.2	ug/L	
	79 Butylbenzyl phthalate	< 0.2	ug/L	
	80 Benz[a]anthracene	< 0.2	ug/L	
	81 Chrysene	< 0.2	ug/L	
	82 Bis(2-ethylhexyl) phthal	< 0.2	ug/L	
	83 Di-n-octyl phthalate	< 0.2	ug/L	
	84 Benzo[b]fluoranthene	< 0.2	ug/L	
	85 Dimethylbenzo(a)anthrace	< 0.2	ug/L	
	86 Benzo(k)fluoranthene	< 0.2	ug/L	
	87 Benzo(a)pyrene	< 0.2	ug/L	
	88 3-Methylcholanthrene	< 0.2	ug/L	
	89 Indeno[1-2-3-cd]pyrene	< 0.2	ug/L	
	90 Dibenz(a-h)anthracene	< 0.2	ug/L	
	91 Benzo(ghi)perylene	< 0.2	ug/L	RRPD of MS/MSD failed to meet acceptance criteria
Sa	imple ID: 2018-1713 1-5 dil	Extracted	Sample MV	N-9D
0	perator: Ed Harris	Extracted	Date 04-26	i-2018

Extracted by EH, JR

Reported

Result Peaks: 91 Peak Name Amount Units

5/24/2018 11:27

5/25/2018 9:22

18 1,3-Dichlorobenzene

Instrument MS Instrument #1

Last Calibra

Acquisition

Sample ID: 2018-1772 Operator: Ed Harris

Instrument ID: MS Instrument #1
Last Calibration: 5/24/2018 11:27
Acquisition Date: 5/24/2018 18:30

Extracted Sample MW-20S Extracted Date 04-26-2018 Extracted by EH, JR

Target Compounds

Target Compou				Acc. Criteria	Reported		
Peaks: 91("#"	Peak Name	% Recovery		% Recovery	Result	Amount Units	Qualifier
	7 2-Fluorophenol (Surr.)		31.25	15-80		ug/L	
	8 Nitrobenzene-d5 (Surr.)		58.49	50-150		ug/L	
	9 2-Fluorobiphenyl (Surr.)		55.3	50-150		ug/L	
	10 2-4-6-Tribromophenol (Su		8.23	50-150		ug/L	S—Surrogate recovery does not meet acceptance criteria; all analytes associated with this surrogate will be flagged as "estimated"
	11 Terphenyl-d14 (Surr.)		73.66	50-150		ug/L	Analytes associated with this surrogate MAY be biased low
	12 Methyl Methanesulfonate				< 0.2	ug/L	
	13 Ethyl methanesulfonate				< 0.2	ug/L	
	14 Phenol				< 0.2	ug/L	
	15 Aniline				< 0.2	ug/L	
	16 Bis(2-chloroethyl) ether				< 0.2	ug/L	
	17 2-Chlorophenol				< 0.2	ug/L	
	18 1,3-Dichlorobenzene				< 0.2	ug/L	
	19 1,4-Dichlorobenzene				< 0.2	ug/L	
	20 Benzyl Alcohol					ug/L	
	21 1,2-Dichlorobenzene				< 0.2	ug/L	
	22 2-Methylphenol				< 0.2	ug/L	
	23 4-Methylphenol				< 0.2	ug/L	
	24 Acetophenone				< 0.2	ug/L	
	25 N-Nitroso-di-n-propylami				< 0.2	ug/L	
	26 Hexachloroethane				< 0.2	ug/L	
	27 Nitrobenzene				< 0.2	ug/L	
	28 N-Nitrosopiperidine				< 0.2	ug/L	
	29 Isophorone				< 0.2	ug/L	
	30 2-Nitrophenol				< 0.4	ug/L	
	31 2,4-Dimethylphenol				< 0.2	ug/L	
	32 Bis(2-chloroethoxy) meth				< 0.2	ug/L	
	33 2-4-Dichlorophenol				< 0.2	ug/L	
	34 1-2-4-Trichlorobenzene				< 0.2	ug/L	
	35 Naphthalene				< 0.2	ug/L	
	36 4-Chloroaniline				< 0.2	ug/L	
	37 2-6-Dichlorophenol				< 0.2	ug/L	
	38 Hexachlorobutadiene				< 0.2	ug/L	
	39 N-Nitrosodibutylamine				< 0.2	ug/L	
	40 4-Chloro-3-methylphenol				< 0.2	ug/L	
	41 2-Methylnaphthalene				< 0.2	ug/L	
	42 1-2-4-5-Tetrachlorobenze				< 0.2	ug/L	
	43 Hexachlorocyclopentadien				< 0.2	ug/L	
	44 2,4,6-Trichlorophenol				< 0.2	ug/L	
	45 2,4,5-Trichlorophenol				< 0.2	ug/L	
	46 2-Chloronaphthalene				< 0.2	ug/L	
	47 1-Chloronaphthalene				< 0.2	ug/L	
	48 2-Nitroaniline				< 0.2	ug/L	
	49 Dimethyl-phthalate				< 0.2	ug/L	
	50 Acenaphthylene				< 0.2	ug/L	
	51 2-6-Dinitrotoluene				< 0.2	ug/L	
	52 3-Nitroaniline				< 0.2	ug/L	
	53 Acenaphthene					ug/L	F. Fatiguated apply due to failure of accordance to apply and a set to AAAV to blood by
	54 2-4-Dinitrophenol				< 2.0	ug/L	EEstimated result due to failure of associated surrogate compound; analyte MAY be biased low
	55 Dibenzofuran					ug/L	EEstimated result due to failure of associated surrogate compound; analyte MAY be biased low
	56 4-Nitrophenol				< 1.0	ug/L	EEstimated result due to failure of associated surrogate compound; analyte MAY be biased low
	57 Pentachlorobenzene				< 0.2	ug/L	EEstimated result due to failure of associated surrogate compound; analyte MAY be biased low
	58 2-4-Dinitrotoluene				< 0.2	ug/L	EEstimated result due to failure of associated surrogate compound; analyte MAY be biased low
	59 2-3-4-6-Tetrachloropheno				< 0.4	ug/L	EEstimated result due to failure of associated surrogate compound; analyte MAY be biased low
	60 Fluorene					ug/L	EEstimated result due to failure of associated surrogate compound; analyte MAY be biased low
	61 Diethylphthalate				< 0.2	ug/L	EEstimated result due to failure of associated surrogate compound; analyte MAY be biased low
	62 4-Chlorophenyl-phenyl et				< 0.2	ug/L	EEstimated result due to failure of associated surrogate compound; analyte MAY be biased low
	63 4-Nitroaniline				< 0.2	ug/L	EEstimated result due to failure of associated surrogate compound; analyte MAY be biased low

64 4-6-Dintro-2-methylpheno	< 2.0	ug/L
65 Diphenylamine	< 0.2	ug/L
66 Azobenzene	< 0.2	ug/L
67 4-Bromophenyl-phenyl eth	< 0.2	ug/L
68 Hexachlorobenzene	< 0.2	ug/L
69 Pentachlorophenol	< 1.0	ug/L
70 Pentachloronitrobenzene	< 0.2	ug/L
71 Pronamide	< 0.2	ug/L
72 Phenanthrene	0.87	ug/L
73 Anthracene	< 0.2	ug/L
74 Carbazole	< 0.2	ug/L
75 Di-n-butylphthalate	< 0.2	ug/L
76 Fluoranthene	0.42	ug/L
77 Pyrene	< 0.2	ug/L
78 Dimethylaminoazobenzene	< 0.2	ug/L
79 Butylbenzyl phthalate	< 0.2	ug/L
80 Benz[a]anthracene	< 0.2	ug/L
81 Chrysene	< 0.2	ug/L
82 Bis(2-ethylhexyl) phthal	0.28	3 ug/L
83 Di-n-octyl phthalate	< 0.2	ug/L
84 Benzo[b]fluoranthene	< 0.2	ug/L
85 Dimethylbenzo(a)anthrace	< 0.2	ug/L
86 Benzo(k)fluoranthene	< 0.2	ug/L
87 Benzo(a)pyrene	< 0.2	ug/L
88 3-Methylcholanthrene	< 0.2	ug/L
89 Indeno[1-2-3-cd]pyrene	< 0.2	ug/L
90 Dibenz(a-h)anthracene	< 0.2	ug/L
91 Benzo(ghi)perylene	< 0.2	ug/L

E--Estimated result due to failure of associated surrogate compound; analyte MAY be biased low E--Estimated result due to failure of associated surrogate compound; analyte MAY be biased low E--Estimated result due to failure of associated surrogate compound; analyte MAY be biased low E--Estimated result due to failure of associated surrogate compound; analyte MAY be biased low E--Estimated result due to failure of associated surrogate compound; analyte MAY be biased low E--Estimated result due to failure of associated surrogate compound; analyte MAY be biased low E--Estimated result due to failure of associated surrogate compound; analyte MAY be biased low E--Estimated result due to failure of associated surrogate compound; analyte MAY be biased low E--Estimated result due to failure of associated surrogate compound; analyte MAY be biased low E--Estimated result due to failure of associated surrogate compound; analyte MAY be biased low

E--Estimated result due to failure of associated surrogate compound; analyte MAY be biased low

Sample ID: 2018-1773 Operator: Ed Harris

Instrument ID: MS Instrument #1

Last Calibration: 5/24/2018 11:27 Acquisition Date: 5/24/2018 18:59

Target Compounds

			Acc. Criteria	Reported	
Peaks: 91("#"	Peak Name 7 2-Fluorophenol (Surr.) 8 Nitrobenzene-d5 (Surr.) 9 2-Fluorobiphenyl (Surr.) 10 2-4-6-Tribromophenol (Su 11 Terphenyl-d14 (Surr.) 12 Methyl Methanesulfonate 13 Ethyl methanesulfonate 14 Phenol 15 Aniline 16 Bis(2-chloroethyl) ether 17 2-Chlorophenol 18 1,3-Dichlorobenzene 19 1,4-Dichlorobenzene 20 Benzyl Alcohol 21 1,2-Dichlorobenzene 22 2-Methylphenol 23 4-Methylphenol 24 Acetophenone 25 N-Nitroso-di-n-propylami 26 Hexachloroethane 27 Nitrobenzene 28 N-Nitrosopiperidine 29 Isophorone 30 2-Nitrophenol 31 2,4-Dimethylphenol 32 Bis(2-chloroethoxy) meth 33 2-4-Dichlorophenol 34 1-2-4-Trichlorobenzene 35 Naphthalene 36 4-Chloroaniline 37 2-6-Dichlorophenol 38 Hexachlorobutadiene	% Recovery 41.44 61.18 56.3 56.42 64.58	Acc. Criteria % Recovery 15-80 50-150 50-150 50-150 50-150	 Result < 0.2 	Amount Units ug/L
	34 1-2-4-Trichlorobenzene 35 Naphthalene			< 0.2 < 0.2	ug/L ug/L
	36 4-Chloroaniline 37 2-6-Dichlorophenol 38 Hexachlorobutadiene 39 N-Nitrosodibutylamine 40 4-Chloro-3-methylphenol 41 2-Methylnaphthalene 42 1-2-4-5-Tetrachlorobenze			< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	ug/L ug/L ug/L ug/L ug/L ug/L ug/L
	43 Hexachlorocyclopentadien 44 2,4,6-Trichlorophenol			< 0.2 < 0.2	ug/L ug/L

Extracted Sample MW-20D

Extracted Date 04-26-2018 Extracted by EH, JR

4	15 2,4,5-Trichlorophenol	< 0.2	ug/L
4	16 2-Chloronaphthalene	< 0.2	ug/L
4	7 1-Chloronaphthalene	< 0.2	ug/L
4	18 2-Nitroaniline	< 0.2	ug/L
4	19 Dimethyl-phthalate	< 0.2	ug/L
	50 Acenaphthylene	< 0.2	ug/L
	51 2-6-Dinitrotoluene	< 0.2	ug/L
5	52 3-Nitroaniline	< 0.2	ug/L
	3 Acenaphthene	< 0.2	ug/L
	54 2-4-Dinitrophenol	< 2.0	ug/L
5	55 Dibenzofuran	< 2.0	ug/L
5	66 4-Nitrophenol	< 1.0	ug/L
	7 Pentachlorobenzene	< 0.2	ug/L
5	58 2-4-Dinitrotoluene	< 0.2	ug/L
5	59 2-3-4-6-Tetrachloropheno	< 0.4	ug/L
6	50 Fluorene	< 0.2	ug/L
6	51 Diethylphthalate	< 0.2	ug/L
6	52 4-Chlorophenyl-phenyl et	< 0.2	ug/L
6	53 4-Nitroaniline	< 0.2	ug/L
6	54 4-6-Dintro-2-methylpheno	< 2.0	ug/L
6	55 Diphenylamine	< 0.2	ug/L
6	66 Azobenzene	< 0.2	ug/L
6	57 4-Bromophenyl-phenyl eth	< 0.2	ug/L
6	58 Hexachlorobenzene	< 0.2	ug/L
6	59 Pentachlorophenol	< 1.0	ug/L
7	70 Pentachloronitrobenzene	< 0.2	ug/L
7	71 Pronamide	< 0.2	ug/L
7	72 Phenanthrene	< 0.2	ug/L
7	73 Anthracene	< 0.2	ug/L
7	74 Carbazole	< 0.2	ug/L
7	75 Di-n-butylphthalate	< 0.2	ug/L
7	76 Fluoranthene	< 0.2	ug/L
7	77 Pyrene	< 0.2	ug/L
7	78 Dimethylaminoazobenzene	< 0.2	ug/L
7	79 Butylbenzyl phthalate	< 0.2	ug/L
8	30 Benz[a]anthracene	< 0.2	ug/L
8	31 Chrysene	< 0.2	ug/L
8	32 Bis(2-ethylhexyl) phthal	< 0.2	ug/L
8	33 Di-n-octyl phthalate	< 0.2	ug/L
8	34 Benzo[b]fluoranthene	< 0.2	ug/L
8	35 Dimethylbenzo(a)anthrace	< 0.2	ug/L
8	36 Benzo(k)fluoranthene	< 0.2	ug/L
8	37 Benzo(a)pyrene	< 0.2	ug/L
8	88 3-Methylcholanthrene	< 0.2	ug/L
8	39 Indeno[1-2-3-cd]pyrene	< 0.2	ug/L
ç	90 Dibenz(a-h)anthracene	< 0.2	ug/L
ç	91 Benzo(ghi)perylene	< 0.2	ug/L

Sample ID: 2018-1774 Operator: Ed Harris

Instrument ID: MS Instrument #1

Last Calibratior 5/24/2018 11:27 Acquisition Dat 5/24/2018 19:28

Target Compounds

			Acc. Criteria	Reported	
Peaks: 91("#" F	Peak Name	% Recovery	% Recovery	Result	Amount Units
7 2	2-Fluorophenol (Surr.)	39.17	15-80		ug/L
1 8	Nitrobenzene-d5 (Surr.)	66.65	50-150		ug/L
9 2	2-Fluorobiphenyl (Surr.)	64.4	50-150		ug/L
10 2	2-4-6-Tribromophenol (Su	71.44	50-150		ug/L
11 7	Terphenyl-d14 (Surr.)	71.24	50-150		ug/L
12 [Methyl Methanesulfonate			< 0.2	ug/L
13 E	Ethyl methanesulfonate			< 0.2	ug/L
14 F	Phenol			< 0.2	ug/L
15 /	Aniline			< 0.2	ug/L
16 E	Bis(2-chloroethyl) ether			< 0.2	ug/L
17 2	2-Chlorophenol			< 0.2	ug/L
18 1	1,3-Dichlorobenzene			1.83	ug/L
19 1	1,4-Dichlorobenzene			< 0.2	ug/L
20 E	Benzyl Alcohol			0.42	ug/L
21 1	1,2-Dichlorobenzene			< 0.2	ug/L
22 2	2-Methylphenol			< 0.2	ug/L
23 4	4-Methylphenol			< 0.2	ug/L
24 /	Acetophenone			< 0.2	ug/L
25 1	N-Nitroso-di-n-propylami			< 0.2	ug/L
26 H	Hexachloroethane			< 0.2	ug/L
27 1	Nitrobenzene			< 0.2	ug/L
1 82	N-Nitrosopiperidine			< 0.2	ug/L
29 I	sophorone			< 0.2	ug/L
30 2	2-Nitrophenol			< 0.4	ug/L
31 2	2,4-Dimethylphenol			< 0.2	ug/L
32 E	Bis(2-chloroethoxy) meth			< 0.2	ug/L
33 2	2-4-Dichlorophenol			< 0.2	ug/L
34 1	1-2-4-Trichlorobenzene			< 0.2	ug/L
35 1	Naphthalene			< 0.2	ug/L
36 4	4-Chloroaniline			< 0.2	ug/L
37 2	2-6-Dichlorophenol			< 0.2	ug/L
38 H	Hexachlorobutadiene			< 0.2	ug/L
1 98	N-Nitrosodibutylamine			< 0.2	ug/L
40 4	4-Chloro-3-methylphenol			< 0.2	ug/L
41 2	2-Methylnaphthalene			< 0.2	ug/L
42 1	1-2-4-5-Tetrachlorobenze			< 0.2	ug/L
43 I	Hexachlorocyclopentadien			< 0.2	ug/L
44 2	2,4,6-Trichlorophenol			< 0.2	ug/L

Extracted Sample MW-10D

Extracted Date 04-26-2018

Extracted by EH, JR

45	2,4,5-Trichlorophenol	< 0.2	ug/L
46	2-Chloronaphthalene	< 0.2	ug/L
47	1-Chloronaphthalene	< 0.2	ug/L
48	2-Nitroaniline	< 0.2	ug/L
49	Dimethyl-phthalate	< 0.2	ug/L
50	Acenaphthylene	< 0.2	ug/L
51	2-6-Dinitrotoluene	< 0.2	ug/L
52	3-Nitroaniline	< 0.2	ug/L
53	Acenaphthene	< 0.2	ug/L
54	2-4-Dinitrophenol	< 2.0	ug/L
55	Dibenzofuran	< 0.2	ug/L
56	4-Nitrophenol	< 1.0	ug/L
57	Pentachlorobenzene	< 0.2	ug/L
58	2-4-Dinitrotoluene	< 0.2	ug/L
59	2-3-4-6-Tetrachloropheno	< 0.4	ug/L
60	Fluorene	< 0.2	ug/L
61	Diethylphthalate	< 0.2	ug/L
62	4-Chlorophenyl-phenyl et	< 0.2	ug/L
63	4-Nitroaniline	< 0.2	ug/L
64	4-6-Dintro-2-methylpheno	< 2.0	ug/L
	Diphenylamine	< 0.2	ug/L
66	Azobenzene	< 0.2	ug/L
67	4-Bromophenyl-phenyl eth	< 0.2	ug/L
68	Hexachlorobenzene	< 0.2	ug/L
69	Pentachlorophenol	< 1.0	ug/L
70	Pentachloronitrobenzene	< 0.2	ug/L
71	Pronamide	< 0.2	ug/L
72	Phenanthrene	< 0.2	ug/L
73	Anthracene	< 0.2	ug/L
74	Carbazole	< 0.2	ug/L
75	Di-n-butylphthalate	< 0.2	ug/L
	Fluoranthene	< 0.2	ug/L
77	Pyrene	< 0.2	ug/L
78	Dimethylaminoazobenzene	< 0.2	ug/L
79	Butylbenzyl phthalate	< 0.2	ug/L
80	Benz[a]anthracene	< 0.2	ug/L
81	Chrysene	< 0.2	ug/L
82	Bis(2-ethylhexyl) phthal		0.24 ug/L
83	Di-n-octyl phthalate	< 0.2	ug/L
84	Benzo[b]fluoranthene	< 0.2	ug/L
85	Dimethylbenzo(a)anthrace	< 0.2	ug/L
	Benzo(k)fluoranthene	< 0.2	ug/L
	Benzo(a)pyrene	< 0.2	ug/L
	3-Methylcholanthrene	< 0.2	ug/L
89	Indeno[1-2-3-cd]pyrene	< 0.2	ug/L
90	Dibenz(a-h)anthracene	< 0.2	ug/L
91	Benzo(ghi)perylene	< 0.2	ug/L
			-

Sample ID: 2018-1775 Operator: Ed Harris

Instrument ID: MS Instrument #1

Last Calibration: 5/24/2018 11:27 Acquisition Date: 5/24/2018 19:58

Target Compounds

			Acc. Criteria	Reported	
Peaks: 91("#"	Peak Name	% Recovery	% Recovery	Result	Amount Units
	7 2-Fluorophenol (Surr.)	44.15	15-80		ug/L
	8 Nitrobenzene-d5 (Surr.)	61.41	50-150		ug/L
	9 2-Fluorobiphenyl (Surr.)	58.88	50-150		ug/L
1	0 2-4-6-Tribromophenol (Su	56.43	50-150		ug/L
1	1 Terphenyl-d14 (Surr.)	69.97	50-150		ug/L
1	2 Methyl Methanesulfonate			< 0.2	ug/L
1	3 Ethyl methanesulfonate			< 0.2	ug/L
1	4 Phenol			< 0.2	ug/L
1	5 Aniline			< 0.2	ug/L
1	6 Bis(2-chloroethyl) ether			< 0.2	ug/L
1	7 2-Chlorophenol			< 0.2	ug/L
1	8 1,3-Dichlorobenzene			2	ug/L
1	9 1,4-Dichlorobenzene			< 0.2	ug/L
2	0 Benzyl Alcohol			0.36	ug/L
2	1 1,2-Dichlorobenzene			< 0.2	ug/L
2	2 2-Methylphenol			< 0.2	ug/L
2	3 4-Methylphenol			< 0.2	ug/L
2	4 Acetophenone			< 0.2	ug/L
2	5 N-Nitroso-di-n-propylami			< 0.2	ug/L
2	6 Hexachloroethane			< 0.2	ug/L
2	7 Nitrobenzene			< 0.2	ug/L
2	8 N-Nitrosopiperidine			< 0.2	ug/L
2	9 Isophorone			< 0.2	ug/L
3	0 2-Nitrophenol			< 0.4	ug/L
3	1 2,4-Dimethylphenol			< 0.2	ug/L
3	2 Bis(2-chloroethoxy) meth			< 0.2	ug/L
3	3 2-4-Dichlorophenol			< 0.2	ug/L
3	4 1-2-4-Trichlorobenzene			< 0.2	ug/L
3	5 Naphthalene			< 0.2	ug/L
3	6 4-Chloroaniline			< 0.2	ug/L
3	7 2-6-Dichlorophenol			< 0.2	ug/L
3	8 Hexachlorobutadiene			< 0.2	ug/L
3	9 N-Nitrosodibutylamine			< 0.2	ug/L
4	0 4-Chloro-3-methylphenol			< 0.2	ug/L
4	1 2-Methylnaphthalene			< 0.2	ug/L
4	2 1-2-4-5-Tetrachlorobenze			< 0.2	ug/L
4	3 Hexachlorocyclopentadien			< 0.2	ug/L
4	4 2,4,6-Trichlorophenol			< 0.2	ug/L

Extracted Sample MW-10S

Extracted Date 04-26-2018 Extracted by EH, JR

45	2,4,5-Trichlorophenol	< 0.2	ug/L
46	2-Chloronaphthalene	< 0.2	ug/L
47	1-Chloronaphthalene	< 0.2	ug/L
48	2-Nitroaniline	< 0.2	ug/L
49	Dimethyl-phthalate	< 0.2	ug/L
	Acenaphthylene	< 0.2	ug/L
	2-6-Dinitrotoluene	< 0.2	ug/L
52	3-Nitroaniline	< 0.2	ug/L
53	Acenaphthene	< 0.2	ug/L
54	2-4-Dinitrophenol	< 2.0	ug/L
55	Dibenzofuran	< 0.2	ug/L
56	4-Nitrophenol	< 1.0	ug/L
57	Pentachlorobenzene	< 0.2	ug/L
58	2-4-Dinitrotoluene	< 0.2	ug/L
59	2-3-4-6-Tetrachloropheno	< 0.4	ug/L
60	Fluorene	< 0.2	ug/L
61	Diethylphthalate	< 0.2	ug/L
62	4-Chlorophenyl-phenyl et	< 0.2	ug/L
63	4-Nitroaniline	< 0.2	ug/L
64	4-6-Dintro-2-methylpheno	< 2.0	ug/L
65	Diphenylamine	< 0.2	ug/L
66	Azobenzene	< 0.2	ug/L
67	4-Bromophenyl-phenyl eth	< 0.2	ug/L
68	Hexachlorobenzene	< 0.2	ug/L
69	Pentachlorophenol	< 1.0	ug/L
70	Pentachloronitrobenzene	< 0.2	ug/L
71	Pronamide	< 0.2	ug/L
72	Phenanthrene	< 0.2	ug/L
73	Anthracene	< 0.2	ug/L
74	Carbazole	< 0.2	ug/L
75	Di-n-butylphthalate	< 0.2	ug/L
76	Fluoranthene	< 0.2	ug/L
77	Pyrene	< 0.2	ug/L
78	Dimethylaminoazobenzene	< 0.2	ug/L
79	Butylbenzyl phthalate	< 0.2	ug/L
80	Benz[a]anthracene	< 0.2	ug/L
81	Chrysene	< 0.2	ug/L
82	Bis(2-ethylhexyl) phthal	< 0.2	ug/L
83	Di-n-octyl phthalate	< 0.2	ug/L
84	Benzo[b]fluoranthene	< 0.2	ug/L
85	Dimethylbenzo(a)anthrace	< 0.2	ug/L
86	Benzo(k)fluoranthene	< 0.2	ug/L
87	Benzo(a)pyrene	< 0.2	ug/L
88	3-Methylcholanthrene	< 0.2	ug/L
89	Indeno[1-2-3-cd]pyrene	< 0.2	ug/L
90	Dibenz(a-h)anthracene	< 0.2	ug/L
91	Benzo(ghi)perylene	< 0.2	ug/L

Sample ID: 2018-1776 Operator: Ed Harris

Instrument MS Instrument #1

Last Calibra 5/24/2018 11:27 Acquisition 5/24/2018 20:27

Target Compounds

Target Compounds		Acc. Criteria	Reported	
Peaks: 91(" Peak Name	% Recovery	% Recovery	Result	Amount Units
7 2-Fluorophenol (Surr.)	22.95	15-80	Nesuit	ug/L
8 Nitrobenzene-d5 (Surr.)	61.46	50-150		ug/L
9 2-Fluorobiphenyl (Surr.)	61.74	50-150		ug/L
10 2-4-6-Tribromophenol (Su	31.43	50-150		ug/L
11 Terphenyl-d14 (Surr.)	83.47	50-150		ug/L
12 Methyl Methanesulfonate	03.47	30-130	< 0.2	ug/L
13 Ethyl methanesulfonate			< 0.2	ug/L
14 Phenol			< 0.2	ug/L
15 Aniline			< 0.2	ug/L
16 Bis(2-chloroethyl) ether			< 0.2	ug/L
17 2-Chlorophenol			< 0.2	ug/L
18 1,3-Dichlorobenzene			< 0.2	ug/L
19 1,4-Dichlorobenzene			< 0.2	ug/L
20 Benzyl Alcohol			< 0.2	ug/L
21 1,2-Dichlorobenzene			< 0.2	ug/L
22 2-Methylphenol			< 0.2	ug/L
23 4-Methylphenol			< 0.2	ug/L
24 Acetophenone			< 0.2	ug/L
25 N-Nitroso-di-n-propylami			< 0.2	ug/L
26 Hexachloroethane			< 0.2	ug/L
27 Nitrobenzene			< 0.2	ug/L
28 N-Nitrosopiperidine			< 0.2	ug/L
29 Isophorone			< 0.2	ug/L
30 2-Nitrophenol			< 0.4	ug/L
31 2,4-Dimethylphenol			< 0.2	ug/L
32 Bis(2-chloroethoxy) meth			< 0.2	ug/L
33 2-4-Dichlorophenol			< 0.2	ug/L
34 1-2-4-Trichlorobenzene			< 0.2	ug/L
35 Naphthalene			< 0.2	ug/L
36 4-Chloroaniline			< 0.2	ug/L
37 2-6-Dichlorophenol			< 0.2	ug/L
38 Hexachlorobutadiene			< 0.2	ug/L
39 N-Nitrosodibutylamine			< 0.2	ug/L
40 4-Chloro-3-methylphenol			< 0.2	ug/L
41 2-Methylnaphthalene			< 0.2	ug/L
42 1-2-4-5-Tetrachlorobenze			< 0.2	ug/L
43 Hexachlorocyclopentadien			< 0.2	ug/L
44 2,4,6-Trichlorophenol			< 0.2	ug/L

Extracted Sample EB-6

Extracted Date 04-26-2018 Extracted by EH, JR

45 2,4,5-Trichlorophenol	< 0.2	ug/L
46 2-Chloronaphthalene	< 0.2	ug/L
47 1-Chloronaphthalene	< 0.2	ug/L
48 2-Nitroaniline	< 0.2	ug/L
49 Dimethyl-phthalate	< 0.2	ug/L
50 Acenaphthylene	< 0.2	ug/L
51 2-6-Dinitrotoluene	< 0.2	ug/L
52 3-Nitroaniline	< 0.2	ug/L
53 Acenaphthene	< 0.2	ug/L
54 2-4-Dinitrophenol	< 2.0	ug/L
55 Dibenzofuran	< 0.2	ug/L
56 4-Nitrophenol		
	< 1.0	ug/L
57 Pentachlorobenzene	< 0.2	ug/L
58 2-4-Dinitrotoluene	< 0.2	ug/L
59 2-3-4-6-Tetrachloropheno	< 0.4	ug/L
60 Fluorene	< 0.2	ug/L
61 Diethylphthalate	< 0.2	ug/L
62 4-Chlorophenyl-phenyl et	< 0.2	ug/L
63 4-Nitroaniline	< 0.2	ug/L
64 4-6-Dintro-2-methylpheno	< 2.0	ug/L
65 Diphenylamine	< 0.2	ug/L
66 Azobenzene	< 0.2	ug/L
67 4-Bromophenyl-phenyl eth	< 0.2	ug/L
68 Hexachlorobenzene	< 0.2	ug/L
69 Pentachlorophenol	< 1.0	ug/L
70 Pentachloronitrobenzene	< 0.2	ug/L
71 Pronamide	< 0.2	ug/L
72 Phenanthrene	< 0.2	
		ug/L
73 Anthracene	< 0.2	ug/L
74 Carbazole	< 0.2	ug/L
75 Di-n-butylphthalate	< 0.2	ug/L
76 Fluoranthene	< 0.2	ug/L
77 Pyrene	< 0.2	ug/L
78 Dimethylaminoazobenzene	< 0.2	ug/L
79 Butylbenzyl phthalate	< 0.2	ug/L
80 Benz[a]anthracene	< 0.2	ug/L
81 Chrysene	< 0.2	ug/L
82 Bis(2-ethylhexyl) phthal	< 0.2	ug/L
83 Di-n-octyl phthalate	< 0.2	ug/L
84 Benzo[b]fluoranthene	< 0.2	ug/L
85 Dimethylbenzo(a)anthrace	< 0.2	ug/L
86 Benzo(k)fluoranthene	< 0.2	ug/L
87 Benzo(a)pyrene	< 0.2	ug/L
88 3-Methylcholanthrene	< 0.2	ug/L
89 Indeno[1-2-3-cd]pyrene	< 0.2	ug/L ug/L
90 Dibenz(a-h)anthracene	< 0.2	٠.
• •	< 0.2	ug/L
91 Benzo(ghi)perylene	₹ 0.2	ug/L

Sample ID: 2018-1777

Operat

le ID: 2018-1777	Extracted Sample EB-5
ator: Ed Harris	Extracted Date 04-26-2018
ment MS Instrument #1	Extracted by EH, JR
`alihr: 5/24/2018 11:27	

Instrum Last Calibra 5/24/2018 11:27 Acquisition 5/24/2018 20:56 Target Compounds

		Acc. Criteria	Reported	
Peaks: 91(' Peak Name % Recovery		% Recovery	Result	Amount Units
7 2-Fluoropheno	36.84	15-80		ug/L
8 Nitrobenzene-	60.59	50-150		ug/L
9 2-Fluorobipher	56.99	50-150		ug/L
10 2-4-6-Tribromc	55.23	50-150		ug/L
11 Terphenyl-d14	74.92	50-150		ug/L
12 Methyl Methanesulfonate			< 0.2	ug/L
13 Ethyl methanesulfonate			< 0.2	ug/L
14 Phenol			< 0.2	ug/L
15 Aniline			< 0.2	ug/L
16 Bis(2-chloroethyl) ether			< 0.2	ug/L
17 2-Chlorophenol			< 0.2	ug/L
18 1,3-Dichlorobenzene			0.4	2 ug/L
19 1,4-Dichlorobenzene			< 0.2	ug/L
20 Benzyl Alcohol			< 0.2	ug/L
21 1,2-Dichlorobenzene			< 0.2	ug/L
22 2-Methylphenol			< 0.2	ug/L
23 4-Methylphenol			< 0.2	ug/L
24 Acetophenone			< 0.2	ug/L
25 N-Nitroso-di-n-propylami			< 0.2	ug/L
26 Hexachloroethane			< 0.2	ug/L
27 Nitrobenzene			< 0.2	ug/L
28 N-Nitrosopiperidine			< 0.2	ug/L
29 Isophorone			< 0.2	ug/L
30 2-Nitrophenol			< 0.4	ug/L
31 2,4-Dimethylphenol			< 0.2	ug/L
32 Bis(2-chloroethoxy) meth			< 0.2	ug/L
33 2-4-Dichlorophenol			< 0.2	ug/L
34 1-2-4-Trichlorobenzene			< 0.2	ug/L
35 Naphthalene			< 0.2	ug/L
36 4-Chloroaniline			< 0.2	ug/L
37 2-6-Dichlorophenol			< 0.2	ug/L
38 Hexachlorobutadiene			< 0.2	ug/L
39 N-Nitrosodibutylamine			< 0.2	ug/L
40 4-Chloro-3-methylphenol			< 0.2	ug/L
41 2-Methylnaphthalene			< 0.2	ug/L
42 1-2-4-5-Tetrachlorobenze			< 0.2	ug/L
43 Hexachlorocyclopentadien			< 0.2	ug/L
44 2,4,6-Trichlorophenol			< 0.2	ug/L
45 2,4,5-Trichlorophenol			< 0.2	ug/L

46 2-Chloronaphthalene47 1-Chloronaphthalene48 2-Nitroaniline49 Dimethyl-phthalate	< 0.2 < 0.2 < 0.2	ug/L ug/L
48 2-Nitroaniline		-
	<02	
49 Dimethyl-phthalate	< U.Z	ug/L
	< 0.2	ug/L
50 Acenaphthylene	< 0.2	ug/L
51 2-6-Dinitrotoluene	< 0.2	ug/L
52 3-Nitroaniline	< 0.2	ug/L
53 Acenaphthene	< 0.2	ug/L
54 2-4-Dinitrophenol	< 2.0	ug/L
55 Dibenzofuran	< 0.2	ug/L
56 4-Nitrophenol	< 1.0	ug/L
57 Pentachlorobenzene	< 0.2	ug/L
58 2-4-Dinitrotoluene	< 0.2	ug/L
59 2-3-4-6-Tetrachloropheno	< 0.4	ug/L
60 Fluorene	< 0.2	ug/L
61 Diethylphthalate	< 0.2	ug/L
62 4-Chlorophenyl-phenyl et	< 0.2	ug/L
63 4-Nitroaniline	< 0.2	ug/L
64 4-6-Dintro-2-methylpheno	< 2.0	ug/L
65 Diphenylamine	< 0.2	ug/L
66 Azobenzene	< 0.2	ug/L
67 4-Bromophenyl-phenyl eth	< 0.2	ug/L
68 Hexachlorobenzene	< 0.2	ug/L
69 Pentachlorophenol	< 1.0	ug/L
70 Pentachloronitrobenzene	< 0.2	ug/L
71 Pronamide	< 0.2	ug/L
72 Phenanthrene	< 0.2	ug/L
73 Anthracene	< 0.2	ug/L
74 Carbazole	< 0.2	ug/L
75 Di-n-butylphthalate	< 0.2	ug/L
76 Fluoranthene	< 0.2	ug/L
77 Pyrene	< 0.2	ug/L
78 Dimethylaminoazobenzene	< 0.2	ug/L
79 Butylbenzyl phthalate	< 0.2	ug/L
80 Benz[a]anthracene	< 0.2	ug/L
81 Chrysene	< 0.2	ug/L
82 Bis(2-ethylhexyl) phthal	< 0.2	ug/L
83 Di-n-octyl phthalate	< 0.2	ug/L
84 Benzo[b]fluoranthene	< 0.2	ug/L
85 Dimethylbenzo(a)anthrace	< 0.2	ug/L
86 Benzo(k)fluoranthene	< 0.2	ug/L
87 Benzo(a)pyrene	< 0.2	ug/L
88 3-Methylcholanthrene	< 0.2	ug/L
89 Indeno[1-2-3-cd]pyrene	< 0.2	ug/L
e es e	< 0.2	ug/L
90 Dibenz(a-h)anthracene		

Sample ID: 2018-1779 500mL

Operator: Ed Harris

Instrument ID: MS Instrument #1

Last Calibration: 5/24/2018 11:27
Acquisition Date: 5/24/2018 21:55

Target Compounds

			Acc. Criteria	Reported	
Peaks: 91("#"	Peak Name	% Recovery	% Recovery	Result	Amount Units
	7 2-Fluorophenol (Surr.)	31.87	15-80		ug/L
	8 Nitrobenzene-d5 (Surr.)	51.11	50-150		ug/L
	9 2-Fluorobiphenyl (Surr.)	51.15	50-150		ug/L
	10 2-4-6-Tribromophenol (Su	51.01	50-150		ug/L
	11 Terphenyl-d14 (Surr.)	78.45	50-150		ug/L
	12 Methyl Methanesulfonate			< 0.2	ug/L
	13 Ethyl methanesulfonate			< 0.2	ug/L
	14 Phenol			< 0.2	ug/L
	15 Aniline			< 0.2	ug/L
	16 Bis(2-chloroethyl) ether			< 0.2	ug/L
	17 2-Chlorophenol			< 0.2	ug/L
	18 1,3-Dichlorobenzene			< 0.2	ug/L
	19 1,4-Dichlorobenzene			< 0.2	ug/L
	20 Benzyl Alcohol			< 0.2	ug/L
	21 1,2-Dichlorobenzene			< 0.2	ug/L
	22 2-Methylphenol			< 0.2	ug/L
	23 4-Methylphenol			< 0.2	ug/L
	24 Acetophenone			< 0.2	ug/L
	25 N-Nitroso-di-n-propylami			< 0.2	ug/L
	26 Hexachloroethane			< 0.2	ug/L
	27 Nitrobenzene			< 0.2	ug/L
	28 N-Nitrosopiperidine			< 0.2	ug/L
	29 Isophorone			< 0.2	ug/L
	30 2-Nitrophenol			< 0.4	ug/L
	31 2,4-Dimethylphenol			< 0.2	ug/L
	32 Bis(2-chloroethoxy) meth			< 0.2	ug/L
	33 2-4-Dichlorophenol			< 0.2	ug/L
	34 1-2-4-Trichlorobenzene			< 0.2	ug/L
	35 Naphthalene			< 0.2	ug/L
	36 4-Chloroaniline			< 0.2	ug/L
	37 2-6-Dichlorophenol			< 0.2	ug/L
	38 Hexachlorobutadiene			< 0.2	ug/L
	39 N-Nitrosodibutylamine			< 0.2	ug/L
	40 4-Chloro-3-methylphenol			< 0.2	ug/L
	41 2-Methylnaphthalene			< 0.2	ug/L
	42 1-2-4-5-Tetrachlorobenze			< 0.2	ug/L
	43 Hexachlorocyclopentadien			< 0.2	ug/L
	44 2,4,6-Trichlorophenol			< 0.2	ug/L

Extracted Sample MW-19D

Extracted Date 04-26-2018

Extracted by EH, JR

45	2,4,5-Trichlorophenol	< 0.2	ug/L
46	2-Chloronaphthalene	< 0.2	ug/L
	1-Chloronaphthalene	< 0.2	ug/L
	2-Nitroaniline	< 0.2	ug/L
49	Dimethyl-phthalate	< 0.2	ug/L
	Acenaphthylene	< 0.2	ug/L
	2-6-Dinitrotoluene	< 0.2	ug/L
	3-Nitroaniline	< 0.2	ug/L
	Acenaphthene		0.95 ug/L
	2-4-Dinitrophenol	< 2.0	ug/L
	Dibenzofuran		0.83 ug/L
	4-Nitrophenol	< 1.0	ug/L
	Pentachlorobenzene	< 0.2	ug/L
	2-4-Dinitrotoluene	< 0.2	ug/L
	2-3-4-6-Tetrachloropheno	< 0.4	ug/L
	Fluorene	.02	0.68 ug/L
	Diethylphthalate	< 0.2	ug/L
	4-Chlorophenyl-phenyl et	< 0.2	ug/L
	4-Nitroaniline	< 0.2	ug/L
	4-6-Dintro-2-methylpheno	< 2.0	ug/L
	Diphenylamine	< 0.2	ug/L
	Azobenzene 4-Bromophenyl-phenyl eth	< 0.2 < 0.2	ug/L ug/L
	Hexachlorobenzene	< 0.2	<u>.</u>
	Pentachlorophenol	< 1.0	ug/L ug/L
	Pentachloronitrobenzene	< 0.2	ug/L ug/L
	Pronamide	< 0.2	ug/L ug/L
	Phenanthrene	V 0.2	0.33 ug/L
	Anthracene	< 0.2	ug/L
	Carbazole	< 0.2	ug/L
	Di-n-butylphthalate	< 0.2	ug/L
	Fluoranthene		0.76 ug/L
	Pyrene		0.38 ug/L
	Dimethylaminoazobenzene	< 0.2	ug/L
	Butylbenzyl phthalate	< 0.2	ug/L
80	Benz[a]anthracene	< 0.2	ug/L
81	Chrysene	< 0.2	ug/L
82	Bis(2-ethylhexyl) phthal		0.23 ug/L
83	Di-n-octyl phthalate	< 0.2	ug/L
84	Benzo[b]fluoranthene	< 0.2	ug/L
85	Dimethylbenzo(a)anthrace	< 0.2	ug/L
86	Benzo(k)fluoranthene	< 0.2	ug/L
87	Benzo(a)pyrene	< 0.2	ug/L
88	3-Methylcholanthrene	< 0.2	ug/L
89	Indeno[1-2-3-cd]pyrene	< 0.2	ug/L
90	Dibenz(a-h)anthracene	< 0.2	ug/L
91	Benzo(ghi)perylene	< 0.2	ug/L

Sample ID: 2018-1780 Operator: Ed Harris

Instrument MS Instrument #1

Last Calibra 5/24/2018 11:27 Acquisition 5/24/2018 22:54

Target Compounds

		Acc. Criteria	Reported	
Peaks: 91(" Peak Name	% Recovery	% Recovery	Result	Amount Units
7 2-Fluorophenol (Surr.)	39.19	15-80		ug/L
8 Nitrobenzene-d5 (Surr.)	72.98	50-150		ug/L
9 2-Fluorobiphenyl (Surr.)	65.95	50-150		ug/L
10 2-4-6-Tribromophenol (Su	42.19	50-150		ug/L
11 Terphenyl-d14 (Surr.)	86.63	50-150		ug/L
12 Methyl Methanesulfonate			< 0.2	ug/L
13 Ethyl methanesulfonate			< 0.2	ug/L
14 Phenol			< 0.2	ug/L
15 Aniline			< 0.2	ug/L
16 Bis(2-chloroethyl) ether			< 0.2	ug/L
17 2-Chlorophenol			< 0.2	ug/L
18 1,3-Dichlorobenzene			< 0.2	ug/L
19 1,4-Dichlorobenzene			< 0.2	ug/L
20 Benzyl Alcohol			< 0.2	ug/L
21 1,2-Dichlorobenzene			< 0.2	ug/L
22 2-Methylphenol			< 0.2	ug/L
23 4-Methylphenol			< 0.2	ug/L
24 Acetophenone			< 0.2	ug/L
25 N-Nitroso-di-n-propylami			< 0.2	ug/L
26 Hexachloroethane			< 0.2	ug/L
27 Nitrobenzene			< 0.2	ug/L
28 N-Nitrosopiperidine			< 0.2	ug/L
29 Isophorone			< 0.2	ug/L
30 2-Nitrophenol			< 0.4	ug/L
31 2,4-Dimethylphenol			< 0.2	ug/L
32 Bis(2-chloroethoxy) meth			< 0.2	ug/L
33 2-4-Dichlorophenol			< 0.2	ug/L
34 1-2-4-Trichlorobenzene			< 0.2	ug/L
35 Naphthalene			< 0.2	ug/L
36 4-Chloroaniline			< 0.2	ug/L
37 2-6-Dichlorophenol			< 0.2	ug/L
38 Hexachlorobutadiene			< 0.2	ug/L
39 N-Nitrosodibutylamine			< 0.2	ug/L
40 4-Chloro-3-methylphenol			< 0.2	ug/L
41 2-Methylnaphthalene			< 0.2	ug/L
42 1-2-4-5-Tetrachlorobenze			< 0.2	ug/L
43 Hexachlorocyclopentadien			< 0.2	ug/L
44 2,4,6-Trichlorophenol			< 0.2	ug/L
·				

Extracted Sample RW-6

Extracted Date 04-26-2018
Extracted by EH, JR

45 2,4,5-Trichlorophenol	< 0.2	ug/L
46 2-Chloronaphthalene	< 0.2	ug/L
47 1-Chloronaphthalene	< 0.2	ug/L
48 2-Nitroaniline	< 0.2	ug/L
49 Dimethyl-phthalate	< 0.2	ug/L
50 Acenaphthylene	< 0.2	ug/L
51 2-6-Dinitrotoluene	< 0.2	ug/L
52 3-Nitroaniline	< 0.2	ug/L
53 Acenaphthene	< 0.2	ug/L
54 2-4-Dinitrophenol	< 2.0	ug/L
55 Dibenzofuran	< 0.2	ug/L
56 4-Nitrophenol	< 1.0	ug/L
57 Pentachlorobenzene	< 0.2	ug/L
58 2-4-Dinitrotoluene	< 0.2	ug/L
59 2-3-4-6-Tetrachloropheno	< 0.4	ug/L
60 Fluorene	< 0.2	ug/L
61 Diethylphthalate	< 0.2	ug/L
62 4-Chlorophenyl-phenyl et	< 0.2	ug/L
63 4-Nitroaniline	< 0.2	ug/L
64 4-6-Dintro-2-methylpheno	< 2.0	ug/L
65 Diphenylamine	< 0.2	ug/L
66 Azobenzene	< 0.2	ug/L
67 4-Bromophenyl-phenyl eth	< 0.2	ug/L
68 Hexachlorobenzene	< 0.2	ug/L
69 Pentachlorophenol	< 1.0	ug/L
70 Pentachloronitrobenzene	< 0.2	ug/L
71 Pronamide	< 0.2	ug/L
72 Phenanthrene	< 0.2	ug/L
73 Anthracene	< 0.2	ug/L
74 Carbazole	< 0.2	ug/L
75 Di-n-butylphthalate	< 0.2	ug/L
76 Fluoranthene	< 0.2	ug/L
77 Pyrene	< 0.2	ug/L
78 Dimethylaminoazobenzene	< 0.2	ug/L
79 Butylbenzyl phthalate	< 0.2	ug/L
80 Benz[a]anthracene	< 0.2	ug/L
81 Chrysene	< 0.2	ug/L
82 Bis(2-ethylhexyl) phthal		.21 ug/L
83 Di-n-octyl phthalate	< 0.2	ug/L
84 Benzo[b]fluoranthene	< 0.2	ug/L
85 Dimethylbenzo(a)anthrace	< 0.2	ug/L
86 Benzo(k)fluoranthene	< 0.2	ug/L
87 Benzo(a)pyrene	< 0.2	ug/L
88 3-Methylcholanthrene	< 0.2	ug/L
89 Indeno[1-2-3-cd]pyrene	< 0.2	ug/L
90 Dibenz(a-h)anthracene	< 0.2	ug/L
91 Benzo(ghi)perylene	< 0.2	ug/L

Sample ID: Ext Blank Operator: Ed Harris

Instrument ID: MS Instrument #1

Last Calibration: 5/24/2018 11:27 Acquisition Date 5/24/2018 13:36

Target Compounds

			Acc. Criteria	Reported		
Peaks: 91("#"	Peak Name	% Recovery	% Recovery	Result	Amount Units	Qualifier
7	2-Fluorophenol (Surr.)	44.7	15-80		ug/L	
8	Nitrobenzene-d5 (Surr.)	88.89	50-150		ug/L	
9	2-Fluorobiphenyl (Surr.)	87.51	50-150		ug/L	
10	2-4-6-Tribromophenol (Su	62.59	50-150		ug/L	
11	Terphenyl-d14 (Surr.)	100.69	50-150		ug/L	
12	Methyl Methanesulfonate			< 0.2	ug/L	
13	Ethyl methanesulfonate			< 0.2	ug/L	
14	Phenol			< 0.2	ug/L	
15	Aniline			< 0.2	ug/L	
16	Bis(2-chloroethyl) ether			< 0.2	ug/L	
17	2-Chlorophenol			< 0.2	ug/L	
18	1,3-Dichlorobenzene			< 0.2	ug/L	
19	1,4-Dichlorobenzene			< 0.2	ug/L	
20	Benzyl Alcohol			< 0.2	ug/L	
21	1,2-Dichlorobenzene			< 0.2	ug/L	
22	2-Methylphenol			< 0.2	ug/L	
23	4-Methylphenol			< 0.2	ug/L	
24	Acetophenone			< 0.2	ug/L	
25	N-Nitroso-di-n-propylami			< 0.2	ug/L	
26	Hexachloroethane			< 0.2	ug/L	
27	Nitrobenzene			< 0.2	ug/L	
28	N-Nitrosopiperidine			< 0.2	ug/L	
29	Isophorone			< 0.2	ug/L	
30	2-Nitrophenol			< 0.4	ug/L	
31	2,4-Dimethylphenol			< 0.2	ug/L	
32	Bis(2-chloroethoxy) meth			< 0.2	ug/L	
33	2-4-Dichlorophenol			< 0.2	ug/L	
34	1-2-4-Trichlorobenzene			< 0.2	ug/L	
35	Naphthalene			< 0.2	ug/L	
36	4-Chloroaniline			< 0.2	ug/L	
37	2-6-Dichlorophenol			< 0.2	ug/L	
38	Hexachlorobutadiene			< 0.2	ug/L	
39	N-Nitrosodibutylamine			< 0.2	ug/L	
40	4-Chloro-3-methylphenol			< 0.2	ug/L	
41	2-Methylnaphthalene			< 0.2	ug/L	
42	1-2-4-5-Tetrachlorobenze			< 0.2	ug/L	
43	Hexachlorocyclopentadien			< 0.2	ug/L	
44	2,4,6-Trichlorophenol			< 0.2	ug/L	
45	2,4,5-Trichlorophenol			< 0.2	ug/L	
46	2-Chloronaphthalene			< 0.2	ug/L	
47	1-Chloronaphthalene			< 0.2	ug/L	
48	2-Nitroaniline			< 0.2	ug/L	
49	Dimethyl-phthalate			< 0.2	ug/L	
50	Acenaphthylene			< 0.2	ug/L	

Extracted Method Blank

Extracted Date 04-26-2018 Extracted by EH, JR

51 2-6-Dinitrotoluene	< 0.2	ug/L
52 3-Nitroaniline	< 0.2	ug/L
53 Acenaphthene	< 0.2	ug/L
54 2-4-Dinitrophenol	< 2.0	ug/L
55 Dibenzofuran	< 0.2	ug/L
56 4-Nitrophenol	< 1.0	ug/L
57 Pentachlorobenzene	< 0.2	ug/L
58 2-4-Dinitrotoluene	< 0.2	ug/L
59 2-3-4-6-Tetrachloropheno	< 0.4	ug/L
60 Fluorene	< 0.2	ug/L
61 Diethylphthalate	< 0.2	ug/L
62 4-Chlorophenyl-phenyl et	< 0.2	ug/L
63 4-Nitroaniline	< 0.2	ug/L
64 4-6-Dintro-2-methylpheno	< 2.0	ug/L
65 Diphenylamine	< 0.2	ug/L
66 Azobenzene	< 0.2	ug/L
67 4-Bromophenyl-phenyl eth	< 0.2	ug/L
68 Hexachlorobenzene	< 0.2	ug/L
69 Pentachlorophenol	< 1.0	ug/L
70 Pentachloronitrobenzene	< 0.2	ug/L
71 Pronamide	< 0.2	ug/L
72 Phenanthrene	< 0.2	ug/L
73 Anthracene	< 0.2	ug/L
74 Carbazole	< 0.2	ug/L
75 Di-n-butylphthalate	0.9	91 ug/L
76 Fluoranthene	< 0.2	ug/L
77 Pyrene	< 0.2	ug/L
78 Dimethylaminoazobenzene	< 0.2	ug/L
79 Butylbenzyl phthalate	< 0.2	ug/L
80 Benz[a]anthracene	< 0.2	ug/L
81 Chrysene	< 0.2	ug/L
82 Bis(2-ethylhexyl) phthal	< 0.2	ug/L
83 Di-n-octyl phthalate	< 0.2	ug/L
84 Benzo[b]fluoranthene	< 0.2	ug/L
85 Dimethylbenzo(a)anthrace	< 0.2	ug/L
86 Benzo(k)fluoranthene	< 0.2	ug/L
87 Benzo(a)pyrene	< 0.2	ug/L
88 3-Methylcholanthrene	< 0.2	ug/L
89 Indeno[1-2-3-cd]pyrene	< 0.2	ug/L
90 Dibenz(a-h)anthracene	< 0.2	ug/L
91 Benzo(ghi)perylene	< 0.2	ug/L

B--Target analyte present in the method blank; any positive results for this analyte will be qualified by "B"

Sample ID: Ext LCS Operator: Ed Harris

Instrument MS Instrument #1

Last Calibra 5/24/2018 11:27 Acquisition 5/24/2018 14:05

Target Compounds

			Acc. Criteri
Peaks: 91('	Peak Name	% Recovery	% Rec.
7	2-Fluorophenol (Surr.)	55.5	15-80
8	Nitrobenzene-d5 (Surr.)	96.7	50-150
9	2-Fluorobiphenyl (Surr.)	87.66	50-150
10	2-4-6-Tribromophenol (Su	92.28	50-150
11	Terphenyl-d14 (Surr.)	87.93	50-150
12	Methyl Methanesulfonate	88.77	50-150
13	Ethyl methanesulfonate	104.8	50-150
14	Phenol	55.01	30-120
15	Aniline	64.32	50-150
16	Bis(2-chloroethyl) ether	102.16	50-150
17	2-Chlorophenol	93.16	30-120
18	1,3-Dichlorobenzene	58.62	50-150
19	1,4-Dichlorobenzene	64.3	50-150
20	Benzyl Alcohol	107.37	50-150
21	1,2-Dichlorobenzene	69.7	50-150
22	2-Methylphenol	88.33	30-120
23	4-Methylphenol	82.16	30-120
24	Acetophenone	110.35	50-150
25	N-Nitroso-di-n-propylami	109.67	50-150
26	Hexachloroethane	49.52	50-150
27	Nitrobenzene	104.8	50-150
28	N-Nitrosopiperidine	128.92	50-150
29	Isophorone	111.4	50-150
30	2-Nitrophenol	98.21	30-120
31	2,4-Dimethylphenol	67.01	30-120
32	Bis(2-chloroethoxy) meth	102.74	50-150
33	2-4-Dichlorophenol	102.79	30-120
34	1-2-4-Trichlorobenzene	73.71	50-150
	Naphthalene	91.45	50-150
	4-Chloroaniline	85.3	50-150
	2-6-Dichlorophenol	102.63	30-120
	Hexachlorobutadiene	45.72	50-150
39	N-Nitrosodibutylamine	106.6	50-150
	4-Chloro-3-methylphenol	97.3	30-120
	2-Methylnaphthalene	92.77	50-150
	1-2-4-5-Tetrachlorobenze	82.49	50-150
	Hexachlorocyclopentadien	61.88	50-150
	2,4,6-Trichlorophenol	101.28	30-120
45	2,4,5-Trichlorophenol	103.86	30-120

Extracted LCS
Extracted Date 04-26-2018
Extracted by EH, JR

46 2-Chloronaphthalene	96.49	50-150
47 1-Chloronaphthalene	102	50-150
48 2-Nitroaniline	104.64	50-150
49 Dimethyl-phthalate	107.27	50-150
50 Acenaphthylene	100.72	50-150
51 2-6-Dinitrotoluene	105.26	50-150
52 3-Nitroaniline	94.78	50-150
53 Acenaphthene	101.3	50-150
54 2-4-Dinitrophenol	104.81	30-120
55 Dibenzofuran	100.89	50-150
56 4-Nitrophenol	42.64	30-120
57 Pentachlorobenzene	87.47	50-150
58 2-4-Dinitrotoluene	100.63	50-150
59 2-3-4-6-Tetrachloropheno	102.87	30-120
60 Fluorene	108.79	50-150
61 Diethylphthalate	107.01	50-150
62 4-Chlorophenyl-phenyl et	99.62	50-150
63 4-Nitroaniline	104.1	50-150
64 4-6-Dintro-2-methylpheno	104.77	30-120
65 Diphenylamine	101.9	50-150
66 Azobenzene	102.07	50-150
67 4-Bromophenyl-phenyl eth	103.36	50-150
68 Hexachlorobenzene	98.47	50-150
69 Pentachlorophenol	104.82	30-120
70 Pentachloronitrobenzene	98.18	50-150
71 Pronamide	107.45	50-150
72 Phenanthrene	102.59	50-150
73 Anthracene	102.07	50-150
74 Carbazole	106.12	50-150
75 Di-n-butylphthalate	142.32	50-150
76 Fluoranthene	105.34	50-150
77 Pyrene	101.49	50-150
78 Dimethylaminoazobenzene	104.95	50-150
79 Butylbenzyl phthalate	111.1	50-150
80 Benz[a]anthracene	110.89	50-150
81 Chrysene	109.24	50-150
82 Bis(2-ethylhexyl) phthal	121.48	50-150
83 Di-n-octyl phthalate	108.01	50-150
84 Benzo[b]fluoranthene	115.01	50-150
85 Dimethylbenzo(a)anthrace	106.17	50-150
86 Benzo(k)fluoranthene	118.74	50-150
87 Benzo(a)pyrene	110.11	50-150
88 3-Methylcholanthrene	103.41	50-150
89 Indeno[1-2-3-cd]pyrene	120.84	50-150
90 Dibenz(a-h)anthracene	118.35	50-150
91 Benzo(ghi)perylene	122.93	50-150

Sample Report (Standard)

MS Data File Information

Sample ID: 2018-1709 MS Extracted Sample MW-12S plus Spike

Operator: Ed Harris Extracted Date 04-26-2018
Instrument MS Instrument #1 Extracted by EH, JR

Instrument MS Instrument #1 Extracted by E Last Calibra 5/24/2018 11:27

5/24/2018 15:33

Target Compounds

Acquisition

		Acceptance	
Peaks: 91(" Peak Name	% Recovery	Criteria % Rec.	Qualifier
7 2-Fluorophenol (Surr.)	41.7	15-80	
8 Nitrobenzene-d5 (Surr.)	65.0	50-150	
9 2-Fluorobiphenyl (Surr.)	55.2	50-150	
10 2-4-6-Tribromophenol (Su	63.4	50-150	
11 Terphenyl-d14 (Surr.)	67.3	50-150	
12 Methyl Methanesulfonate	60.2	50-150	
13 Ethyl methanesulfonate	72.7	50-150	
14 Phenol	46.8	30-120	
15 Aniline	32.6	50-150	MAnalyte failed to meet acceptance criteria for MS and/or MSD recovery
16 Bis(2-chloroethyl) ether	70.2	50-150	
17 2-Chlorophenol	66.6	30-120	
18 1,3-Dichlorobenzene	39.5	50-150	MAnalyte failed to meet acceptance criteria for MS and/or MSD recovery
19 1,4-Dichlorobenzene	48.4	50-150	MAnalyte failed to meet acceptance criteria for MS and/or MSD recovery
20 Benzyl Alcohol	67.3	50-150	
21 1,2-Dichlorobenzene	53.6	50-150	
22 2-Methylphenol	49.3	30-120	RRPD of MS/MSD failed to meet acceptance criteria
23 4-Methylphenol	46.1	30-120	RRPD of MS/MSD failed to meet acceptance criteria
24 Acetophenone	66.5	50-150	
25 N-Nitroso-di-n-propylami	70.5	50-150	
26 Hexachloroethane	38.6	50-150	
27 Nitrobenzene	64.2	50-150	
28 N-Nitrosopiperidine	86.6	50-150	
29 Isophorone	72.7	50-150	
30 2-Nitrophenol	69.1	30-120	
31 2,4-Dimethylphenol	0.0	30-120	MAnalyte failed to meet acceptance criteria for MS and/or MSD recovery;RRPD failed
32 Bis(2-chloroethoxy) meth	64.3	50-150	
33 2-4-Dichlorophenol	63.8	30-120	
34 1-2-4-Trichlorobenzene	54.3	50-150	
35 Naphthalene	64.6	50-150	
36 4-Chloroaniline	49.4	50-150	MAnalyte failed to meet acceptance criteria for MS and/or MSD recovery
37 2-6-Dichlorophenol	66.2	30-120	
38 Hexachlorobutadiene	37.1	50-150	MAnalyte failed to meet acceptance criteria for MS and/or MSD recovery
39 N-Nitrosodibutylamine	70.4	50-150	
40 4-Chloro-3-methylphenol	63.3	30-120	
41 2-Methylnaphthalene	63.9	50-150	
42 1-2-4-5-Tetrachlorobenze	55.6	50-150	
43 Hexachlorocyclopentadien	45.9	50-150	MAnalyte failed to meet acceptance criteria for MS and/or MSD recovery
44 2,4,6-Trichlorophenol	64.1	30-120	

45 2,4,5-Trichlorophenol	61.4	30-120		
46 2-Chloronaphthalene	61.6	50-150		
47 1-Chloronaphthalene	60.7	50-150		
48 2-Nitroaniline	70.5	50-150		
49 Dimethyl-phthalate	71.1	50-150		
50 Acenaphthylene	67.2	50-150		
51 2-6-Dinitrotoluene	65.7	50-150		
52 3-Nitroaniline	57.0	50-150		
53 Acenaphthene	67.0	50-150		
54 2-4-Dinitrophenol	77.7	30-120		
55 Dibenzofuran	68.1	50-150		
56 4-Nitrophenol	30.0	30-120	RRPD of MS/MSD failed to meet acceptance criteria	
57 Pentachlorobenzene	59.9	50-150		
58 2-4-Dinitrotoluene	68.2	50-150		
59 2-3-4-6-Tetrachloropheno	65.4	30-120		
60 Fluorene	66.0	50-150		
61 Diethylphthalate	68.5	50-150		
62 4-Chlorophenyl-phenyl et	63.9	50-150		
63 4-Nitroaniline	51.1	50-150		
64 4-6-Dintro-2-methylpheno	73.7	30-120		
65 Diphenylamine	66.0	50-150		
66 Azobenzene	66.3	50-150		
67 4-Bromophenyl-phenyl eth	68.2	50-150		
68 Hexachlorobenzene	66.4	50-150		
69 Pentachlorophenol	74.2	30-120		
70 Pentachloronitrobenzene	63.4	50-150		
71 Pronamide	71.2	50-150		
72 Phenanthrene	65.2	50-150		
73 Anthracene	62.6	50-150		
74 Carbazole	62.3	50-150		
75 Di-n-butylphthalate	69.5	50-150		
76 Fluoranthene	64.8	50-150		
77 Pyrene	67.1	50-150		
78 Dimethylaminoazobenzene	87.8	50-150		
79 Butylbenzyl phthalate	108.1	50-150		
80 Benz[a]anthracene	101.9	50-150		
81 Chrysene	106.8	50-150		
82 Bis(2-ethylhexyl) phthal	101.9	50-150		
83 Di-n-octyl phthalate	94.9	50-150		
84 Benzo[b]fluoranthene	106.9	50-150		
85 Dimethylbenzo(a)anthrace	99.7	50-150		
86 Benzo(k)fluoranthene	104.3	50-150		
87 Benzo(a)pyrene	106.4	50-150		
88 3-Methylcholanthrene	95.6	50-150		
89 Indeno[1-2-3-cd]pyrene	107.7	50-150		
90 Dibenz(a-h)anthracene	107.2	50-150		
91 Benzo(ghi)perylene	112.0	50-150	RRPD of MS/MSD failed to meet acceptance criteria	

Sample ID: 2018-1709 MSD

Operator: Ed Harris

Instrument MS Instrument #1

Last Calibra 5/24/2018 11:27 Acquisition 5/24/2018 16:03

Target Compounds

Target Compounds			Acceptance	RPD	
Peaks: 91("Peak Name	% Recovery	RPD (%)	Criteria % Rec.		
7 2-Fluorophenol (Surr.)	41.7	()	15-80	0-20	Qualifier
8 Nitrobenzene-d5 (Surr.)	65.0		50-150	0-20	
9 2-Fluorobiphenyl (Surr.)	55.2		50-150	0-20	
10 2-4-6-Tribromophenol (Su	63.4		50-150	0-20	
11 Terphenyl-d14 (Surr.)	67.3		50-150	0-20	
12 Methyl Methanesulfonate	61.4	1.9	50-150	0-20	
13 Ethyl methanesulfonate	71.8	1.4	50-150	0-20	
14 Phenol	39.1	17.9		0-20	
15 Aniline	38.9	17.8	50-150	0-20	MAnalyte failed to meet acceptance criteria for MS and/or MSD recovery
16 Bis(2-chloroethyl) ether	69.5	1.0	50-150	0-20	
17 2-Chlorophenol	66.7	0.2	30-120	0-20	
18 1,3-Dichlorobenzene	37.1	6.3	50-150	0-20	MAnalyte failed to meet acceptance criteria for MS and/or MSD recovery
19 1,4-Dichlorobenzene	45.2	6.9	50-150	0-20	MAnalyte failed to meet acceptance criteria for MS and/or MSD recovery
20 Benzyl Alcohol	69.2	2.8	50-150	0-20	
21 1,2-Dichlorobenzene	52.8	1.4	50-150	0-20	
22 2-Methylphenol	65.7	28.5	30-120	0-20	RRPD of MS/MSD failed to meet acceptance criteria;
23 4-Methylphenol	66.0	35.6	30-120	0-20	RRPD of MS/MSD failed to meet acceptance criteria;
24 Acetophenone	72.1	8.2	50-150	0-20	
25 N-Nitroso-di-n-propylami	68.5	2.9	50-150	0-20	
26 Hexachloroethane	37.5	2.9	50-150	0-20	MAnalyte failed to meet acceptance criteria for MS and/or MSD recover
27 Nitrobenzene	70.1	8.8	50-150	0-20	
28 N-Nitrosopiperidine	85.3	1.5	50-150	0-20	
29 Isophorone	72.0	0.9	50-150	0-20	
30 2-Nitrophenol	68.9	0.2	30-120	0-20	
31 2,4-Dimethylphenol	56.7	200.0	30-120	0-20	RRPD of MS/MSD failed to meet acceptance criteria;
32 Bis(2-chloroethoxy) meth	65.9	2.4	50-150	0-20	
33 2-4-Dichlorophenol	70.3	9.7	30-120	0-20	
34 1-2-4-Trichlorobenzene	55.3	1.8	50-150	0-20	
35 Naphthalene	65.4	1.2	50-150	0-20	
36 4-Chloroaniline	59.0	17.8	50-150	0-20	
37 2-6-Dichlorophenol	69.3	4.6	30-120	0-20	
38 Hexachlorobutadiene	34.1	8.3	50-150	0-20	MAnalyte failed to meet acceptance criteria for MS and/or MSD recover
39 N-Nitrosodibutylamine	76.2	7.9	50-150	0-20	
40 4-Chloro-3-methylphenol	72.2	13.1	30-120	0-20	
41 2-Methylnaphthalene	66.7	4.4	50-150	0-20	
42 1-2-4-5-Tetrachlorobenze	52.5	5.6	50-150	0-20	
43 Hexachlorocyclopentadien	43.1	6.4	50-150	0-20	MAnalyte failed to meet acceptance criteria for MS and/or MSD recover
44 2,4,6-Trichlorophenol	67.8	5.6	30-120	0-20	
45 2,4,5-Trichlorophenol	69.2	12.0	30-120	0-20	

Extracted Sample MW-12S plus Spike

Extracted Date 04-26-2018 Extracted by EH, JR

46 2-Chloronaphthalene	63.5	3.0	50-150	0-20
47 1-Chloronaphthalene	65.1	7.0	50-150	0-20
48 2-Nitroaniline	75.0	6.1	50-150	0-20
49 Dimethyl-phthalate	71.5	0.6	50-150	0-20
50 Acenaphthylene	67.9	0.9	50-150	0-20
51 2-6-Dinitrotoluene	70.6	7.2	50-150	0-20
52 3-Nitroaniline	66.4	15.3	50-150	0-20
53 Acenaphthene	66.9	0.1	50-150	0-20
54 2-4-Dinitrophenol	96.3	21.3	30-120	0-20
55 Dibenzofuran	70.3	3.2	50-150	0-20
56 4-Nitrophenol	46.0	24.4	30-120	0-20
57 Pentachlorobenzene	60.5	1.0	50-150	0-20
58 2-4-Dinitrotoluene	72.6	6.3	50-150	0-20
59 2-3-4-6-Tetrachloropheno	74.0	12.3	30-120	0-20
60 Fluorene	70.7	6.9	50-150	0-20
61 Diethylphthalate	72.4	5.6	50-150	0-20
62 4-Chlorophenyl-phenyl et	67.2	5.0	50-150	0-20
63 4-Nitroaniline	55.7	8.5	50-150	0-20
64 4-6-Dintro-2-methylpheno	77.1	4.6	30-120	0-20
65 Diphenylamine	69.4	4.9	50-150	0-20
66 Azobenzene	66.7	0.7	50-150	0-20
67 4-Bromophenyl-phenyl eth	64.1	6.3	50-150	0-20
68 Hexachlorobenzene	62.9	5.5	50-150	0-20
69 Pentachlorophenol	77.0	3.7	30-120	0-20
70 Pentachloronitrobenzene	63.2	0.2	50-150	0-20
71 Pronamide	74.3	4.3	50-150	0-20
72 Phenanthrene	69.9	6.8	50-150	0-20
73 Anthracene	70.3	11.6	50-150	0-20
74 Carbazole	63.7	2.3	50-150	0-20
75 Di-n-butylphthalate	71.7	3.2	50-150	0-20
76 Fluoranthene	71.6	9.8	50-150	0-20
77 Pyrene	73.8	9.5	50-150	0-20
78 Dimethylaminoazobenzene	102.0	14.9	50-150	0-20
79 Butylbenzyl phthalate	111.3	3.0	50-150	0-20
80 Benz[a]anthracene	106.3	4.3	50-150	0-20
81 Chrysene	109.3	2.2	50-150	0-20
82 Bis(2-ethylhexyl) phthal	102.1	0.2	50-150	0-20
83 Di-n-octyl phthalate	95.2	0.4	50-150	0-20
84 Benzo[b]fluoranthene	97.8	8.9	50-150	0-20
85 Dimethylbenzo(a)anthrace	93.4	6.5	50-150	0-20
86 Benzo(k)fluoranthene	97.5	6.8	50-150	0-20
87 Benzo(a)pyrene	96.8	9.5	50-150	0-20
88 3-Methylcholanthrene	95.9	0.3	50-150	0-20
89 Indeno[1-2-3-cd]pyrene	91.2	16.5	50-150	0-20
90 Dibenz(a-h)anthracene	89.7	17.7	50-150	0-20
91 Benzo(ghi)perylene	90.7	21.0	50-150	0-20
	55.7	21.0	55 156	0 -0

R--RPD of MS/MSD failed to meet accepance criteria

R--RPD of MS/MSD failed to meet acceptance criteria;

Sample ID: 2018-1781 Operator: Ed Harris

Instrument MS Instrument #1

Extracted MW-S5
Extracted Date 04-30-2018
Extracted by EH, JR

Last Calibra 5/24/2018 11:27 Acquisition 5/29/2018 11:48

		Acceptance			
Peaks: 91("Peak Name	% Recovery	Criteria % Rec.	Result	Amount Units	Qualifier
7 2-Fluorophenol (Surr.)	36.4			ug/L	
8 Nitrobenzene-d5 (Surr.)	56.8			ug/L	
9 2-Fluorobiphenyl (Surr.)	61.2			ug/L	
10 2-4-6-Tribromophenol (Su	41.4			ug/L	SSurrogate recovery does not meet accepance criteria; all analytes associated with this surrogate will be qualified as "estimated"
11 Terphenyl-d14 (Surr.)	81.1	50-150		ug/L	Analytes associated with this surrogate may be biased low
12 Methyl Methanesulfonate			< 0.2	ug/L	
13 Ethyl methanesulfonate			< 0.2	ug/L	
14 Phenol			< 0.2	ug/L	
15 Aniline			< 0.2	ug/L	L= Estimated result due to failure (low) in the LCS and/or LCS dup; result MAY be biased low
16 Bis(2-chloroethyl) ether			< 0.2	ug/L	
17 2-Chlorophenol			< 0.2	ug/L	
18 1,3-Dichlorobenzene			< 0.2	ug/L	
19 1,4-Dichlorobenzene			< 0.2	ug/L	
20 Benzyl Alcohol			< 0.2	ug/L	
21 1,2-Dichlorobenzene			< 0.2	ug/L	
22 2-Methylphenol			< 0.2	ug/L	
23 4-Methylphenol			< 0.2	ug/L	
24 Acetophenone			< 0.2	ug/L	
25 N-Nitroso-di-n-propylami			< 0.2	ug/L	
26 Hexachloroethane			< 0.2	ug/L	
27 Nitrobenzene			< 0.2	ug/L	
28 N-Nitrosopiperidine			< 0.2	ug/L	
29 Isophorone			< 0.2	ug/L	
30 2-Nitrophenol			< 0.4	ug/L	
31 2,4-Dimethylphenol			< 0.2	ug/L	L= Estimated result due to failure (low) in the LCS and/or LCS dup; result MAY be biased low
32 Bis(2-chloroethoxy) meth			< 0.2	ug/L	
33 2-4-Dichlorophenol			< 0.2	ug/L	
34 1-2-4-Trichlorobenzene			< 0.2	ug/L	
35 Naphthalene			< 0.2	ug/L	
36 4-Chloroaniline			< 0.2	ug/L	
37 2-6-Dichlorophenol			< 0.2	ug/L	
38 Hexachlorobutadiene			< 0.2	ug/L	L= Estimated result due to failure (low) in the LCS and/or LCS dup
39 N-Nitrosodibutylamine			< 0.2	ug/L	
40 4-Chloro-3-methylphenol			< 0.2	ug/L	
41 2-Methylnaphthalene			< 0.2	ug/L	
42 1-2-4-5-Tetrachlorobenze			< 0.2	ug/L	
43 Hexachlorocyclopentadien			< 0.2	ug/L	
44 2,4,6-Trichlorophenol			< 0.2	ug/L	
45 2,4,5-Trichlorophenol			< 0.2	ug/L	
46 2-Chloronaphthalene			< 0.2	ug/L	
47 1-Chloronaphthalene			< 0.2	ug/L	
48 2-Nitroaniline			< 0.2	ug/L	
49 Dimethyl-phthalate			< 0.2	ug/L	
50 Acenaphthylene			< 0.2	ug/L	
51 2-6-Dinitrotoluene			< 0.2	ug/L	
52 3-Nitroaniline			< 0.2	ug/L	
53 Acenaphthene			< 0.2	ug/L	
54 2-4-Dinitrophenol			< 2.0	ug/L	EEstimated result due to surrogate compound failure
55 Dibenzofuran			< 0.2	ug/L	EEstimated result due to surrogate compound failure
56 4-Nitrophenol			< 1.0	ug/L	EEstimated result due to surrogate compound failure

57 Pentachlorobenzene	< 0.2	ug/L
58 2-4-Dinitrotoluene	< 0.2	ug/L
59 2-3-4-6-Tetrachloropheno	< 0.4	ug/L
60 Fluorene	< 0.2	ug/L
61 Diethylphthalate	< 0.2	ug/L
62 4-Chlorophenyl-phenyl et	< 0.2	ug/L
63 4-Nitroaniline	< 0.2	ug/L
64 4-6-Dintro-2-methylpheno	< 2.0	ug/L
65 Diphenylamine	< 0.2	ug/L
66 Azobenzene	< 0.2	ug/L
67 4-Bromophenyl-phenyl eth	< 0.2	ug/L
68 Hexachlorobenzene	< 0.2	ug/L
69 Pentachlorophenol	< 1.0	ug/L
70 Pentachloronitrobenzene	< 0.2	ug/L
71 Pronamide	< 0.2	ug/L
72 Phenanthrene	< 0.2	ug/L
73 Anthracene	< 0.2	ug/L
74 Carbazole	< 0.2	ug/L
75 Di-n-butylphthalate	< 0.2	ug/L
76 Fluoranthene	< 0.2	ug/L
77 Pyrene	< 0.2	ug/L
78 Dimethylaminoazobenzene	< 0.2	ug/L
79 Butylbenzyl phthalate	< 0.2	ug/L
80 Benz[a]anthracene	< 0.2	ug/L
81 Chrysene	< 0.2	ug/L
82 Bis(2-ethylhexyl) phthal	< 0.2	ug/L
83 Di-n-octyl phthalate	< 0.2	ug/L
84 Benzo[b]fluoranthene	< 0.2	ug/L
85 Dimethylbenzo(a)anthrace	< 0.2	ug/L
86 Benzo(k)fluoranthene	< 0.2	ug/L
87 Benzo(a)pyrene	< 0.2	ug/L
88 3-Methylcholanthrene	< 0.2	ug/L
89 Indeno[1-2-3-cd]pyrene	< 0.2	ug/L
90 Dibenz(a-h)anthracene	< 0.2	ug/L
91 Benzo(ghi)perylene	< 0.2	ug/L

E--Estimated result due to surrogate compound failure E--Estimated result due to surrogate compound failure E--Estimated result due to surrogate compound failure E--Estimated result due to surrogate compound failure E--Estimated result due to surrogate compound failure E--Estimated result due to surrogate compound failure E--Estimated result due to surrogate compound failure E--Estimated result due to surrogate compound failure E--Estimated result due to surrogate compound failure E--Estimated result due to surrogate compound failure E--Estimated result due to surrogate compound failure E--Estimated result due to surrogate compound failure E--Estimated result due to surrogate compound failure E--Estimated result due to surrogate compound failure E--Estimated result due to surrogate compound failure E--Estimated result due to surrogate compound failure E--Estimated result due to surrogate compound failure E--Estimated result due to surrogate compound failure

Sample ID:2018-1782Extracted MW-01SOperator:Ed HarrisExtracted Date 04-30-2018Instrument ID:MS Instrument #1Extracted by EH, JR

Last Calibration: 5/24/2018 11:27 Acquisition Date: 5/29/2018 12:17

Target Compo			Acceptance	Reported		
Peaks: 91("#"	Peak Name	% Recovery	Criteria % Rec.	•	Amount Units	Qualifier
	7 2-Fluorophenol (Surr.)	36.6	15-80		ug/L	
	8 Nitrobenzene-d5 (Surr.)	62.7	50-150		ug/L	
	9 2-Fluorobiphenyl (Surr.)	63.1	50-150		ug/L	
	10 2-4-6-Tribromophenol (Su	55.1	50-150		ug/L	
	11 Terphenyl-d14 (Surr.)	82.2	50-150		ug/L	
	12 Methyl Methanesulfonate			< 0.2	ug/L	
	13 Ethyl methanesulfonate			< 0.2	ug/L	
	14 Phenol			< 0.2	ug/L	
	15 Aniline			< 0.2	ug/L	L= Estimated result due to failure (low) in the LCS and/or LCS dup; result MAY be biased low
	16 Bis(2-chloroethyl) ether			< 0.2	ug/L	
	17 2-Chlorophenol			< 0.2	ug/L	
	18 1,3-Dichlorobenzene			2.3	3 ug/L	
	19 1,4-Dichlorobenzene			< 0.2	ug/L	
	20 Benzyl Alcohol			0.39	9 ug/L	
	21 1,2-Dichlorobenzene			< 0.2	ug/L	
	22 2-Methylphenol			< 0.2	ug/L	
	23 4-Methylphenol			< 0.2	ug/L	
	24 Acetophenone			< 0.2	ug/L	
	25 N-Nitroso-di-n-propylami			< 0.2	ug/L	
	26 Hexachloroethane			< 0.2	ug/L	
	27 Nitrobenzene			< 0.2	ug/L	
	28 N-Nitrosopiperidine			< 0.2	ug/L	
	29 Isophorone			< 0.2	ug/L	
	30 2-Nitrophenol			< 0.4	ug/L	
	31 2,4-Dimethylphenol			< 0.2	ug/L	L= Estimated result due to failure (low) in the LCS and/or LCS dup; result MAY be biased low
	32 Bis(2-chloroethoxy) meth			< 0.2	ug/L	
	33 2-4-Dichlorophenol			< 0.2	ug/L	
	34 1-2-4-Trichlorobenzene			< 0.2	ug/L	
	35 Naphthalene			< 0.2	ug/L	
	36 4-Chloroaniline			< 0.2	ug/L	
	37 2-6-Dichlorophenol			< 0.2	ug/L	
	38 Hexachlorobutadiene			< 0.2	ug/L	L= Estimated result due to failure (low) in the LCS and/or LCS dup; result MAY be biased low
	39 N-Nitrosodibutylamine			< 0.2	ug/L	
	40 4-Chloro-3-methylphenol			< 0.2	ug/L	
	41 2-Methylnaphthalene			< 0.2	ug/L	
	42 1-2-4-5-Tetrachlorobenze			< 0.2	ug/L	
	43 Hexachlorocyclopentadien	1		< 0.2	ug/L	
	44 2,4,6-Trichlorophenol			< 0.2	ug/L	
	45 2,4,5-Trichlorophenol			< 0.2	ug/L	
	46 2-Chloronaphthalene			< 0.2	ug/L	

47	1-Chloronaphthalene	< 0.2	ug/L
48	2-Nitroaniline	< 0.2	ug/L
49	Dimethyl-phthalate	< 0.2	ug/L
50	Acenaphthylene	< 0.2	ug/L
51	2-6-Dinitrotoluene	< 0.2	ug/L
52	3-Nitroaniline	< 0.2	ug/L
53	Acenaphthene	< 0.2	ug/L
54	2-4-Dinitrophenol	< 2.0	ug/L
55	Dibenzofuran	< 0.2	ug/L
56	4-Nitrophenol	< 1.0	ug/L
57	Pentachlorobenzene	< 0.2	ug/L
58	2-4-Dinitrotoluene	< 0.2	ug/L
59	2-3-4-6-Tetrachloropheno	< 0.4	ug/L
60	Fluorene	< 0.2	ug/L
61	Diethylphthalate	< 0.2	ug/L
62	4-Chlorophenyl-phenyl et	< 0.2	ug/L
63	4-Nitroaniline	< 0.2	ug/L
64	4-6-Dintro-2-methylpheno	< 2.0	ug/L
65	Diphenylamine	< 0.2	ug/L
66	Azobenzene	< 0.2	ug/L
67	4-Bromophenyl-phenyl eth	< 0.2	ug/L
68	Hexachlorobenzene	< 0.2	ug/L
69	Pentachlorophenol	< 1.0	ug/L
70	Pentachloronitrobenzene	< 0.2	ug/L
71	Pronamide	< 0.2	ug/L
72	Phenanthrene	< 0.2	ug/L
73	Anthracene	< 0.2	ug/L
74	Carbazole	< 0.2	ug/L
75	Di-n-butylphthalate	< 0.2	ug/L
76	Fluoranthene	< 0.2	ug/L
77	Pyrene	< 0.2	ug/L
78	Dimethylaminoazobenzene	< 0.2	ug/L
79	Butylbenzyl phthalate	< 0.2	ug/L
80	Benz[a]anthracene	< 0.2	ug/L
81	Chrysene	< 0.2	ug/L
82	Bis(2-ethylhexyl) phthal	< 0.2	ug/L
83	Di-n-octyl phthalate	< 0.2	ug/L
84	Benzo[b]fluoranthene	< 0.2	ug/L
85	Dimethylbenzo(a)anthrace	< 0.2	ug/L
86	Benzo(k)fluoranthene	< 0.2	ug/L
87	Benzo(a)pyrene	< 0.2	ug/L
	3-Methylcholanthrene	< 0.2	ug/L
89	Indeno[1-2-3-cd]pyrene	< 0.2	ug/L
	Dibenz(a-h)anthracene	< 0.2	ug/L
	Benzo(ghi)perylene	< 0.2	ug/L
	·- ·- ·		-

Sample ID: 2018-1783 Operator: Ed Harris

Instrument MS Instrument #1

Last Calibra 5/24/2018 11:27 Acquisition 5/29/2018 12:47

Target Compounds

		Acceptance I	Reported		
Peaks: 91("Peak Name	% Recovery	Criteria % Rec. I	Result	Amount Units	Qualifier
7 2-Fluorophenol (Surr.)	32.7	15-80		ug/L	
8 Nitrobenzene-d5 (Surr.)	57.4	50-150		ug/L	
9 2-Fluorobiphenyl (Surr.)	57.5	50-150		ug/L	
10 2-4-6-Tribromophenol (Su	53.2	50-150		ug/L	
11 Terphenyl-d14 (Surr.)	90.1	50-150		ug/L	
12 Methyl Methanesulfonate		•	< 0.2	ug/L	
13 Ethyl methanesulfonate		•	< 0.2	ug/L	
14 Phenol		•	< 0.2	ug/L	
15 Aniline		•	< 0.2	ug/L	L= Estimated result due to failure (low) in the LCS and/or LCS dup; result MAY be biased low
16 Bis(2-chloroethyl) ether		•	< 0.2	ug/L	
17 2-Chlorophenol		•	< 0.2	ug/L	
18 1,3-Dichlorobenzene			1.0	7 ug/L	
19 1,4-Dichlorobenzene		•	< 0.2	ug/L	
20 Benzyl Alcohol			0.2	8 ug/L	
21 1,2-Dichlorobenzene		•	< 0.2	ug/L	
22 2-Methylphenol		•	< 0.2	ug/L	
23 4-Methylphenol		•	< 0.2	ug/L	
24 Acetophenone		•	< 0.2	ug/L	
25 N-Nitroso-di-n-propylami		•	< 0.2	ug/L	
26 Hexachloroethane		•	< 0.2	ug/L	
27 Nitrobenzene		•	< 0.2	ug/L	
28 N-Nitrosopiperidine		•	< 0.2	ug/L	
29 Isophorone		•	< 0.2	ug/L	
30 2-Nitrophenol		•	< 0.4	ug/L	
31 2,4-Dimethylphenol		•	< 0.2	ug/L	L= Estimated result due to failure (low) in the LCS and/or LCS dup; result MAY be biased low
32 Bis(2-chloroethoxy) meth		•	< 0.2	ug/L	
33 2-4-Dichlorophenol		•	< 0.2	ug/L	
34 1-2-4-Trichlorobenzene		•	< 0.2	ug/L	
35 Naphthalene		•	< 0.2	ug/L	
36 4-Chloroaniline		•	< 0.2	ug/L	
37 2-6-Dichlorophenol		•	< 0.2	ug/L	
38 Hexachlorobutadiene			< 0.2	ug/L	L= Estimated result due to failure (low) in the LCS and/or LCS dup; result MAY be biased low
39 N-Nitrosodibutylamine		•	< 0.2	ug/L	
40 4-Chloro-3-methylphenol		•	< 0.2	ug/L	
41 2-Methylnaphthalene		•	< 0.2	ug/L	
42 1-2-4-5-Tetrachlorobenze		•	< 0.2	ug/L	
43 Hexachlorocyclopentadien		•	< 0.2	ug/L	
44 2,4,6-Trichlorophenol		•	< 0.2	ug/L	
45 2,4,5-Trichlorophenol		•	< 0.2	ug/L	

Extracted MW-01D

Extracted Date 04-30-2018 Extracted by EH, JR

46 2-Chloronaphthalene	< 0.2	ug/L
47 1-Chloronaphthalene	< 0.2	ug/L
48 2-Nitroaniline	< 0.2	ug/L
49 Dimethyl-phthalate	< 0.2	ug/L
50 Acenaphthylene	< 0.2	ug/L
51 2-6-Dinitrotoluene	< 0.2	ug/L
52 3-Nitroaniline	< 0.2	ug/L
53 Acenaphthene	< 0.2	ug/L
54 2-4-Dinitrophenol	< 2.0	ug/L
55 Dibenzofuran	< 0.2	ug/L
56 4-Nitrophenol	< 1.0	ug/L
57 Pentachlorobenzene	< 0.2	ug/L
58 2-4-Dinitrotoluene	< 0.2	ug/L
59 2-3-4-6-Tetrachloropheno	< 0.4	ug/L
60 Fluorene	< 0.2	ug/L
61 Diethylphthalate	< 0.2	ug/L
62 4-Chlorophenyl-phenyl et	< 0.2	ug/L
63 4-Nitroaniline	< 0.2	ug/L
64 4-6-Dintro-2-methylpheno	< 2.0	ug/L
65 Diphenylamine	< 0.2	ug/L
66 Azobenzene	< 0.2	ug/L
67 4-Bromophenyl-phenyl eth	< 0.2	ug/L
68 Hexachlorobenzene	< 0.2	ug/L
69 Pentachlorophenol	< 1.0	ug/L
70 Pentachloronitrobenzene	< 0.2	ug/L
71 Pronamide	< 0.2	ug/L
72 Phenanthrene	< 0.2	ug/L
73 Anthracene	< 0.2	ug/L
74 Carbazole	< 0.2	ug/L
75 Di-n-butylphthalate	< 0.2	ug/L
76 Fluoranthene	< 0.2	ug/L
77 Pyrene	< 0.2	ug/L
78 Dimethylaminoazobenzene	< 0.2	ug/L
79 Butylbenzyl phthalate	< 0.2	ug/L
80 Benz[a]anthracene	< 0.2	ug/L
81 Chrysene	< 0.2	ug/L
82 Bis(2-ethylhexyl) phthal	< 0.2	ug/L
83 Di-n-octyl phthalate	< 0.2	ug/L
84 Benzo[b]fluoranthene	< 0.2	ug/L
85 Dimethylbenzo(a)anthrace	< 0.2	ug/L
86 Benzo(k)fluoranthene	< 0.2	ug/L
87 Benzo(a)pyrene	< 0.2	ug/L
88 3-Methylcholanthrene	< 0.2	ug/L
89 Indeno[1-2-3-cd]pyrene	< 0.2	ug/L
90 Dibenz(a-h)anthracene	< 0.2	ug/L
91 Benzo(ghi)perylene	< 0.2	ug/L

Sample ID: 2018-1784 50mL

Extracted RW-7 50mL Operator: Ed Harris Extracted Date 04-30-2018 Instrument MS Instrument #1 Extracted by EH, JR

Last Calibra ########

Acquisition ########

Target Compounds

Acceptance Reported Peaks

		/	Acceptanc	€Reported		
ks: 9)1("Peak Nam∈% Re	ecoven (Criteria %	F Result	Amount Units	Qualifier
	7 2-Fluoroph	36.4	15-80		ug/L	
	8 Nitrobenze	61.3	50-150		ug/L	
	9 2-Fluorobir	58.1	50-150		ug/L	
	10 2-4-6-Tribr	40.8	50-150		ug/L	SSurrogate recovery does not meet acceptance criteria;
	11 Terphenyl-	83.6	50-150		ug/L	all analytes associated with this surrogate will be qualified
	12 Methyl Methan	esulfon	ate	<2.0	ug/L	as "estimated" and results MAY be biased low
	13 Ethyl methanes	ulfonate	2	<2.0	ug/L	
	14 Phenol			<2.0	ug/L	
	15 Aniline			<2.0	ug/L	L= Estimated result due to failure (low) in the LCS and/or LCS dup; result MAY be biased low
	16 Bis(2-chloroethy	vl) ethei	r	<2.0	ug/L	
	17 2-Chlorophenol			<2.0	ug/L	
	18 1,3-Dichloroben	nzene		<2.0	ug/L	
	19 1,4-Dichloroben	nzene		<2.0	ug/L	
	20 Benzyl Alcohol			<2.0	ug/L	
	21 1,2-Dichloroben	nzene		<2.0	ug/L	
	22 2-Methylphenol			<2.0	ug/L	
	23 4-Methylphenol			<2.0	ug/L	
	24 Acetophenone			<2.0	ug/L	
	25 N-Nitroso-di-n-r	oropylai	mi	<2.0	ug/L	
	26 Hexachloroetha	ine		<2.0	ug/L	
	27 Nitrobenzene			<2.0	ug/L	
	28 N-Nitrosopiperio	dine		<2.0	ug/L	
	29 Isophorone			<2.0	ug/L	
	30 2-Nitrophenol			<4.0	ug/L	
	31 2,4-Dimethylpho	enol		<2.0	ug/L	L= Estimated result due to failure (low) in the LCS and/or LCS dup; result MAY be biased low
	32 Bis(2-chloroetho		th	<2.0	ug/L	
	33 2-4-Dichlorophe			<2.0	ug/L	
	34 1-2-4-Trichlorob		:	<2.0	ug/L	
	35 Naphthalene			< 0.2	ug/L	
	36 4-Chloroaniline			<2.0	ug/L	
	37 2-6-Dichlorophe	enol		<2.0	ug/L	
	38 Hexachlorobuta			<2.0	ug/L	L= Estimated result due to failure (low) in the LCS and/or LCS dup; result MAY be biased low
	39 N-Nitrosodibuty	/lamine		<2.0	ug/L	
	40 4-Chloro-3-meth		ol	<2.0	ug/L	
	41 2-Methylnaphth			<2.0	ug/L	
	42 1-2-4-5-Tetrach		ze	<2.0	ug/L	
	43 Hexachlorocyclo			<2.0	ug/L	
	44 2,4,6-Trichlorop			<2.0	ug/L	
	45 2,4,5-Trichlorop			<2.0	ug/L	
	46 2-Chloronaphth			<2.0	ug/L	
	47 1-Chloronaphth			<2.0	ug/L	
	48 2-Nitroaniline			<2.0	ug/L	
	49 Dimethyl-phtha	late		<2.0	ug/L	
	50 Acenaphthylene			<2.0	ug/L	
	51 2-6-Dinitrotolue			<2.0	ug/L	
	52 3-Nitroaniline	-		<2.0	ug/L	
					-0/-	

53 Acenaphthene			44 ug/L	Over Range; Analyzed a dilution
54 2-4-Dinitrophenol		<20.0	ug/L	EEstimated result due to surrogate compound failure; analyte MAY be biased low
55 Dibenzofuran		1	4.1 ug/L	EEstimated result due to surrogate compound failure; analyte MAY be biased low
56 4-Nitrophenol		<10.0	ug/L	EEstimated result due to surrogate compound failure; analyte MAY be biased low
57 Pentachlorobenzer	ne	<2.0	ug/L	EEstimated result due to surrogate compound failure; analyte MAY be biased low
58 2-4-Dinitrotoluene		<2.0	ug/L	EEstimated result due to surrogate compound failure; analyte MAY be biased low
59 2-3-4-6-Tetrachlore	opheno	<4.0	ug/L	EEstimated result due to surrogate compound failure; analyte MAY be biased low
60 Fluorene		4.	.24 ug/L	EEstimated result due to surrogate compound failure; analyte MAY be biased low
61 Diethylphthalate		<2.0	ug/L	EEstimated result due to surrogate compound failure; analyte MAY be biased low
62 4-Chlorophenyl-ph	envl et	<2.0	ug/L	EEstimated result due to surrogate compound failure; analyte MAY be biased low
63 4-Nitroaniline	•	<2.0	ug/L	EEstimated result due to surrogate compound failure; analyte MAY be biased low
64 4-6-Dintro-2-methy	vlpheno	<20.0	ug/L	EEstimated result due to surrogate compound failure; analyte MAY be biased low
65 Diphenylamine	, ,	<2.0	ug/L	EEstimated result due to surrogate compound failure; analyte MAY be biased low
66 Azobenzene		<2.0	ug/L	EEstimated result due to surrogate compound failure; analyte MAY be biased low
67 4-Bromophenyl-ph	envl eth	<2.0	ug/L	EEstimated result due to surrogate compound failure; analyte MAY be biased low
68 Hexachlorobenzen		<2.0	ug/L	EEstimated result due to surrogate compound failure; analyte MAY be biased low
69 Pentachloropheno		<10.0	ug/L	EEstimated result due to surrogate compound failure; analyte MAY be biased low
70 Pentachloronitrobe		<2.0	ug/L	EEstimated result due to surrogate compound failure; analyte MAY be biased low
71 Pronamide	chizene	<2.0	ug/L	EEstimated result due to surrogate compound failure; analyte MAY be biased low
72 Phenanthrene		<2.0	ug/L ug/L	EEstimated result due to surrogate compound failure; analyte MAY be biased low
73 Anthracene		<2.0	ug/L ug/L	EEstimated result due to surrogate compound failure; analyte MAY be biased low
74 Carbazole		<2.0	ug/L ug/L	EEstimated result due to surrogate compound failure; analyte MAY be biased low
75 Di-n-butylphthalat			.23 ug/L	B= Present in the Method Blank at 0.77 ug/L; result MAY be biased high
76 Fluoranthene	.e	<2.0	ug/L	b- Present in the Method Blank at 0.77 ug/L, result MAT be blased high
			_	
77 Pyrene	h	<2.0	ug/L	
78 Dimethylaminoazo		<2.0	ug/L	
79 Butylbenzyl phthal		<2.0	ug/L	
80 Benz[a]anthracene		<2.0	ug/L	
81 Chrysene		<2.0	ug/L	
82 Bis(2-ethylhexyl) p			.23 ug/L	
83 Di-n-octyl phthalat		<2.0	ug/L	
84 Benzo[b]fluoranthe		<2.0	ug/L	
85 Dimethylbenzo(a)a		<2.0	ug/L	
86 Benzo(k)fluoranthe	ene	<2.0	ug/L	
87 Benzo(a)pyrene		<2.0	ug/L	
88 3-Methylcholanthr		<2.0	ug/L	
89 Indeno[1-2-3-cd]p _\		<2.0	ug/L	
90 Dibenz(a-h)anthrac		<2.0	ug/L	
91 Benzo(ghi)perylene	9	<2.0	ug/L	
nple ID: 2018-1784 5 mL		Extracte	ed RW-7 5n	nL
erator: Ed Harris		Extracte	ed Date 04-3	30-2018
trument MS Instrument #1		Extracte	ed by EH, JR	
t Calibra #######				
uisition #######				
get Compounds				
		c: Reporte		
ıks: 91(" Peak Nam∈% Reco	ver Criteria %	FResult	Amount	t Units
7 2-Fluoroph 2	9.2 15-80		ug/L	
8 Nitrobenze 6	2.6 50-150		ug/L	
9 2-Fluorobi; 6	2.7 50-150		ug/L	
10 2-4-6-Tribr 3	2.6 50-150		ug/L	SSurrogate did not recover within accepance range;
11 Torobonul O	0.7 F0.1F0		/1	Accomplete and is not associated with this surrogate, so no data flagged as a

ug/L

45.5 ug/L

11 Terphenyl-

53 Acenaphthene

99.7 50-150

45.386

Acenaphthene is not associated with this surrogate, so no data flagged as a result of this failure

Sample ID: 2018-1785
Operator: Ed Harris
Instrument ID MS Instrument #1

Extracted MW-17S Extracted Date 04-30-2018 Extracted by EH, JR

Last Calibratic 5/24/2018 11:27 Acquisition Da 5/29/2018 14:15

		Acceptance	Reported		
Peaks: 91("#" Peak Name	% Recovery	Criteria % R		Amount Units	Qualifier
7 2-Fluorophenol (Surr.)	41.0	15-80		ug/L	
8 Nitrobenzene-d5 (Surr.)	53.4	50-150		ug/L	
9 2-Fluorobiphenyl (Surr.)	56.8	50-150		ug/L	
10 2-4-6-Tribromophenol (Su	49.8	50-150		ug/L	S=surrogate did not recover within acceptance criteria; all analytes associated with this surrogate will be qualified as "estimated"
11 Terphenyl-d14 (Surr.)	75.0	50-150		ug/L	analytes associated with this surrogate MAY have results biased LOW
12 Methyl Methanesulfonate			< 0.2	ug/L	
13 Ethyl methanesulfonate			< 0.2	ug/L	
14 Phenol			< 0.2	ug/L	
15 Aniline			< 0.2	ug/L	L= Estimated result due to failure (low) in the LCS and/or LCS dup; results MAY be biased low
16 Bis(2-chloroethyl) ether			< 0.2	ug/L	
17 2-Chlorophenol			< 0.2	ug/L	
18 1,3-Dichlorobenzene			0.78	3 ug/L	
19 1,4-Dichlorobenzene			< 0.2	ug/L	
20 Benzyl Alcohol			< 0.2	ug/L	
21 1,2-Dichlorobenzene			< 0.2	ug/L	
22 2-Methylphenol			< 0.2	ug/L	
23 4-Methylphenol			< 0.2	ug/L	
24 Acetophenone			< 0.2	ug/L	
25 N-Nitroso-di-n-propylami			< 0.2	ug/L	
26 Hexachloroethane			< 0.2	ug/L	
27 Nitrobenzene			< 0.2	ug/L	
28 N-Nitrosopiperidine			< 0.2	ug/L	
29 Isophorone			< 0.2	ug/L	
30 2-Nitrophenol			< 0.4	ug/L	
31 2,4-Dimethylphenol			< 0.2	ug/L	L= Estimated result due to failure (low) in the LCS and/or LCS dup; results MAY be biased low
32 Bis(2-chloroethoxy) meth			< 0.2	ug/L	
33 2-4-Dichlorophenol			< 0.2	ug/L	
34 1-2-4-Trichlorobenzene			< 0.2	ug/L	
35 Naphthalene			< 0.2	ug/L	
36 4-Chloroaniline			< 0.2	ug/L	
37 2-6-Dichlorophenol			< 0.2	ug/L	
38 Hexachlorobutadiene			< 0.2	ug/L	L= Estimated result due to failure (low) in the LCS and/or LCS dup; results MAY be biased low
39 N-Nitrosodibutylamine			< 0.2	ug/L	
40 4-Chloro-3-methylphenol			< 0.2	ug/L	
41 2-Methylnaphthalene			< 0.2	ug/L	
42 1-2-4-5-Tetrachlorobenze			< 0.2	ug/L	
43 Hexachlorocyclopentadien			< 0.2	ug/L	
44 2,4,6-Trichlorophenol			< 0.2	ug/L	
45 2,4,5-Trichlorophenol			< 0.2	ug/L	
46 2-Chloronaphthalene			< 0.2	ug/L	
47 1-Chloronaphthalene			< 0.2	ug/L	
48 2-Nitroaniline			< 0.2	ug/L	
49 Dimethyl-phthalate			< 0.2	ug/L	
50 Acenaphthylene			< 0.2	ug/L	
51 2-6-Dinitrotoluene			< 0.2	ug/L	
52 3-Nitroaniline			< 0.2	ug/L	
53 Acenaphthene				5 ug/L	
54 2-4-Dinitrophenol			< 2.0	ug/L	EEstimated result due to surrogate compound failure; results MAY be biased low
55 Dibenzofuran			< 0.2	ug/L	EEstimated result due to surrogate compound failure; results MAY be biased low
			< 1.0	ug/L	EEstimated result due to surrogate compound failure; results MAY be biased low

57 Pentachlorobenzene	< 0.2	ug/L
58 2-4-Dinitrotoluene	< 0.2	ug/L
59 2-3-4-6-Tetrachloropheno	< 0.4	ug/L
60 Fluorene	< 0.2	ug/L
61 Diethylphthalate	< 0.2	ug/L
62 4-Chlorophenyl-phenyl et	< 0.2	ug/L
63 4-Nitroaniline	< 0.2	ug/L
64 4-6-Dintro-2-methylpheno	< 2.0	ug/L
65 Diphenylamine	< 0.2	ug/L
66 Azobenzene	< 0.2	ug/L
67 4-Bromophenyl-phenyl eth	< 0.2	ug/L
68 Hexachlorobenzene	< 0.2	ug/L
69 Pentachlorophenol	< 1.0	ug/L
70 Pentachloronitrobenzene	< 0.2	ug/L
71 Pronamide	< 0.2	ug/L
72 Phenanthrene	< 0.2	ug/L
73 Anthracene	< 0.2	ug/L
74 Carbazole	< 0.2	ug/L
75 Di-n-butylphthalate	< 0.2	ug/L
76 Fluoranthene	< 0.2	ug/L
77 Pyrene	< 0.2	ug/L
78 Dimethylaminoazobenzene	< 0.2	ug/L
79 Butylbenzyl phthalate	< 0.2	ug/L
80 Benz[a]anthracene	< 0.2	ug/L
81 Chrysene	< 0.2	ug/L
82 Bis(2-ethylhexyl) phthal		.22 ug/L
83 Di-n-octyl phthalate	< 0.2	ug/L
84 Benzo[b]fluoranthene	< 0.2	ug/L
85 Dimethylbenzo(a)anthrace	< 0.2	ug/L
86 Benzo(k)fluoranthene	< 0.2	ug/L
87 Benzo(a)pyrene	< 0.2	ug/L
88 3-Methylcholanthrene	< 0.2	ug/L
89 Indeno[1-2-3-cd]pyrene	< 0.2	ug/L
90 Dibenz(a-h)anthracene	< 0.2	ug/L
91 Benzo(ghi)perylene	< 0.2	ug/L

E--Estimated result due to surrogate compound failure; results MAY be biased low E--Estimated result due to surrogate compound failure; results MAY be biased low E--Estimated result due to surrogate compound failure; results MAY be biased low E--Estimated result due to surrogate compound failure; results MAY be biased low E--Estimated result due to surrogate compound failure; results MAY be biased low E--Estimated result due to surrogate compound failure; results MAY be biased low E--Estimated result due to surrogate compound failure; results MAY be biased low E--Estimated result due to surrogate compound failure; results MAY be biased low E--Estimated result due to surrogate compound failure; results MAY be biased low E--Estimated result due to surrogate compound failure; results MAY be biased low E--Estimated result due to surrogate compound failure; results MAY be biased low E--Estimated result due to surrogate compound failure; results MAY be biased low E--Estimated result due to surrogate compound failure; results MAY be biased low E--Estimated result due to surrogate compound failure; results MAY be biased low E--Estimated result due to surrogate compound failure; results MAY be biased low E--Estimated result due to surrogate compound failure; results MAY be biased low E--Estimated result due to surrogate compound failure; results MAY be biased low E--Estimated result due to surrogate compound failure; results MAY be biased low
 Sample ID:
 2018-1786 50mL

 Operator:
 Ed Harris

 Instrument ID:
 MS Instrument #1

 Last Calibration:
 5/24/2018 11:27

 Acquisition Date:
 5/29/2018 14:45

Extracted RW-1 50mL Extracted Date 04-30-2018 Extracted by EH, JR

rarget Compou	nas 		Acceptance	Reported			
Peaks: 91("#"	Peak Name	% Recovery	Criteria % Rec.	Result	Amount Units	Qualifier	
reaks. 51(#	7 2-Fluorophenol (Surr.)	28.4		nesuit	ug/L	Qualifier	
	8 Nitrobenzene-d5 (Surr.)	54.6			ug/L		
	9 2-Fluorobiphenyl (Surr.)	49.1			ug/L		
	10 2-4-6-Tribromophenol (Su	39.4			ug/L	S=Surrogate failed to recover	
	11 Terphenyl-d14 (Surr.)	87.6	5 50-150		ug/L	within acceptance criteria;	
	12 Methyl Methanesulfonate			<2.0	ug/L	all analytes associated with	
	13 Ethyl methanesulfonate			<2.0	ug/L	failed surrogate will be qualified	
	14 Phenol			<2.0	ug/L	as "Estimated" and may be biased low	
	15 Aniline			<2.0	ug/L	L= Estimated result due to failure (low) in the LCS and/or LCS dup; result MAY be biased low	
	16 Bis(2-chloroethyl) ether			<2.0	ug/L		
	17 2-Chlorophenol			<2.0	ug/L		
	18 1,3-Dichlorobenzene			<2.0	ug/L		
	19 1,4-Dichlorobenzene			<2.0	ug/L		
	20 Benzyl Alcohol			<2.0	ug/L		
	21 1,2-Dichlorobenzene			<2.0	ug/L		
	22 2-Methylphenol			<2.0	ug/L		
	23 4-Methylphenol			<2.0	ug/L		
	24 Acetophenone			<2.0 <2.0	ug/L ug/L		
	25 N-Nitroso-di-n-propylami 26 Hexachloroethane			<2.0	ug/L ug/L		
	27 Nitrobenzene			<2.0	ug/L ug/L		
	28 N-Nitrosopiperidine			<2.0	ug/L		
	29 Isophorone			<2.0	ug/L		
	30 2-Nitrophenol			<4.0	ug/L		
	31 2,4-Dimethylphenol			<2.0	ug/L	L= Estimated result due to failure (low) in the LCS and/or LCS dup; result MAY be biased low	
	32 Bis(2-chloroethoxy) meth			<2.0	ug/L		
	33 2-4-Dichlorophenol			<2.0	ug/L		
	34 1-2-4-Trichlorobenzene			<2.0	ug/L		
	35 Naphthalene			2.47	ug/L		
	36 4-Chloroaniline			<2.0	ug/L		
	37 2-6-Dichlorophenol			<2.0	ug/L		
	38 Hexachlorobutadiene			<2.0	ug/L	L= Estimated result due to failure (low) in the LCS and/or LCS dup; result MAY be biased low	
	39 N-Nitrosodibutylamine			<2.0	ug/L		
	40 4-Chloro-3-methylphenol			<2.0	ug/L		
	41 2-Methylnaphthalene			<2.0	ug/L		
	42 1-2-4-5-Tetrachlorobenze			<2.0	ug/L		
	43 Hexachlorocyclopentadien			<2.0	ug/L		
	44 2,4,6-Trichlorophenol			<2.0	ug/L		
	45 2,4,5-Trichlorophenol 46 2-Chloronaphthalene			<2.0 <2.0	ug/L		
	47 1-Chloronaphthalene			<2.0	ug/L ug/L		
	48 2-Nitroaniline			<2.0	ug/L		
	49 Dimethyl-phthalate			<2.0	ug/L		
	50 Acenaphthylene			<2.0	ug/L		
	51 2-6-Dinitrotoluene			<2.0	ug/L		
	52 3-Nitroaniline			<2.0	ug/L		
	53 Acenaphthene			184	ug/L	Over Range; requires dilution	
	54 2-4-Dinitrophenol			< 20.0	ug/L	E=Estimated result due to surrogate failure; result MAY be biased low	
	55 Dibenzofuran			89	ug/L	Over Range; requires dilution	E=Estimated result due to surrogate failure; result MAY be biased low
	56 4-Nitrophenol			< 10.0	ug/L	E=Estimated result due to surrogate failure; result MAY be biased low	
	57 Pentachlorobenzene			<2.0	ug/L	E=Estimated result due to surrogate failure; result MAY be biased low	
	58 2-4-Dinitrotoluene			<2.0	ug/L	E=Estimated result due to surrogate failure; result MAY be biased low	
	59 2-3-4-6-Tetrachloropheno			<4.0	ug/L	E=Estimated result due to surrogate failure; result MAY be biased low	
	60 Fluorene			86.5	ug/L	Over Range; requires dilution	E=Estimated result due to surrogate failure; result MAY be biased low
	61 Diethylphthalate			<2.0	ug/L	E=Estimated result due to surrogate failure; result MAY be biased low	

62 4-Chlorophenyl-phenyl et	<2.0	ug/L	E=Estimated result due to surrogate failure; result MAY be biased low
63 4-Nitroaniline	<2.0	ug/L	E=Estimated result due to surrogate failure; result MAY be biased low
64 4-6-Dintro-2-methylpheno	< 20.0	ug/L	E=Estimated result due to surrogate failure; result MAY be biased low
65 Diphenylamine	<2.0	ug/L	E=Estimated result due to surrogate failure; result MAY be biased low
66 Azobenzene	<2.0	ug/L	E=Estimated result due to surrogate failure; result MAY be biased low
67 4-Bromophenyl-phenyl eth	<2.0	ug/L	E=Estimated result due to surrogate failure; result MAY be biased low
68 Hexachlorobenzene	<2.0	ug/L	E=Estimated result due to surrogate failure; result MAY be biased low
69 Pentachlorophenol	< 10.0	ug/L	E=Estimated result due to surrogate failure; result MAY be biased low
70 Pentachloronitrobenzene	<2.0	ug/L	E=Estimated result due to surrogate failure; result MAY be biased low
71 Pronamide	<2.0	ug/L	E=Estimated result due to surrogate failure; result MAY be biased low
72 Phenanthrene	83	ug/L	Over Range; requires dilution
73 Anthracene	5.39	ug/L	E=Estimated result due to surrogate failure; result MAY be biased low
74 Carbazole	15.6	ug/L	E=Estimated result due to surrogate failure; result MAY be biased low
75 Di-n-butylphthalate	4.24	ug/L	B= Present in the Method Blank at 0.77 ug/L; result MAY be biased high
76 Fluoranthene	42.2	ug/L	Over Range; requires dilution
77 Pyrene	25.1	ug/L	
78 Dimethylaminoazobenzene	<2.0	ug/L	
79 Butylbenzyl phthalate	<2.0	ug/L	
80 Benz[a]anthracene	5.5	ug/L	
81 Chrysene	4.94	ug/L	
82 Bis(2-ethylhexyl) phthal	2.44	ug/L	
83 Di-n-octyl phthalate	<2.0	ug/L	
84 Benzo[b]fluoranthene	<2.0	ug/L	
85 Dimethylbenzo(a)anthrace	<2.0	ug/L	
86 Benzo(k)fluoranthene	2.61	ug/L	
87 Benzo(a)pyrene	2.34	ug/L	
88 3-Methylcholanthrene	<2.0	ug/L	
89 Indeno[1-2-3-cd]pyrene	<2.0	ug/L	
90 Dibenz(a-h)anthracene	<2.0	ug/L	
91 Benzo(ghi)perylene	<2.0	ug/L	

E=Estimated result due to surrogate failure

 Sample ID:
 2018-1786 5mL
 Extracted RW-1 5mL

 Operator:
 Ed Harris
 Extracted Date 04-30-2018

 Instrument ID:
 MS Instrument #1
 Extracted by EH, JR

Last Calibration: 5/24/2018 11:27 Acquisition Date: 5/29/2018 15:15

raiget compou						
		Acceptance	Reported	l		
Peaks: 91("#"	Peak Name	% Recovery	Criteria % Rec.	Result	Amount Units	Qualifier
	7 2-Fluorophenol (Surr.)	37.2	15-80		ug/L	
	8 Nitrobenzene-d5 (Surr.)	61.3	50-150		ug/L	
	9 2-Fluorobiphenyl (Surr.)	61.7	50-150		ug/L	
	10 2-4-6-Tribromophenol (Su	49.4	50-150		ug/L	S= Surrogate failure; associated analytes will be qualified as "estimated"
	11 Terphenyl-d14 (Surr.)	89.0	50-150		ug/L	
	53 Acenaphthene			18	4 ug/L	
	55 Dibenzofuran			106 ug/L	6 ug/L	E=Estimated result due to surrogate failure
	60 Fluorene			10	103 ug/L	E=Estimated result due to surrogate failure
	72 Phenanthrene	2 Phenanthrene			4 ug/L	E=Estimated result due to surrogate failure
	76 Fluoranthene			24.	.7 ug/L	E=Estimated result due to surrogate failure

Sample ID: 2018-1787

Operator: Ed Harris
Instrument MS Instrument #1

Last Calibra 5/24/2018 11:27 Acquisition 5/29/2018 15:44

Target Compounds

		Acceptance	Reported		
Peaks: 91(" Peak Name	% Recovery	Criteria % Rec.	Result	Amount Units	Qualifier
7 2-Fluorophenol (Surr.)	37.4	15-80		ug/L	
8 Nitrobenzene-d5 (Surr.)	64.2	50-150		ug/L	
9 2-Fluorobiphenyl (Surr.)	63.3	50-150		ug/L	
10 2-4-6-Tribromophenol (Su	57.7	50-150		ug/L	
11 Terphenyl-d14 (Surr.)	75.4	50-150		ug/L	
12 Methyl Methanesulfonate			< 0.2	ug/L	
13 Ethyl methanesulfonate			< 0.2	ug/L	
14 Phenol			< 0.2	ug/L	
15 Aniline			< 0.2	ug/L	L= Estimated result due to failure (low) in the LCS and/or LCS dup; result MAY be biased low
16 Bis(2-chloroethyl) ether			< 0.2	ug/L	
17 2-Chlorophenol			< 0.2	ug/L	
18 1,3-Dichlorobenzene			< 0.2	ug/L	
19 1,4-Dichlorobenzene			< 0.2	ug/L	
20 Benzyl Alcohol			< 0.2	ug/L	
21 1,2-Dichlorobenzene			< 0.2	ug/L	
22 2-Methylphenol			< 0.2	ug/L	
23 4-Methylphenol			< 0.2	ug/L	
24 Acetophenone			< 0.2	ug/L	
25 N-Nitroso-di-n-propylami			< 0.2	ug/L	
26 Hexachloroethane			< 0.2	ug/L	
27 Nitrobenzene			< 0.2	ug/L	
28 N-Nitrosopiperidine			< 0.2	ug/L	
29 Isophorone			< 0.2	ug/L	
30 2-Nitrophenol			< 0.4	ug/L	
31 2,4-Dimethylphenol			< 0.2	ug/L	L= Estimated result due to failure (low) in the LCS and/or LCS dup; result MAY be biased low
32 Bis(2-chloroethoxy) meth			< 0.2	ug/L	
33 2-4-Dichlorophenol			< 0.2	ug/L	
34 1-2-4-Trichlorobenzene			< 0.2	ug/L	
35 Naphthalene			< 0.2	ug/L	
36 4-Chloroaniline			< 0.2	ug/L	
37 2-6-Dichlorophenol			< 0.2	ug/L	
38 Hexachlorobutadiene			< 0.2	ug/L	L= Estimated result due to failure (low) in the LCS and/or LCS dup; result MAY be biased low
39 N-Nitrosodibutylamine			< 0.2	ug/L	
40 4-Chloro-3-methylphenol			< 0.2	ug/L	
41 2-Methylnaphthalene			< 0.2	ug/L	
42 1-2-4-5-Tetrachlorobenze			< 0.2	ug/L	
43 Hexachlorocyclopentadien			< 0.2	ug/L	
44 2,4,6-Trichlorophenol			< 0.2	ug/L	
45 2,4,5-Trichlorophenol			< 0.2	ug/L	
46 2-Chloronaphthalene			< 0.2	ug/L	
47 1-Chloronaphthalene			< 0.2	ug/L	

Extracted EB-7

Extracted by EH, JR

Extracted Date 04-30-2018

48 2-Nitroaniline	< 0.2	ug/L
49 Dimethyl-phthalate	< 0.2	ug/L
50 Acenaphthylene	< 0.2	ug/L
51 2-6-Dinitrotoluene	< 0.2	ug/L
52 3-Nitroaniline	< 0.2	ug/L
53 Acenaphthene	< 0.2	ug/L
54 2-4-Dinitrophenol	< 2.0	ug/L
55 Dibenzofuran	< 0.2	ug/L
56 4-Nitrophenol	< 1.0	ug/L
57 Pentachlorobenzene	< 0.2	ug/L
58 2-4-Dinitrotoluene	< 0.2	ug/L
59 2-3-4-6-Tetrachloropheno	< 0.4	ug/L
60 Fluorene	< 0.2	ug/L
61 Diethylphthalate	< 0.2	ug/L
62 4-Chlorophenyl-phenyl et	< 0.2	ug/L
63 4-Nitroaniline	< 0.2	ug/L
64 4-6-Dintro-2-methylpheno	< 2.0	ug/L
65 Diphenylamine	< 0.2	ug/L
66 Azobenzene	< 0.2	ug/L
67 4-Bromophenyl-phenyl eth	< 0.2	ug/L
68 Hexachlorobenzene	< 0.2	ug/L
69 Pentachlorophenol	< 1.0	ug/L
70 Pentachloronitrobenzene	< 0.2	ug/L
71 Pronamide	< 0.2	ug/L
72 Phenanthrene	< 0.2	ug/L
73 Anthracene	< 0.2	ug/L
74 Carbazole	< 0.2	ug/L
75 Di-n-butylphthalate	< 0.2	ug/L
76 Fluoranthene	< 0.2	ug/L
77 Pyrene	< 0.2	ug/L
78 Dimethylaminoazobenzene	< 0.2	ug/L
79 Butylbenzyl phthalate	< 0.2	ug/L
80 Benz[a]anthracene	< 0.2	ug/L
81 Chrysene	< 0.2	ug/L
82 Bis(2-ethylhexyl) phthal	< 0.2	ug/L
83 Di-n-octyl phthalate	< 0.2	ug/L
84 Benzo[b]fluoranthene	< 0.2	ug/L
85 Dimethylbenzo(a)anthrace	< 0.2	ug/L
86 Benzo(k)fluoranthene	< 0.2	ug/L
87 Benzo(a)pyrene	< 0.2	ug/L
88 3-Methylcholanthrene	< 0.2	ug/L
89 Indeno[1-2-3-cd]pyrene	< 0.2	ug/L
90 Dibenz(a-h)anthracene	< 0.2	ug/L
91 Benzo(ghi)perylene	< 0.2	ug/L

Sample ID: 2018-1788

Extracted EB-8 Extracted Date 04-30-2018 Operator: Ed Harris

Instrument MS Instrument #1

Last Calibra 5/24/2018 11:27 Acquisition 5/29/2018 16:14

Target Compounds

Peaks-N3IP Peak Name % Recovery Criteria % I Result Amount Units Qualifier 7 2 Fluoropipen (Surr.) 48.3 3 15.80 ug/L Page (Company) (Surr.) 8 Nitrobenzene-d5 (Surr.) 8 Nitrobenzene-d5 (Surr.) 8 Nitrobenzene-d5 (Surr.) 8 Nitrobenzene-d1 (Surr.) 10 24-6-fribromophonol (Surr.) 10 29 (Surr.) 10 24-6-fribromophonol (Surr.) 10 29 (Surr.) 10 24-6-fribromophonol (Surr.) 10 20 (Surr.) 10 20 (Surr.) 12 (Surr.) <t< th=""><th></th><th></th><th>Acceptance Reported</th><th></th><th></th></t<>			Acceptance Reported		
8 Nitrobenzene-d5 (Surr.) 80.4 50-150 ug/L 9 2-Fiuorobiphenyl (Surr.) 82.4 50-150 ug/L 10 24-6-Fritromophenol (Su 70.7 50-150 ug/L 11 Terphenyl-d14 (Surr.) 102.9 50-150 ug/L 12 Methyl Methanesulfonate < 0.2 ug/L 13 Ethyl methanesulfonate < 0.2 ug/L 14 Phenol < 0.2 ug/L 15 Aniline < 0.2 ug/L 15 Aniline < 0.2 ug/L 16 Isi(2-chloroethyl) ether < 0.2 ug/L 17 2-Chlorophenol < 0.2 ug/L 18 1,3-Dichlorobenzene < 0.2 ug/L 19 1,4-Dichlorobenzene < 0.2 ug/L 19 1,4-Dichlorobenzene < 0.2 ug/L 12 1,2-Dichlorobenzene < 0.2 ug/L 12 1,2-Dichlorobenzene < 0.2 ug/L 12 2,4-Ethylphenol < 0.2 ug/L 24 Actophenone < 0.2 ug/L 25 N-Nitroso-di-ny-propylami < 0.2 ug/L 26 Haxachloroethane < 0.2 ug/L 27 Nitrobenzene < 0.2 ug/L 28 N-Nitrosopiperidine < 0.2 ug/L 29 Isophorone < 0.2 ug/L 29 Isophorone < 0.2 ug/L 30 2-Nitrophenol < 0.2 ug/L 31 2,4-Dimethylphenol < 0.2 ug/L 32 4-Dichlorobenzene < 0.2 ug/L 33 24-Dichlorobenzene < 0.2 ug/L 34 1,2-4-Trichlorobenzene < 0.2 ug/L 37 2-6-Dichlorophenol < 0.2 ug/L 38 Hazachlorobutadiene < 0.2 ug/L 37 2-6-Dichlorophenol < 0.2 ug/L 38 Hazachlorobutadiene < 0.2 ug/L 39 N-Nitrosodibutylamine < 0.2 ug/L 30 4-Dichlorophenol < 0.2 ug/L 31 2,4-Dichlorobenzene < 0.2 ug/L 32 4-Dichlorophenol < 0.2 ug/L 34 1,2-4-Trichlorobenzene < 0.2 ug/L 37 2-6-Dichlorophenol < 0.2 ug/L 38 Hazachlorobutadiene < 0.2 ug/L 39 N-Nitrosodibutylamine < 0.2 ug/L 30 2-Dichlorophenol < 0.2 ug/L 31 2-4-Dichlorophenol < 0.2 ug/L 32 4-Dichlorophenol < 0.2 ug/L 34 1-2-4-Trichlorobenzene < 0.2 ug/L 37 2-6-Dichlorophenol < 0.2 ug/L 38 Hazachlorobutadiene < 0.2 ug/L 39 1-2-4-Trichlorobenzene < 0.2 ug/L 39 1-2-4-Trichlorobenzene < 0.2 ug/L 40 4-Chroro-3-	Peaks: 91(" Peak Name	% Recovery	Criteria % I Result	Amount Units	Qualifier
9 2-Fluorobiphenyl (Surr.) 10 2-4-6-Tribromophenol (Su 70.7 50-150 11 Terphenyl-d14 (Surr.) 12 Methyl Methanesulfonate 13 Ethyl methanesulfonate 13 Ethyl methanesulfonate 14 Phenol 15 Anlline 16 Bis[2-chloroethyl) ether 16 Bis[2-chloroethyl) ether 17 2-Chlorophenol 18 13-3-Chlorophenol 18 13-3-Chlorophenol 19 1,4-Dichlorobenzene 19 1,4-Dichlorobenzene 19 1,4-Dichlorobenzene 10 Senzyl Alcohol 22 4-Methylphenol 23 4-Methylphenol 23 4-Methylphenol 24 Nethylphenol 25 N-Nitroso-di-n-propylami 26 Hexachloroethane 27 Nitrobenzene 28 N-Nitrosopiperidine 28 N-Nitrosopiperidine 29 Sophorone 30 2-Nitrophenol 30 2-Nitrophenol 30 2-Nitrophenol 31 2,4-Dimethylphenol 32 Sis[2-chloroethoxyl meth 33 2-4-Dimethylphenol 34 1-2-4-Trichlorobenzene 40 C.0.2 ug/L 38 1-2-4-Trichlorobenzene 40 C.0.2 ug/L 41 2-Methylphenol 41 2-Methylphenol 42 Lestimated result due to failure (low) in the LCS and/or LCS dup; result MAY be biased low 43 Bis[2-chloroethoxyl meth 44 1-2-4-5-Tertachlorobenzene 45 Hexachlorobutadiene 40 C-Chlorophenol 40 C-Chlorophenol 41 1-2-4-5-Tertachlorobenzene 42 Hexachlorobutadiene 43 Hexachlorobutadiene 44 Hexachlorobutadiene 45 Hexachlorobutadiene 46 Hexachlorobutadiene 47 Lestimated result due to failure (low) in the LCS and/or LCS dup; result MAY be biased low 47 Lestimated result due to failure (low) in the LCS and/or LCS dup; result MAY be biased low 48 Hexachlorobutadiene 49 C.0.2 ug/L 41 2-4-5-Tertachlorobenzene 40 C-Chlorophenol 40 C-Chlorophenol 41 1-2-4-5-Tertachlorobenzene 41 Hexachlorobutadiene 42 C.0.2 ug/L 43 Hexachlorobutadiene 43 Hexachlorobutadiene 44 Hexachlorobutadiene 45 Hexachlorobutadiene 46 Hexachlorobutadiene 47 Lestimated result due to failure (low) in the LCS and/or LCS dup; result MAY be biased low 47 Lestimated result due to failure (l	7 2-Fluorophenol (Surr.)	44.3	15-80	ug/L	
10 2-4-6-Tribromophenol (Su	8 Nitrobenzene-d5 (Surr.)	80.4	50-150	ug/L	
11 Terphenyl-d14 (Surr.) 102.9 \$0-150 ug/L 12 Methyl Methanesulfonate < 0.2 ug/L 14 Phenol < 0.2 ug/L 15 Aniline < 0.2 ug/L 15 Aniline < 0.2 ug/L 17 2-Chlorophenol < 0.2 ug/L 18 1,3-Dichlorobenzene < 0.2 ug/L 19 1,4-Dichlorobenzene < 0.2 ug/L 10 1,2-Dichlorobenzene < 0.2 ug/L 10 1,2-Dichlorobenzene < 0.2 ug/L 12 1,2-Dichlorobenzene < 0.2 ug/L 12 1,2-Dichlorobenzene < 0.2 ug/L 13 1,2-Dichlorobenzene < 0.2 ug/L 14 2 Acetophenone < 0.2 ug/L 15 1,2-Dichlorobenzene < 0.2 ug/L 16 1,2-Dichlorobenzene < 0.2 ug/L 17 2 5 N-Introso-di-n-propylami < 0.2 ug/L 18 1,3-Dichlorobenzene < 0.2 ug/L 19 1,4-Dichlorobenzene <	9 2-Fluorobiphenyl (Surr.)	82.4	50-150	ug/L	
12 Methyl Methanesulfonate	10 2-4-6-Tribromophenol (Su	70.7	50-150	ug/L	
13 Ethyl methanesulfonate	11 Terphenyl-d14 (Surr.)	102.9	50-150	ug/L	
14 Phenol	12 Methyl Methanesulfonate		< 0.2	ug/L	
15 Aniline	13 Ethyl methanesulfonate		< 0.2	ug/L	
16 Bis(2-chloroethyl) ether	14 Phenol		< 0.2	ug/L	
17 2-Chlorophenol	15 Aniline		< 0.2	ug/L	L= Estimated result due to failure (low) in the LCS and/or LCS dup; result MAY be biased low
18 1,3-Dichlorobenzene	16 Bis(2-chloroethyl) ether		< 0.2	ug/L	
19 1,4-Dichlorobenzene	17 2-Chlorophenol		< 0.2	ug/L	
20 Benzyl Alcohol	18 1,3-Dichlorobenzene		< 0.2	ug/L	
21 1,2-Dichlorobenzene	19 1,4-Dichlorobenzene		< 0.2	ug/L	
22 2-Methylphenol	20 Benzyl Alcohol		< 0.2	ug/L	
23 4-Methylphenol	21 1,2-Dichlorobenzene		< 0.2	ug/L	
24 Acetophenone < 0.2	22 2-Methylphenol		< 0.2	ug/L	
25 N-Nitroso-di-n-propylami	23 4-Methylphenol		< 0.2	ug/L	
26 Hexachloroethane < 0.2 ug/L 27 Nitrobenzene < 0.2 ug/L 28 N-Nitrosopiperidine < 0.2 ug/L 29 Isophorone < 0.2 ug/L 30 2-Nitrophenol < 0.4 ug/L 31 2,4-Dimethylphenol < 0.2 ug/L 32 Bis(2-chloroethoxy) meth < 0.2 ug/L 33 2-4-Dichlorophenol < 0.2 ug/L 34 1-2-4-Trichlorobenzene < 0.2 ug/L 35 Naphthalene < 0.2 ug/L 36 4-Chloroaniline < 0.2 ug/L 37 2-6-Dichlorophenol < 0.2 ug/L 38 Hexachlorobutadiene < 0.2 ug/L 39 N-Nitrosodibutylamine < 0.2 ug/L 40 4-Chloro-3-methylphenol < 0.2 ug/L 41 2-Methylnaphthalene < 0.2 ug/L 42 1-2-4-5-Tetrachlorobenze < 0.2 ug/L 43 Hexachlorocyclopentadien < 0.2 ug/L 43 Hexachlorocyclopentadien < 0.2 ug/L	24 Acetophenone		< 0.2	ug/L	
27 Nitrobenzene < 0.2 ug/L 28 N-Nitrosopiperidine < 0.2 ug/L 29 Isophorone < 0.2 ug/L 30 2-Nitrophenol < 0.4 ug/L 31 2,4-Dimethylphenol < 0.2 ug/L 33 2-4-Dichlorophenol < 0.2 ug/L 34 1-2-4-Trichlorobenzene < 0.2 ug/L 35 Naphthalene < 0.2 ug/L 36 4-Chloroaniline < 0.2 ug/L 37 2-6-Dichlorophenol < 0.2 ug/L 38 Hexachlorobutadiene < 0.2 ug/L 39 N-Nitrosodibutylamine < 0.2 ug/L 41 2-Methylnaphthalene < 0.2 ug/L 41 2-Methylnaphthalene < 0.2 ug/L 41 2-Methylnaphthalene < 0.2 ug/L 42 1-2-4-5-Tetrachlorobenze < 0.2 ug/L 43 Hexachlorocyclopentadien < 0.2 ug/L	25 N-Nitroso-di-n-propylami		< 0.2	ug/L	
28 N-Nitrosopiperidine 29 Isophorone 30 2-Nitrophenol 30 2-Nitrophenol 31 2,4-Dimethylphenol 32 Bis(2-chloroethoxy) meth 33 2-4-Dichlorophenol 34 1-2-4-Trichlorobenzene 35 Naphthalene 40.2 ug/L 36 4-Chloroaniline 40 4-Chlorobutadiene 40 2-Dichlorobutadiene 40 4-Chloro-3-methylphenol 41 2-Methylnaphthalene 40 2-U ug/L 42 1-2-4-5-Tetrachlorobenze 40 4-Chloroospenatien 40 4-Chloro-3-methylphenol 41 2-Methylnaphthalene 40 2-U ug/L 42 1-2-4-5-Tetrachlorobenze 40 3-Dichlorophenol 41 2-Methylnaphthalene 40 2-U ug/L 42 1-2-4-5-Tetrachlorobenze 43 Hexachlorocyclopentadien 44 1-2-4-5-Tetrachlorobenze 45 Hexachlorocyclopentadien 46 4-Chloro-3-methylphenol 47 1-2-4-5-Tetrachlorobenze 48 Hexachlorocyclopentadien 49 1-2-4-5-Tetrachlorobenze 40 1-2-4-5-Tetrachlorobenze 40 2-2-4-5-Tetrachlorobenze 40 3-2-4-5-Tetrachlorobenze 40 4-Chlorocyclopentadien 40 4-Chlorocyclopentadien 40 4-Chlorocyclopentadien 40 4-Chlorocyclopentadien 40 4-Chlorocyclopentadien 40 4-Chlorocyclopentadien 41 2-Methylnaphthalene 40 2-U ug/L 42 1-2-4-5-Tetrachlorobenze 43 Hexachlorocyclopentadien 44 1-2-Methylnaphthalene 40 2-U ug/L 45 1-2-4-5-Tetrachlorobenze 46 1-2-4-5-Tetrachlorobenze 47 1-2-4-5-Tetrachlorobenze 48 Hexachlorocyclopentadien 49 1-2-4-5-Tetrachlorobenze 40 1-2-4-5-Tetrachlorobenze 40 1-2-4-5-Tetrachlorobenze 41 1-2-4-5-Tetrachlorobenze	26 Hexachloroethane		< 0.2	ug/L	
29 Isophorone	27 Nitrobenzene		< 0.2	ug/L	
30 2-Nitrophenol	28 N-Nitrosopiperidine		< 0.2	ug/L	
31 2,4-Dimethylphenol 32 Bis(2-chloroethoxy) meth 33 2-4-Dichlorophenol 34 1-2-4-Trichlorobenzene 35 Naphthalene 36 4-Chloroaniline 37 2-6-Dichlorophenol 38 Hexachlorobutadiene 39 N-Nitrosodibutylamine 40 4-Chloro-3-methylphenol 40 4-Chloro-3-methylphenol 41 2-Methylnaphthalene 40 2 ug/L 43 Hexachlorobcyclopentadien 40 Hexachlorocyclopentadien	29 Isophorone		< 0.2	ug/L	
32 Bis(2-chloroethoxy) meth < 0.2 ug/L 33 2-4-Dichlorophenol < 0.2 ug/L 34 1-2-4-Trichlorobenzene < 0.2 ug/L 35 Naphthalene < 0.2 ug/L 36 4-Chloroaniline < 0.2 ug/L 37 2-6-Dichlorophenol < 0.2 ug/L 38 Hexachlorobutadiene < 0.2 ug/L 39 N-Nitrosodibutylamine < 0.2 ug/L 40 4-Chloro-3-methylphenol < 0.2 ug/L 41 2-Methylnaphthalene < 0.2 ug/L 42 1-2-4-5-Tetrachlorobenze < 0.2 ug/L 43 Hexachlorocyclopentadien < 0.2 ug/L 44 Hexachlorocyclopentadien < 0.2 ug/L	30 2-Nitrophenol		< 0.4	ug/L	
33 2-4-Dichlorophenol < 0.2 ug/L 34 1-2-4-Trichlorobenzene < 0.2 ug/L 35 Naphthalene < 0.2 ug/L 36 4-Chloroaniline < 0.2 ug/L 37 2-6-Dichlorophenol < 0.2 ug/L 38 Hexachlorobutadiene < 0.2 ug/L 39 N-Nitrosodibutylamine < 0.2 ug/L 40 4-Chloro-3-methylphenol < 0.2 ug/L 41 2-Methylnaphthalene < 0.2 ug/L 42 1-2-4-5-Tetrachlorobenze < 0.2 ug/L 43 Hexachlorocyclopentadien < 0.2 ug/L	31 2,4-Dimethylphenol		< 0.2	ug/L	L= Estimated result due to failure (low) in the LCS and/or LCS dup; result MAY be biased low
34 1-2-4-Trichlorobenzene < 0.2 ug/L 35 Naphthalene < 0.2 ug/L 36 4-Chloroaniline < 0.2 ug/L 37 2-6-Dichlorophenol < 0.2 ug/L 38 Hexachlorobutadiene < 0.2 ug/L 39 N-Nitrosodibutylamine < 0.2 ug/L 40 4-Chloro-3-methylphenol < 0.2 ug/L 41 2-Methylnaphthalene < 0.2 ug/L 42 1-2-4-5-Tetrachlorobenze < 0.2 ug/L 43 Hexachlorocyclopentadien < 0.2 ug/L	32 Bis(2-chloroethoxy) meth		< 0.2	ug/L	
35 Naphthalene < 0.2 ug/L 36 4-Chloroaniline < 0.2 ug/L 37 2-6-Dichlorophenol < 0.2 ug/L 38 Hexachlorobutadiene < 0.2 ug/L 39 N-Nitrosodibutylamine < 0.2 ug/L 40 4-Chloro-3-methylphenol < 0.2 ug/L 41 2-Methylnaphthalene < 0.2 ug/L 42 1-2-4-5-Tetrachlorobenze < 0.2 ug/L 43 Hexachlorocyclopentadien < 0.2 ug/L	33 2-4-Dichlorophenol		< 0.2	ug/L	
36 4-Chloroaniline < 0.2 ug/L 37 2-6-Dichlorophenol < 0.2 ug/L 38 Hexachlorobutadiene < 0.2 ug/L 39 N-Nitrosodibutylamine < 0.2 ug/L 40 4-Chloro-3-methylphenol < 0.2 ug/L 41 2-Methylnaphthalene < 0.2 ug/L 42 1-2-4-5-Tetrachlorobenze < 0.2 ug/L 43 Hexachlorocyclopentadien < 0.2 ug/L	34 1-2-4-Trichlorobenzene		< 0.2	ug/L	
37 2-6-Dichlorophenol < 0.2 ug/L 38 Hexachlorobutadiene < 0.2 ug/L 39 N-Nitrosodibutylamine < 0.2 ug/L 40 4-Chloro-3-methylphenol < 0.2 ug/L 41 2-Methylnaphthalene < 0.2 ug/L 42 1-2-4-5-Tetrachlorobenze < 0.2 ug/L 43 Hexachlorocyclopentadien < 0.2 ug/L	35 Naphthalene		< 0.2	ug/L	
38 Hexachlorobutadiene < 0.2 ug/L 39 N-Nitrosodibutylamine < 0.2 ug/L 40 4-Chloro-3-methylphenol < 0.2 ug/L 41 2-Methylnaphthalene < 0.2 ug/L 42 1-2-4-5-Tetrachlorobenze < 0.2 ug/L 43 Hexachlorocyclopentadien < 0.2 ug/L	36 4-Chloroaniline		< 0.2	ug/L	
39 N-Nitrosodibutylamine < 0.2 ug/L 40 4-Chloro-3-methylphenol < 0.2 ug/L 41 2-Methylnaphthalene < 0.2 ug/L 42 1-2-4-5-Tetrachlorobenze < 0.2 ug/L 43 Hexachlorocyclopentadien < 0.2 ug/L	37 2-6-Dichlorophenol		< 0.2	ug/L	
40 4-Chloro-3-methylphenol < 0.2 ug/L 41 2-Methylnaphthalene < 0.2 ug/L 42 1-2-4-5-Tetrachlorobenze < 0.2 ug/L 43 Hexachlorocyclopentadien < 0.2 ug/L	38 Hexachlorobutadiene		< 0.2	ug/L	L= Estimated result due to failure (low) in the LCS and/or LCS dup; result MAY be biased low
40 4-Chloro-3-methylphenol < 0.2 ug/L 41 2-Methylnaphthalene < 0.2 ug/L 42 1-2-4-5-Tetrachlorobenze < 0.2 ug/L 43 Hexachlorocyclopentadien < 0.2 ug/L	39 N-Nitrosodibutylamine		< 0.2	ug/L	
41 2-Methylnaphthalene < 0.2 ug/L 42 1-2-4-5-Tetrachlorobenze < 0.2 ug/L 43 Hexachlorocyclopentadien < 0.2 ug/L	40 4-Chloro-3-methylphenol		< 0.2		
43 Hexachlorocyclopentadien < 0.2 ug/L	41 2-Methylnaphthalene		< 0.2		
	42 1-2-4-5-Tetrachlorobenze		< 0.2	ug/L	
44 2,4,6-Trichlorophenol < 0.2 ug/L	43 Hexachlorocyclopentadien		< 0.2	ug/L	
	44 2,4,6-Trichlorophenol		< 0.2	ug/L	

Extracted by EH, JR

45 2,4,5-Trichlorophenol	< 0.2	ug/L
46 2-Chloronaphthalene	< 0.2	ug/L
47 1-Chloronaphthalene	< 0.2	ug/L
48 2-Nitroaniline	< 0.2	ug/L
49 Dimethyl-phthalate	< 0.2	ug/L
50 Acenaphthylene	< 0.2	ug/L
51 2-6-Dinitrotoluene	< 0.2	ug/L
52 3-Nitroaniline	< 0.2	ug/L
53 Acenaphthene	< 0.2	ug/L
54 2-4-Dinitrophenol	< 2.0	ug/L
55 Dibenzofuran	< 0.2	ug/L
56 4-Nitrophenol	< 1.0	ug/L
57 Pentachlorobenzene	< 0.2	ug/L
58 2-4-Dinitrotoluene	< 0.2	ug/L
59 2-3-4-6-Tetrachloropheno	< 0.4	ug/L
60 Fluorene	< 0.2	ug/L
61 Diethylphthalate	< 0.2	ug/L
62 4-Chlorophenyl-phenyl et	< 0.2	ug/L
63 4-Nitroaniline	< 0.2	ug/L
64 4-6-Dintro-2-methylpheno	< 2.0	ug/L
65 Diphenylamine	< 0.2	ug/L
66 Azobenzene	< 0.2	ug/L
67 4-Bromophenyl-phenyl eth	< 0.2	ug/L
68 Hexachlorobenzene	< 0.2	ug/L
69 Pentachlorophenol	< 1.0	ug/L
70 Pentachloronitrobenzene	< 0.2	ug/L
71 Pronamide	< 0.2	ug/L
72 Phenanthrene	< 0.2	ug/L
73 Anthracene	< 0.2	ug/L
74 Carbazole	< 0.2	ug/L
75 Di-n-butylphthalate	< 0.2	ug/L
76 Fluoranthene	< 0.2	ug/L
77 Pyrene	< 0.2	ug/L
78 Dimethylaminoazobenzene	< 0.2	ug/L
79 Butylbenzyl phthalate	< 0.2	ug/L
80 Benz[a]anthracene	< 0.2	ug/L
81 Chrysene	< 0.2	ug/L
82 Bis(2-ethylhexyl) phthal	0.3	21 ug/L
83 Di-n-octyl phthalate	< 0.2	ug/L
84 Benzo[b]fluoranthene	< 0.2	ug/L
85 Dimethylbenzo(a)anthrace	< 0.2	ug/L
86 Benzo(k)fluoranthene	< 0.2	ug/L
87 Benzo(a)pyrene	< 0.2	ug/L
88 3-Methylcholanthrene	< 0.2	ug/L
89 Indeno[1-2-3-cd]pyrene	< 0.2	ug/L
90 Dibenz(a-h)anthracene	< 0.2	ug/L
91 Benzo(ghi)perylene	< 0.2	ug/L
.5 /1 /		0.

Sample ID: 2018-1789 Operator: Ed Harris

2018-1789 Extracted Neeley
Ed Harris Extracted Date 04-30-2018

Instrument ID: MS Instrument #1

Extracted by EH, JR

Last Calibration: 5/24/2018 11:27

Acquisition Date: 5/29/2018 16:43

Peaks: 91("#"	Peak Name	% Recovery	Acceptance Criteria % Rec.	Reported Result	Amount Units	Qualifier
reaks. 91(#	7 2-Fluorophenol (Surr.)	76 Recovery 46.0		Result	ug/L	Qualifier
	8 Nitrobenzene-d5 (Surr.)	75.4			ug/L	
	9 2-Fluorobiphenyl (Surr.)	75.3 75.3			ug/L	
	10 2-4-6-Tribromophenol (Su	66.0			ug/L	
	11 Terphenyl-d14 (Surr.)	108.			ug/L	
	12 Methyl Methanesulfonate	100.	30 130	< 0.2	ug/L	
	13 Ethyl methanesulfonate			< 0.2	ug/L	
	14 Phenol			< 0.2	ug/L	
	15 Aniline			< 0.2	ug/L	L= Estimated result due to failure (low) in the LCS and/or LCS dup; result MAY be biased low
	16 Bis(2-chloroethyl) ether			< 0.2	ug/L	E Estimated result and to familiar (10W) in the Less and/or Less dup, result finit be blased for
	17 2-Chlorophenol			< 0.2	ug/L	
	18 1,3-Dichlorobenzene			< 0.2	ug/L	
	19 1,4-Dichlorobenzene			< 0.2	ug/L	
	20 Benzyl Alcohol			< 0.2	ug/L	
	21 1,2-Dichlorobenzene			< 0.2	ug/L	
	22 2-Methylphenol			< 0.2	ug/L	
	23 4-Methylphenol			< 0.2	ug/L	
	24 Acetophenone			< 0.2	ug/L	
	25 N-Nitroso-di-n-propylami			< 0.2	ug/L	
	26 Hexachloroethane			< 0.2	ug/L	
	27 Nitrobenzene			< 0.2	ug/L	
	28 N-Nitrosopiperidine			< 0.2	ug/L	
	29 Isophorone			< 0.2	ug/L	
	30 2-Nitrophenol			< 0.4	ug/L	
	31 2,4-Dimethylphenol			< 0.2	ug/L	L= Estimated result due to failure (low) in the LCS and/or LCS dup; result MAY be biased low
	32 Bis(2-chloroethoxy) meth			< 0.2	ug/L	
	33 2-4-Dichlorophenol			< 0.2	ug/L	
	34 1-2-4-Trichlorobenzene			< 0.2	ug/L	
	35 Naphthalene			< 0.2	ug/L	
	36 4-Chloroaniline			< 0.2	ug/L	
	37 2-6-Dichlorophenol			< 0.2	ug/L	
	38 Hexachlorobutadiene			< 0.2	ug/L	L= Estimated result due to failure (low) in the LCS and/or LCS dup; result MAY be biased low
	39 N-Nitrosodibutylamine			< 0.2	ug/L	
	40 4-Chloro-3-methylphenol			< 0.2	ug/L	
	41 2-Methylnaphthalene			< 0.2	ug/L	
	42 1-2-4-5-Tetrachlorobenze			< 0.2	ug/L	
	43 Hexachlorocyclopentadien			< 0.2	ug/L	
	44 2,4,6-Trichlorophenol			< 0.2	ug/L	
	45 2,4,5-Trichlorophenol			< 0.2	ug/L	
	46 2-Chloronaphthalene			< 0.2	ug/L	
	47 1-Chloronaphthalene			< 0.2	ug/L	
	48 2-Nitroaniline			< 0.2	ug/L	

49 Dimethyl-phthalate	< 0.2	ug/L
50 Acenaphthylene	< 0.2	ug/L
51 2-6-Dinitrotoluene	< 0.2	ug/L
52 3-Nitroaniline	< 0.2	ug/L
53 Acenaphthene	< 0.2	ug/L
54 2-4-Dinitrophenol	< 2.0	ug/L
55 Dibenzofuran	< 0.2	ug/L
56 4-Nitrophenol	< 1.0	ug/L
57 Pentachlorobenzene	< 0.2	ug/L
58 2-4-Dinitrotoluene	< 0.2	ug/L
59 2-3-4-6-Tetrachloropheno	< 0.4	ug/L
60 Fluorene	< 0.2	ug/L
61 Diethylphthalate	< 0.2	ug/L
62 4-Chlorophenyl-phenyl et	< 0.2	ug/L
63 4-Nitroaniline	< 0.2	ug/L
64 4-6-Dintro-2-methylpheno	< 2.0	ug/L
65 Diphenylamine	< 0.2	ug/L
66 Azobenzene	< 0.2	ug/L
67 4-Bromophenyl-phenyl eth	< 0.2	ug/L
68 Hexachlorobenzene	< 0.2	ug/L
69 Pentachlorophenol	< 1.0	ug/L
70 Pentachloronitrobenzene	< 0.2	ug/L
71 Pronamide	< 0.2	ug/L
72 Phenanthrene	< 0.2	ug/L
73 Anthracene	< 0.2	ug/L
74 Carbazole	< 0.2	ug/L
75 Di-n-butylphthalate	< 0.2	ug/L
76 Fluoranthene	< 0.2	ug/L
77 Pyrene	< 0.2	ug/L
78 Dimethylaminoazobenzene	< 0.2	ug/L
79 Butylbenzyl phthalate	< 0.2	ug/L
80 Benz[a]anthracene	< 0.2	ug/L
81 Chrysene	< 0.2	ug/L
82 Bis(2-ethylhexyl) phthal	C).22 ug/L
83 Di-n-octyl phthalate	< 0.2	ug/L
84 Benzo[b]fluoranthene	< 0.2	ug/L
85 Dimethylbenzo(a)anthrace	< 0.2	ug/L
86 Benzo(k)fluoranthene	< 0.2	ug/L
87 Benzo(a)pyrene	< 0.2	ug/L
88 3-Methylcholanthrene	< 0.2	ug/L
89 Indeno[1-2-3-cd]pyrene	< 0.2	ug/L
90 Dibenz(a-h)anthracene	< 0.2	ug/L
91 Benzo(ghi)perylene	< 0.2	ug/L

Sample ID: Ext Blank Operator: Ed Harris

Instrument MS Instrument #1 Last Calibra 5/24/2018 11:27 5/29/2018 10:19 Acquisition

Target Compounds

		Acceptance	Reported	
Peaks: 91(" Peak Name	% Recovery	Criteria % Rec.	Result	Amount Unit
7 2-Fluorophenol (Surr.)	50.7	15-80		ug/L
8 Nitrobenzene-d5 (Surr	. 96.9	50-150		ug/L
9 2-Fluorobiphenyl (Surr	. 95.6	50-150		ug/L
10 2-4-6-Tribromophenol	63.4	50-150		ug/L
11 Terphenyl-d14 (Surr.)	135.1	50-150		ug/L
12 Methyl Methanesulfor	nate		< 0.2	ug/L
13 Ethyl methanesulfonat	e		< 0.2	ug/L
14 Phenol			< 0.2	ug/L
15 Aniline			< 0.2	ug/L
16 Bis(2-chloroethyl) ethe	er		< 0.2	ug/L
17 2-Chlorophenol			< 0.2	ug/L
18 1,3-Dichlorobenzene			< 0.2	ug/L
19 1,4-Dichlorobenzene			< 0.2	ug/L
20 Benzyl Alcohol			< 0.2	ug/L
21 1,2-Dichlorobenzene			< 0.2	ug/L
22 2-Methylphenol			< 0.2	ug/L
23 4-Methylphenol			< 0.2	ug/L
24 Acetophenone			< 0.2	ug/L
25 N-Nitroso-di-n-propyla	mi		< 0.2	ug/L
26 Hexachloroethane			< 0.2	ug/L
27 Nitrobenzene			< 0.2	ug/L
28 N-Nitrosopiperidine			< 0.2	ug/L
29 Isophorone			< 0.2	ug/L
30 2-Nitrophenol			< 0.4	ug/L
31 2,4-Dimethylphenol			< 0.2	ug/L
32 Bis(2-chloroethoxy) me	eth		< 0.2	ug/L
33 2-4-Dichlorophenol			< 0.2	ug/L
34 1-2-4-Trichlorobenzen	e		< 0.2	ug/L
35 Naphthalene			< 0.2	ug/L
36 4-Chloroaniline			< 0.2	ug/L
37 2-6-Dichlorophenol			< 0.2	ug/L
38 Hexachlorobutadiene			< 0.2	ug/L
39 N-Nitrosodibutylamine	.		< 0.2	ug/L
40 4-Chloro-3-methylphei			< 0.2	ug/L
41 2-Methylnaphthalene			< 0.2	ug/L
42 1-2-4-5-Tetrachlorobe	nze		< 0.2	ug/L
43 Hexachlorocyclopenta			< 0.2	ug/L
44 2,4,6-Trichlorophenol			< 0.2	ug/L
45 2,4,5-Trichlorophenol			< 0.2	ug/L
' '				•
46 2-Chloronaphthalene			< 0.2	ug/L

Extracted Method Blank

Extracted Date 04-30-2018 Extracted by EH, JR

47 1-Chloronaphthalene	< 0.2	ug/L	
48 2-Nitroaniline	< 0.2	ug/L	
49 Dimethyl-phthalate	< 0.2	ug/L	
50 Acenaphthylene	< 0.2	ug/L	
51 2-6-Dinitrotoluene	< 0.2	ug/L	
52 3-Nitroaniline	< 0.2	ug/L	
53 Acenaphthene	< 0.2	ug/L	
54 2-4-Dinitrophenol	< 2.0	ug/L	
55 Dibenzofuran	< 0.2	ug/L	
56 4-Nitrophenol	< 1.0	ug/L	
57 Pentachlorobenzene	< 0.2	ug/L	
58 2-4-Dinitrotoluene	< 0.2	ug/L	
59 2-3-4-6-Tetrachloropheno	< 0.4	ug/L	
60 Fluorene	< 0.2	ug/L	
61 Diethylphthalate	< 0.2	ug/L	
62 4-Chlorophenyl-phenyl et	< 0.2	ug/L	
63 4-Nitroaniline	< 0.2	ug/L	
64 4-6-Dintro-2-methylpheno	< 2.0	ug/L	
65 Diphenylamine	< 0.2	ug/L	
66 Azobenzene	< 0.2	ug/L	
67 4-Bromophenyl-phenyl eth	< 0.2	ug/L	
68 Hexachlorobenzene	< 0.2	ug/L	
69 Pentachlorophenol	< 1.0	ug/L	
70 Pentachloronitrobenzene	< 0.2	ug/L	
71 Pronamide	< 0.2	ug/L	
72 Phenanthrene	< 0.2	ug/L	
73 Anthracene	< 0.2	ug/L	
74 Carbazole	< 0.2	ug/L	
75 Di-n-butylphthalate	0.77	ug/L	B= Target analyte present in the Method Blank; All positive results for this compound will be qualified by "B"
76 Fluoranthene	< 0.2	ug/L	
77 Pyrene	< 0.2	ug/L	
78 Dimethylaminoazobenzene	< 0.2	ug/L	
79 Butylbenzyl phthalate	< 0.2	ug/L	
80 Benz[a]anthracene	< 0.2	ug/L	
81 Chrysene	< 0.2	ug/L	
82 Bis(2-ethylhexyl) phthal	< 0.2	ug/L	
83 Di-n-octyl phthalate	< 0.2	ug/L	
84 Benzo[b]fluoranthene	< 0.2	ug/L	
85 Dimethylbenzo(a)anthrace	< 0.2	ug/L	
86 Benzo(k)fluoranthene	< 0.2	ug/L	
87 Benzo(a)pyrene	< 0.2	ug/L	
88 3-Methylcholanthrene	< 0.2	ug/L	
89 Indeno[1-2-3-cd]pyrene	< 0.2	ug/L	
90 Dibenz(a-h)anthracene	< 0.2	ug/L	
91 Benzo(ghi)perylene	< 0.2	ug/L	

Sample ID: LCS-1 4-30-18

Operator: Ed Harris

Instrument MS Instrument #1
Last Calibra 5/24/2018 11:27
Acquisition 5/29/2018 10:49

Extracted LCS-1

Extracted Date 04-30-2018 Extracted by EH, JR

Qualifier

Target Compounds

Target Con	npounds			Acc. Criteri
Peaks: 91("	Peak Name	Amount U	nits % Recovery	% Rec.
7	2-Fluorophenol (Surr.)	ug/L	57.8	15-80
8	Nitrobenzene-d5 (Surr.)	ug/L	98.7	50-150
9	2-Fluorobiphenyl (Surr.)	ug/L	91.7	50-150
10	2-4-6-Tribromophenol (Su	ug/L	90.5	50-150
11	Terphenyl-d14 (Surr.)	ug/L	110.8	50-150
12	Methyl Methanesulfonate	ug/L	98.9	50-150
13	Ethyl methanesulfonate	ug/L	120.2	50-150
14	Phenol	ug/L	60.2	30-120
15	Aniline	ug/L	69.7	50-150
16	Bis(2-chloroethyl) ether	ug/L	118.3	50-150
	2-Chlorophenol	ug/L	106.6	30-120
18	1,3-Dichlorobenzene	ug/L	69.0	50-150
19	1,4-Dichlorobenzene	ug/L	76.2	50-150
20	Benzyl Alcohol	ug/L	112.6	50-150
21	1,2-Dichlorobenzene	ug/L	81.2	50-150
22	2-Methylphenol	ug/L	94.2	30-120
	4-Methylphenol	ug/L	86.9	30-120
	Acetophenone	ug/L	117.0	50-150
	N-Nitroso-di-n-propylami	ug/L	119.5	50-150
	Hexachloroethane	ug/L	57.1	50-150
	Nitrobenzene	ug/L	114.2	50-150
28	N-Nitrosopiperidine	ug/L	141.6	50-150
	Isophorone	ug/L	123.3	50-150
	2-Nitrophenol	ug/L	109.7	30-120
	2,4-Dimethylphenol	ug/L	27.4	30-120
	Bis(2-chloroethoxy) meth	ug/L	112.7	50-150
	2-4-Dichlorophenol	ug/L	108.7	30-120
	1-2-4-Trichlorobenzene	ug/L	83.9	50-150
35	Naphthalene	ug/L	101.7	50-150
	4-Chloroaniline	ug/L	94.8	50-150
37	2-6-Dichlorophenol	ug/L	106.9	30-120
	Hexachlorobutadiene	ug/L	55.8	50-150
39	N-Nitrosodibutylamine	ug/L	121.5	50-150
	4-Chloro-3-methylphenol	ug/L	105.2	30-120
41	2-Methylnaphthalene	ug/L	103.1	50-150
	1-2-4-5-Tetrachlorobenze	ug/L	90.9	50-150
	Hexachlorocyclopentadien	ug/L	75.0	50-150
	2,4,6-Trichlorophenol	ug/L	105.6	30-120
	2,4,5-Trichlorophenol	ug/L	109.8	30-120
	2-Chloronaphthalene	ug/L	115.3	50-150
	1-Chloronaphthalene	ug/L	118.3	50-150
	2-Nitroaniline	ug/L	120.3	50-150
49	Dimethyl-phthalate	ug/L	126.7	50-150
	Acenaphthylene	ug/L	113.4	50-150
	2-6-Dinitrotoluene	ug/L	116.9	50-150
	3-Nitroaniline	ug/L	110.9	50-150
53	Acenaphthene	ug/L	115.5	50-150
	2-4-Dinitrophenol	ug/L	96.8	30-120
	Dibenzofuran	ug/L	112.0	50-150
	4-Nitrophenol	ug/L	45.3	30-120
	Pentachlorobenzene	ug/L	96.4	50-150
	2-4-Dinitrotoluene	ug/L	124.6	50-150
50		0/ -		

L= recovery does not meet lab acceptance criteria for LCS and/or LCS dup; this analyte will be qualified as "estimated" in all samples in this QC batch

59 2-3-4-6-Tetrachloropheno	ug/L	110.9	30-120
60 Fluorene	ug/L	121.2	50-150
61 Diethylphthalate	ug/L	125.4	50-150
62 4-Chlorophenyl-phenyl et	ug/L	113.6	50-150
63 4-Nitroaniline	ug/L	99.5	50-150
64 4-6-Dintro-2-methylpheno	ug/L	108.7	30-120
65 Diphenylamine	ug/L	115.3	50-150
66 Azobenzene	ug/L	111.7	50-150
67 4-Bromophenyl-phenyl eth	ug/L	104.6	50-150
68 Hexachlorobenzene	ug/L	105.2	50-150
69 Pentachlorophenol	ug/L	101.4	30-120
70 Pentachloronitrobenzene	ug/L	105.3	50-150
71 Pronamide	ug/L	115.9	50-150
72 Phenanthrene	ug/L	113.1	50-150
73 Anthracene	ug/L	110.8	50-150
74 Carbazole	ug/L	113.7	50-150
75 Di-n-butylphthalate	ug/L	166.9	50-150
76 Fluoranthene	ug/L	112.2	50-150
77 Pyrene	ug/L	128.3	50-150
78 Dimethylaminoazobenzene	ug/L	125.2	50-150
79 Butylbenzyl phthalate	ug/L	131.6	50-150
80 Benz[a]anthracene	ug/L	126.3	50-150
81 Chrysene	ug/L	124.4	50-150
82 Bis(2-ethylhexyl) phthal	ug/L	128.6	50-150
83 Di-n-octyl phthalate	ug/L	108.4	50-150
84 Benzo[b]fluoranthene	ug/L	103.1	50-150
85 Dimethylbenzo(a)anthrace	ug/L	100.3	50-150
86 Benzo(k)fluoranthene	ug/L	107.5	50-150
87 Benzo(a)pyrene	ug/L	94.1	50-150
88 3-Methylcholanthrene	ug/L	78.4	50-150
89 Indeno[1-2-3-cd]pyrene	ug/L	86.4	50-150
90 Dibenz(a-h)anthracene	ug/L	85.7	50-150
91 Benzo(ghi)perylene	ug/L	92.1	50-150

Sample Report (Standard)

Extracted LCS-2

Extracted by EH, JR

Extracted Date 04-30-2018

Sample ID: LCS-2 4-30-18 Operator: Ed Harris

Instrument MS Instrument #1

Last Calibra 5/24/2018 11:27 Acquisition 5/29/2018 11:18

Peaks: 91("Peak Name % Recovery RPD (%) % Rec. RPD 7 2-Fluorophenol (Surr.) 47.2 15-80	
· · · · · · · · · · · · · · · · · · ·	
. =	
8 Nitrobenzene-d5 (Surr.) 78.8 50-150	
9 2-Fluorobiphenyl (Surr.) 68.2 50-150	
10 2-4-6-Tribromophenol (Su 78.7 50-150	
11 Terphenyl-d14 (Surr.) 104.8 50-150	
	does not meet lab acceptance criteria
13 Ethyl methanesulfonate 99.2 19.2 50-150 0-20	
,	does not meet lab acceptance criteria
	res not meet lab acceptance criteria; This analyte will be qualified as "estimated" in all samples in this QC batch; R = RPD does not meet lab acceptance criteri
16 Bis(2-chloroethyl) ether 97.4 19.4 50-150 0-20	es not meet ab deceptance circuis, into dialityte min be quanted as estimated in an samples in this quanta, in – in a does not meet ab deceptance circuis
	does not meet lab acceptance criteria
18 1.3-Dichlorobenzene 57.5 18.1 50-150 0-20	noes not meet als deceptance streets
·	does not meet lab acceptance criteria
·	does not meet lab acceptance criteria
21 1,2-Dichlorobenzene 67.4 18.5 50-150 0-20	does not meet tab acceptance circena
·	does not meet lab acceptance criteria
	does not meet lab acceptance criteria
· ·	does not meet lab acceptance criteria
	does not meet lab acceptance criteria
26 Hexachloroethane 47.0 19.3 50-150 0-20	does not meet lab acceptance criteria
	does not meet lab acceptance criteria
· · · · · · · · · · · · · · · · · · ·	does not meet lab acceptance criteria
· · · · · · · · · · · · · · · · · · ·	does not meet lab acceptance criteria
	does not meet lab acceptance criteria
	ides not meet lab acceptance criteria ies not meet lab acceptance criteria; This analyte will be qualified as "estimated" in all samples in this QC batch; R = RPD does not meet lab acceptance criteria
	es not meet lab acceptance criteria; inis analyte will be qualified as "estimated" in all samples in this QC datch; K = KPD does not meet lab acceptance criteria does not meet lab acceptance criteria
	does not meet lab acceptance criteria
· · · · · · · · · · · · · · · · · · ·	does not meet lab acceptance criteria
· · · · · · · · · · · · · · · · · · ·	does not meet lab acceptance criteria
	does not meet lab acceptance criteria
37 2-6-Dichlorophenol 91.7 15.3 30-120 0-20 K = KPD of ECS/ECS dup. C	ides not meet lab acceptance criteria
·	
	es not meet lab acceptance criteria; This analyte will be qualified as "estimated" in all samples in this QC batch; R = RPD does not meet lab acceptance criteri
	does not meet lab acceptance criteria
· ·	
	does not meet lab acceptance criteria
· · · · · · · · · · · · · · · · · · ·	does not meet lab acceptance criteria
	does not meet lab acceptance criteria
	does not meet lab acceptance criteria
	does not meet lab acceptance criteria
	does not meet lab acceptance criteria
	does not meet lab acceptance criteria
	does not meet lab acceptance criteria
	does not meet lab acceptance criteria
· · ·	does not meet lab acceptance criteria
51 2-6-Dinitrotoluene 95.9 19.8 50-150 0-20	
52 3-Nitroaniline 92.2 18.4 50-150 0-20	
· · · · · · · · · · · · · · · · · · ·	does not meet lab acceptance criteria
54 2-4-Dinitrophenol 81.1 17.7 30-120 0-20	
	does not meet lab acceptance criteria
56 4-Nitrophenol 42.0 7.8 30-120 0-20	
	does not meet lab acceptance criteria
	does not meet lab acceptance criteria
59 2-3-4-6-Tetrachloropheno 84.7 26.8 30-120 0-20 R = RPD of LCS/LCS dup. 0	does not meet lab acceptance criteria

60 Fluorene	87.7	32.1	50-150	0-20
61 Diethylphthalate	97.9	24.6	50-150	0-20
62 4-Chlorophenyl-phenyl et	85.3	28.5	50-150	0-20
63 4-Nitroaniline	91.5	8.4	50-150	0-20
64 4-6-Dintro-2-methylpheno	96.6	11.8	30-120	0-20
65 Diphenylamine	95.1	19.3	50-150	0-20
66 Azobenzene	92.0	19.3	50-150	0-20
67 4-Bromophenyl-phenyl eth	92.6	12.2	50-150	0-20
68 Hexachlorobenzene	87.1	18.8	50-150	0-20
69 Pentachlorophenol	89.4	12.5	30-120	0-20
70 Pentachloronitrobenzene	92.7	12.7	50-150	0-20
71 Pronamide	107.1	7.9	50-150	0-20
72 Phenanthrene	99.7	12.5	50-150	0-20
73 Anthracene	93.7	16.7	50-150	0-20
74 Carbazole	105.3	7.7	50-150	0-20
75 Di-n-butylphthalate	151.1	9.9	50-150	0-20
76 Fluoranthene	98.7	12.8	50-150	0-20
77 Pyrene	112.8	12.9	50-150	0-20
78 Dimethylaminoazobenzene	121.2	3.3	50-150	0-20
79 Butylbenzyl phthalate	129.3	1.8	50-150	0-20
80 Benz[a]anthracene	126.2	0.0	50-150	0-20
81 Chrysene	121.0	2.8	50-150	0-20
82 Bis(2-ethylhexyl) phthal	133.2	3.5	50-150	0-20
83 Di-n-octyl phthalate	113.1	4.2	50-150	0-20
84 Benzo[b]fluoranthene	104.8	1.6	50-150	0-20
85 Dimethylbenzo(a)anthrace	97.0	3.3	50-150	0-20
86 Benzo(k)fluoranthene	106.2	1.3	50-150	0-20
87 Benzo(a)pyrene	93.0	1.2	50-150	0-20
88 3-Methylcholanthrene	70.9	10.1	50-150	0-20
89 Indeno[1-2-3-cd]pyrene	87.4	1.1	50-150	0-20
90 Dibenz(a-h)anthracene	89.2	4.0	50-150	0-20
91 Benzo(ghi)perylene	89.5	2.8	50-150	0-20

 $R = RPD \ of \ LCS/LCS \ dup. \ does \ not \ meet \ lab \ acceptance \ criteria$ $R = RPD \ of \ LCS/LCS \ dup. \ does \ not \ meet \ lab \ acceptance \ criteria$ $R = RPD \ of \ LCS/LCS \ dup. \ does \ not \ meet \ lab \ acceptance \ criteria$

Sample ID: 2018-1790

Operator: Ed Harris

Instrument MS Instrument #1

Last Calibra 5/24/2018 11:27 Acquisition 5/30/2018 10:37

Target Compounds

		Acc. Criteria	Reported	I	
Peaks: 91(' Peak Name	% Recovery	% Rec.	Result	Amount Units	Qualifier
7 2-Fluorophenol (Surr.)	35.3	15-80		ug/L	
8 Nitrobenzene-d5 (Surr.)	48.5	50-150		ug/L	
9 2-Fluorobiphenyl (Surr.)	53.1	50-150		ug/L	
10 2-4-6-Tribromophenol (Su	49.5	50-150		ug/L	
11 Terphenyl-d14 (Surr.)	82.9	50-150		ug/L	
12 Methyl Methanesulfonate			< 0.2	ug/L	
13 Ethyl methanesulfonate			< 0.2	ug/L	
14 Phenol			< 0.2	ug/L	
15 Aniline			< 0.2	ug/L	
16 Bis(2-chloroethyl) ether			< 0.2	ug/L	
17 2-Chlorophenol			< 0.2	ug/L	
18 1,3-Dichlorobenzene			0.8	6 ug/L	
19 1,4-Dichlorobenzene			< 0.2	ug/L	
20 Benzyl Alcohol			< 0.2	ug/L	
21 1,2-Dichlorobenzene			< 0.2	ug/L	
22 2-Methylphenol			< 0.2	ug/L	
23 4-Methylphenol			< 0.2	ug/L	
24 Acetophenone			< 0.2	ug/L	
25 N-Nitroso-di-n-propylami			< 0.2	ug/L	
26 Hexachloroethane			< 0.2	ug/L	
27 Nitrobenzene			< 0.2	ug/L	
28 N-Nitrosopiperidine			< 0.2	ug/L	
29 Isophorone			< 0.2	ug/L	
30 2-Nitrophenol			< 0.4	ug/L	
31 2,4-Dimethylphenol			< 0.2	ug/L	L = Analyte failed (low) to recover within acceptance criteria in the LCS and/or LCS dup
32 Bis(2-chloroethoxy) meth			< 0.2	ug/L	
33 2-4-Dichlorophenol			< 0.2	ug/L	
34 1-2-4-Trichlorobenzene			< 0.2	ug/L	
35 Naphthalene			< 0.2	ug/L	
36 4-Chloroaniline			< 0.2	ug/L	
37 2-6-Dichlorophenol			< 0.2	ug/L	
38 Hexachlorobutadiene			< 0.2	ug/L	
39 N-Nitrosodibutylamine			< 0.2	ug/L	
40 4-Chloro-3-methylphenol			< 0.2	ug/L	
41 2-Methylnaphthalene			< 0.2	ug/L	
42 1-2-4-5-Tetrachlorobenze			< 0.2	ug/L	
43 Hexachlorocyclopentadien			< 0.2	ug/L	
44 2,4,6-Trichlorophenol			< 0.2	ug/L	
45 2,4,5-Trichlorophenol			< 0.2	ug/L	

Extracted MW-18S

Extracted by EH, JR

Extracted Date 05-01-2018

46	2-Chloronaphthalene	< 0.2	ug/L
47	1-Chloronaphthalene	< 0.2	ug/L
48	2-Nitroaniline	< 0.2	ug/L
49	Dimethyl-phthalate	< 0.2	ug/L
50	Acenaphthylene	< 0.2	ug/L
51	2-6-Dinitrotoluene	< 0.2	ug/L
52	3-Nitroaniline	< 0.2	ug/L
53	Acenaphthene	< 0.2	ug/L
54	2-4-Dinitrophenol	< 2.0	ug/L
55	Dibenzofuran	< 0.2	ug/L
56	4-Nitrophenol	<1.0	ug/L
57	Pentachlorobenzene	< 0.2	ug/L
58	2-4-Dinitrotoluene	< 0.2	ug/L
59	2-3-4-6-Tetrachloropheno	< 0.4	ug/L
60	Fluorene	< 0.2	ug/L
61	Diethylphthalate	< 0.2	ug/L
	4-Chlorophenyl-phenyl et	< 0.2	ug/L
63	4-Nitroaniline	< 0.2	ug/L
64	4-6-Dintro-2-methylpheno	< 2.0	ug/L
65	Diphenylamine	< 0.2	ug/L
	Azobenzene	< 0.2	ug/L
	4-Bromophenyl-phenyl eth	< 0.2	ug/L
68	Hexachlorobenzene	< 0.2	ug/L
69	Pentachlorophenol	< 1.0	ug/L
	Pentachloronitrobenzene	< 0.2	ug/L
71	Pronamide	< 0.2	ug/L
72	Phenanthrene	< 0.2	ug/L
73	Anthracene	< 0.2	ug/L
74	Carbazole	< 0.2	ug/L
75	Di-n-butylphthalate	< 0.2	ug/L
76	Fluoranthene	< 0.2	ug/L
77	Pyrene	< 0.2	ug/L
78	Dimethylaminoazobenzene	< 0.2	ug/L
	Butylbenzyl phthalate	< 0.2	ug/L
80	Benz[a]anthracene	< 0.2	ug/L
81	Chrysene	< 0.2	ug/L
82	Bis(2-ethylhexyl) phthal	< 0.2	ug/L
83	Di-n-octyl phthalate	< 0.2	ug/L
84	Benzo[b]fluoranthene	< 0.2	ug/L
85	Dimethylbenzo(a)anthrace	< 0.2	ug/L
	Benzo(k)fluoranthene	< 0.2	ug/L
87	Benzo(a)pyrene	< 0.2	ug/L
	3-Methylcholanthrene	< 0.2	ug/L
89	Indeno[1-2-3-cd]pyrene	< 0.2	ug/L
	Dibenz(a-h)anthracene	< 0.2	ug/L
	Benzo(ghi)perylene	< 0.2	ug/L
			-

Sample ID: 2018-1791 Operator: Ed Harris

Instrument MS Instrument #1

Extracted MW-18D Extracted Date 05-01-2018 Extracted by EH, JR

Last Calibra 5/24/2018 11:27 Acquisition 5/30/2018 11:06

Target Compounds		Acc. Criteria	Reported		
Peaks: 91(" Peak Name	% Recovery	% Rec.	Result	Amount Units	Qualifier
7 2-Fluorophenol (Surr.)	26.3	15-80		ug/L	
8 Nitrobenzene-d5 (Surr.)	54.9	50-150		ug/L	
9 2-Fluorobiphenyl (Surr.)	53.8	50-150		ug/L	
10 2-4-6-Tribromophenol (Su	32.9	50-150		ug/L	S= Surrogate failed (low) to recover within acceptance criteria; all analytes associated with this surrogate will be qualified as "estimated
11 Terphenyl-d14 (Surr.)	81.1	50-150		ug/L	Analytes associated with this surrogate MAY be biased low
12 Methyl Methanesulfonate			< 0.2	ug/L	
13 Ethyl methanesulfonate			< 0.2	ug/L	
14 Phenol			< 0.2	ug/L	
15 Aniline			< 0.2	ug/L	
16 Bis(2-chloroethyl) ether			< 0.2	ug/L	
17 2-Chlorophenol			< 0.2	ug/L	
18 1,3-Dichlorobenzene				0.73 ug/L	
19 1,4-Dichlorobenzene			< 0.2	ug/L	
20 Benzyl Alcohol			< 0.2	ug/L	
21 1,2-Dichlorobenzene			< 0.2	ug/L	
22 2-Methylphenol			< 0.2	ug/L	
23 4-Methylphenol			< 0.2	ug/L	
24 Acetophenone			< 0.2	ug/L	
25 N-Nitroso-di-n-propylami			< 0.2	ug/L	
26 Hexachloroethane			< 0.2	ug/L	
27 Nitrobenzene			< 0.2	ug/L	
28 N-Nitrosopiperidine			< 0.2	ug/L	
29 Isophorone			< 0.2	ug/L	
30 2-Nitrophenol			< 0.4	ug/L	
31 2,4-Dimethylphenol			< 0.2	ug/L	L = Analyte failed (low) to recover within acceptance criteria in the LCS and/or LCS dup; result MAY be biased low
32 Bis(2-chloroethoxy) meth			< 0.2	ug/L	
33 2-4-Dichlorophenol			< 0.2	ug/L	
34 1-2-4-Trichlorobenzene			< 0.2	ug/L	
35 Naphthalene			< 0.2	ug/L	
36 4-Chloroaniline			< 0.2	ug/L	
37 2-6-Dichlorophenol			< 0.2	ug/L	
38 Hexachlorobutadiene			< 0.2	ug/L	
39 N-Nitrosodibutylamine			< 0.2	ug/L	
40 4-Chloro-3-methylphenol			< 0.2	ug/L	
41 2-Methylnaphthalene			< 0.2	ug/L	
42 1-2-4-5-Tetrachlorobenze			< 0.2	ug/L	
43 Hexachlorocyclopentadien			< 0.2	ug/L	
44 2,4,6-Trichlorophenol			< 0.2	ug/L	
45 2,4,5-Trichlorophenol			< 0.2	ug/L	
46 2-Chloronaphthalene			< 0.2	ug/L	
47 1-Chloronaphthalene			< 0.2	ug/L	
48 2-Nitroaniline			< 0.2	ug/L	
49 Dimethyl-phthalate			< 0.2	ug/L	
50 Acenaphthylene			< 0.2	ug/L	
51 2-6-Dinitrotoluene			< 0.2	ug/L	
52 3-Nitroaniline			< 0.2	ug/L	
53 Acenaphthene			< 0.2	ug/L	
54 2-4-Dinitrophenol			< 2.0	ug/L	E=Estimated result due to surrogate failure; result MAY be biased low
55 Dibenzofuran			< 0.2	ug/L	E=Estimated result due to surrogate failure; result MAY be biased low
56 4-Nitrophenol			<1.0	ug/L	E=Estimated result due to surrogate failure; result MAY be biased low
57 Pentachlorobenzene			< 0.2	ug/L	E=Estimated result due to surrogate failure; result MAY be biased low
58 2-4-Dinitrotoluene			< 0.2	ug/L	E=Estimated result due to surrogate failure; result MAY be biased low
59 2-3-4-6-Tetrachloropheno			< 0.4	ug/L	E=Estimated result due to surrogate failure; result MAY be biased low

60 Fluorene	< 0.2	ug/L
61 Diethylphthalate	< 0.2	ug/L
62 4-Chlorophenyl-phenyl et	< 0.2	ug/L
63 4-Nitroaniline	< 0.2	ug/L
64 4-6-Dintro-2-methylpheno	< 2.0	ug/L
65 Diphenylamine	< 0.2	ug/L
66 Azobenzene	< 0.2	ug/L
67 4-Bromophenyl-phenyl eth	< 0.2	ug/L
68 Hexachlorobenzene	< 0.2	ug/L
69 Pentachlorophenol	< 1.0	ug/L
70 Pentachloronitrobenzene	< 0.2	ug/L
71 Pronamide	< 0.2	ug/L
72 Phenanthrene	< 0.2	ug/L
73 Anthracene	< 0.2	ug/L
74 Carbazole	< 0.2	ug/L
75 Di-n-butylphthalate	< 0.2	ug/L
76 Fluoranthene	< 0.2	ug/L
77 Pyrene	< 0.2	ug/L
78 Dimethylaminoazobenzene	< 0.2	ug/L
79 Butylbenzyl phthalate	< 0.2	ug/L
80 Benz[a]anthracene	< 0.2	ug/L
81 Chrysene	< 0.2	ug/L
82 Bis(2-ethylhexyl) phthal	< 0.2	ug/L
83 Di-n-octyl phthalate	< 0.2	ug/L
84 Benzo[b]fluoranthene	< 0.2	ug/L
85 Dimethylbenzo(a)anthrace	< 0.2	ug/L
86 Benzo(k)fluoranthene	< 0.2	ug/L
87 Benzo(a)pyrene	< 0.2	ug/L
88 3-Methylcholanthrene	< 0.2	ug/L
89 Indeno[1-2-3-cd]pyrene	< 0.2	ug/L
90 Dibenz(a-h)anthracene	< 0.2	ug/L
91 Benzo(ghi)perylene	< 0.2	ug/L

E=Estimated result due to surrogate failure; result MAY be biased low E=Estimated result due to surrogate failure; result MAY be biased low E=Estimated result due to surrogate failure; result MAY be biased low E=Estimated result due to surrogate failure; result MAY be biased low E=Estimated result due to surrogate failure; result MAY be biased low E=Estimated result due to surrogate failure; result MAY be biased low E=Estimated result due to surrogate failure; result MAY be biased low E=Estimated result due to surrogate failure; result MAY be biased low E=Estimated result due to surrogate failure; result MAY be biased low E=Estimated result due to surrogate failure; result MAY be biased low E=Estimated result due to surrogate failure; result MAY be biased low E=Estimated result due to surrogate failure; result MAY be biased low E=Estimated result due to surrogate failure; result MAY be biased low E=Estimated result due to surrogate failure; result MAY be biased low E=Estimated result due to surrogate failure; result MAY be biased low E=Estimated result due to surrogate failure; result MAY be biased low E=Estimated result due to surrogate failure; result MAY be biased low

Sample ID: 2018-1792 50 mL

Operator: Ed Harris

Instrument ID: MS Instrument #1

Last Calibratio 5/24/2018 11:27 Acquisition Da 5/30/2018 11:36 Extracted MW-3D 50mL Extracted Date 05-01-2018 Extracted by EH, JR Sample ID: 2018-1792 5 mL Operator: Ed Harris Instrument MS Instrument #1

Last Calibra 5/24/2018 11:27 Acquisition 5/30/2018 12:05 Extracted MW-3D 5mL Extracted Date 05-01-2018 Extracted by EH, JR

		Acc. Criteria	Reported		0 116				
91("#" Peak Name	% Recovery	% Rec.	Result	Amount Units	Qualifier	T1 C	4.		
7 2-Fluorophenol (Surr.)	36.2	15-80		ug/L		Target Compound	ds	December	
8 Nitrobenzene-d5 (Surr.)	65.6	50-150		ug/L		D I - 04/II D I - N		Reported	
9 2-Fluorobiphenyl (Surr.)	65.5	50-150		ug/L		Peaks: 91(" Peak I		Result Unit	S
10 2-4-6-Tribromophenol (Su	67.9	50-150		ug/L		35 Napht		141 ug/L	
11 Terphenyl-d14 (Surr.)	87.6	50-150		ug/L			thylnaphthalene	136 ug/L	
12 Methyl Methanesulfonate			< 2.0	ug/L		53 Acena		172 ug/L	Poor Integration not used
13 Ethyl methanesulfonate			< 2.0	ug/L		55 Diben		108 ug/L	
14 Phenol			< 2.0	ug/L		60 <mark>Fluore</mark>	ene	90.4 ug/L	
15 Aniline			< 2.0	ug/L					
16 Bis(2-chloroethyl) ether			< 2.0	ug/L					
17 2-Chlorophenol			< 2.0	ug/L		C	4702 4 200	F. A.	ata d MANA 2D. FOurt assessed and the an Dil 4
18 1,3-Dichlorobenzene			< 2.0	ug/L		Sample ID: 2018-			icted MW-3D 50mL conc to 1mL then Dil 1
19 1,4-Dichlorobenzene			< 2.0	ug/L		Operator: Ed Ha			octed Date 05-01-2018
20 Benzyl Alcohol			< 2.0	ug/L		Instrument MS Ins		EXTra	cted by EH, JR
21 1,2-Dichlorobenzene			< 2.0	ug/L		Last Calibra	5/24/2018 11:27		
22 2-Methylphenol			< 2.0	ug/L		Acquisition	5/30/2018 12:35		
23 4-Methylphenol			< 2.0	ug/L					
24 Acetophenone			< 2.0	ug/L					
25 N-Nitroso-di-n-propylami 26 Hexachloroethane			< 2.0 < 2.0	ug/L		Target Compound	15	Reported	
				ug/L		Deeles 01/" Deels N			_
27 Nitrobenzene			< 2.0	ug/L		Peaks: 91(" Peak I		Result Unit	
28 N-Nitrosopiperidine			< 2.0	ug/L		53 <mark>Acena</mark>	pntnene	211 ug/L	
29 Isophorone			< 2.0	ug/L					
30 2-Nitrophenol			< 4.0 < 2.0	ug/L	I - Analysis failed (las			CC and/an I CC down and	ude NAAV be beleed leve
31 2,4-Dimethylphenol			< 2.0	ug/L	L = Analyte falled (10)	w) to recover within	acceptance criteria in the L	cs and/or LCs dup; res	uit MAY be baised low
32 Bis(2-chloroethoxy) meth 33 2-4-Dichlorophenol			< 2.0	ug/L					
•			< 2.0	ug/L					
34 1-2-4-Trichlorobenzene				ug/L	Over Range; see dilu	tion			
35 Naphthalene 36 4-Chloroaniline				28 ug/L	Over Kange, see unu	u <mark>o</mark> n			
37 2-6-Dichlorophenol			< 2.0 < 2.0	ug/L					
38 Hexachlorobutadiene			< 2.0	ug/L					
39 N-Nitrosodibutylamine			< 2.0	ug/L					
40 4-Chloro-3-methylphenol			< 2.0	ug/L ug/L					
41 2-Methylnaphthalene				ug/L 24 ug/L	Over Range; see dilu	tion			
42 1-2-4-5-Tetrachlorobenze			< 2.0	ug/L	Over Kange, see and	u <mark>u</mark> ii			
43 Hexachlorocyclopentadien			< 2.0	ug/L ug/L					
44 2,4,6-Trichlorophenol			< 2.0	ug/L ug/L					
45 2,4,5-Trichlorophenol			< 2.0	ug/L ug/L					
46 2-Chloronaphthalene			< 2.0	ug/L ug/L					
47 1-Chloronaphthalene			< 2.0	ug/L ug/L					
48 2-Nitroaniline			< 2.0	ug/L ug/L					
49 Dimethyl-phthalate			< 2.0	ug/L ug/L					
50 Acenaphthylene				.3 ug/L					
			< 0.2	ug/L					
			< 0.2	ug/L ug/L					
51 2-6-Dinitrotoluene			< U.Z						
52 3-Nitroaniline			20	16 ug/l	Over Panger con dil.	tion			
52 3-Nitroaniline 53 <mark>Acenaphthene</mark>				06 ug/L	Over Range; see dilu	tion			
52 3-Nitroaniline			< 20.0	06 ug/L ug/L LO ug/L	Over Range; see dilu Over Range; see dilu	_			

57 Pentachlorobenzene	< 2.0 ug/L	
58 2-4-Dinitrotoluene	< 2.0 ug/L	
59 2-3-4-6-Tetrachloropheno	< 4.0 ug/L	
60 Fluorene	100 ug/L	Over Range; see dilution
61 Diethylphthalate	< 2.0 ug/L	
62 4-Chlorophenyl-phenyl et	< 2.0 ug/L	
63 4-Nitroaniline	< 2.0 ug/L	
64 4-6-Dintro-2-methylpheno	< 20.0 ug/L	
65 Diphenylamine	< 2.0 ug/L	
66 Azobenzene	< 2.0 ug/L	
67 4-Bromophenyl-phenyl eth	< 2.0 ug/L	
68 Hexachlorobenzene	< 2.0 ug/L	
69 Pentachlorophenol	<10.0 ug/L	
70 Pentachloronitrobenzene	< 2.0 ug/L	
71 Pronamide	< 2.0 ug/L	
72 Phenanthrene	108 ug/L	Over Range; see dilution
73 Anthracene	8.75 ug/L	
74 Carbazole	< 2.0 ug/L	
75 Di-n-butylphthalate	5.06 ug/L	
76 Fluoranthene	14.7 ug/L	
77 Pyrene	8.23 ug/L	
78 Dimethylaminoazobenzene	< 2.0 ug/L	
79 Butylbenzyl phthalate	< 2.0 ug/L	
80 Benz[a]anthracene	< 2.0 ug/L	
81 Chrysene	< 2.0 ug/L	
82 Bis(2-ethylhexyl) phthal	< 2.0 ug/L	
83 Di-n-octyl phthalate	2.05 ug/L	
84 Benzo[b]fluoranthene	< 2.0 ug/L	
85 Dimethylbenzo(a)anthrace	< 2.0 ug/L	
86 Benzo(k)fluoranthene	< 2.0 ug/L	
87 Benzo(a)pyrene	< 2.0 ug/L	
88 3-Methylcholanthrene	< 2.0 ug/L	
89 Indeno[1-2-3-cd]pyrene	< 2.0 ug/L	
90 Dibenz(a-h)anthracene	< 2.0 ug/L	
91 Benzo(ghi)perylene	< 2.0 ug/L	
(8)		

Sample ID: 2018-1793 50 mL Operator: Ed Harris

Instrument MS Instrument #1

Last Calibra 5/24/2018 11:27 Acquisition 5/30/2018 13:04

Target Compounds

Extracted MW-3S 50 mL Extracted Date 05-01-2018 Extracted by EH, JR

	o/ D		orted	0.115
Peaks: 91(" Peak Name	% Recovery	Res	ult Units	Qualifier
	A	Acc. Criteria		
		% Rec.	ug/L	
7 2-Fluorophenol (Surr.)	31.9		ug/L	
8 Nitrobenzene-d5 (Surr.)	68.0		ug/L	
9 2-Fluorobiphenyl (Surr.)		50-150	ug/L	
10 2-4-6-Tribromophenol (Su	40.1		ug/L	S= Surrogate failed to recover within acceptance limits; all analytes associated with this surrogate will be qualified as "estimated"
11 Terphenyl-d14 (Surr.)		50-150	ug/L	analytes associated with this surrogate MAY be biased low
12 Methyl Methanesulfonate		<2.0	O.	
13 Ethyl methanesulfonate		<2.0	O,	
14 Phenol		<2.0	O,	
15 Aniline		<2.0	O.	
16 Bis(2-chloroethyl) ether		<2.0	O,	
17 2-Chlorophenol		<2.0) ug/L	
18 1,3-Dichlorobenzene		<2.0) ug/L	
19 1,4-Dichlorobenzene		<2.0) ug/L	
20 Benzyl Alcohol		<2.0) ug/L	
21 1,2-Dichlorobenzene		<2.0) ug/L	
22 2-Methylphenol		<2.0) ug/L	
23 4-Methylphenol		<2.0) ug/L	
24 Acetophenone		<2.0) ug/L	
25 N-Nitroso-di-n-propylami		<2.0) ug/L	
26 Hexachloroethane		<2.0) ug/L	
27 Nitrobenzene		<2.0) ug/L	
28 N-Nitrosopiperidine		<2.0	ug/L	
29 Isophorone		<2.0	ug/L	
30 2-Nitrophenol		<4.0	ug/L	
31 2,4-Dimethylphenol		<2.0	ug/L	L = Analyte failed (low) to recover within acceptance criteria in the LCS and/or LCS dup; result MAY be biased low
32 Bis(2-chloroethoxy) meth		<2.0	ug/L	
33 2-4-Dichlorophenol		<2.0	-	
34 1-2-4-Trichlorobenzene		<2.0	-	
35 Naphthalene			4.01 ug/L	
36 4-Chloroaniline		<2.0	_	
37 2-6-Dichlorophenol		<2.0	-	
38 Hexachlorobutadiene		<2.0		
39 N-Nitrosodibutylamine		<2.0	-	
40 4-Chloro-3-methylphenol		<2.0	O,	
41 2-Methylnaphthalene		<2.0	O,	
42 1-2-4-5-Tetrachlorobenze		<2.0	O.	
43 Hexachlorocyclopentadien		<2.0		
44 2,4,6-Trichlorophenol		<2.0	_	
45 2,4,5-Trichlorophenol		<2.0	-	
46 2-Chloronaphthalene		<2.0	O,	
47 1-Chloronaphthalene		<2.0	-	
48 2-Nitroaniline		<2.0		
40 Z-INILI OdTIIIIIE		\2. (, ug/L	

49 Dimethyl-phthalate	<2.0	ug/L	
50 Acenaphthylene	<2.0	ug/L	
51 2-6-Dinitrotoluene	<2.0	ug/L	
52 3-Nitroaniline	<2.0	ug/L	
53 Acenaphthene	3.5	7 ug/L	
54 2-4-Dinitrophenol	< 20.0	ug/L	E= Estimated result due to surrogate failure; result MAY be biased low
55 Dibenzofuran	2.9	5 ug/L	E= Estimated result due to surrogate failure; result MAY be biased low
56 4-Nitrophenol	< 10.0	ug/L	E= Estimated result due to surrogate failure; result MAY be biased low
57 Pentachlorobenzene	<2.0	ug/L	E= Estimated result due to surrogate failure; result MAY be biased low
58 2-4-Dinitrotoluene	<2.0	ug/L	E= Estimated result due to surrogate failure; result MAY be biased low
59 2-3-4-6-Tetrachloropheno	17.	4 ug/L	E= Estimated result due to surrogate failure; result MAY be biased low
60 Fluorene	3.5	3 ug/L	E= Estimated result due to surrogate failure; result MAY be biased low
61 Diethylphthalate	<2.0	ug/L	E= Estimated result due to surrogate failure; result MAY be biased low
62 4-Chlorophenyl-phenyl et	<2.0	ug/L	E= Estimated result due to surrogate failure; result MAY be biased low
63 4-Nitroaniline	<2.0	ug/L	E= Estimated result due to surrogate failure; result MAY be biased low
64 4-6-Dintro-2-methylpheno	< 20.0	ug/L	E= Estimated result due to surrogate failure; result MAY be biased low
65 Diphenylamine	<2.0	ug/L	E= Estimated result due to surrogate failure; result MAY be biased low
66 Azobenzene	<2.0	ug/L	E= Estimated result due to surrogate failure; result MAY be biased low
67 4-Bromophenyl-phenyl eth	4.3	7 ug/L	E= Estimated result due to surrogate failure; result MAY be biased low
68 Hexachlorobenzene	<2.0	ug/L	E= Estimated result due to surrogate failure; result MAY be biased low
69 Pentachlorophenol	55	8 ug/L	Over Range See dilution
70 Pentachloronitrobenzene	<2.0	ug/L	E= Estimated result due to surrogate failure; result MAY be biased low
71 Pronamide	<2.0	ug/L	E= Estimated result due to surrogate failure; result MAY be biased low
72 Phenanthrene	2.4	9 ug/L	E= Estimated result due to surrogate failure; result MAY be biased low
73 Anthracene	<2.0	ug/L	E= Estimated result due to surrogate failure; result MAY be biased low
74 Carbazole	2.8	9 ug/L	E= Estimated result due to surrogate failure; result MAY be biased low
75 Di-n-butylphthalate	4.0	12 ug/L	
76 Fluoranthene	2.6	1 ug/L	
77 Pyrene	<2.0	ug/L	
78 Dimethylaminoazobenzene	<2.0	ug/L	
79 Butylbenzyl phthalate	<2.0	ug/L	
80 Benz[a]anthracene	<2.0	ug/L	
81 Chrysene	<2.0	ug/L	
82 Bis(2-ethylhexyl) phthal	3.5	9 ug/L	
83 Di-n-octyl phthalate	<2.0	ug/L	
84 Benzo[b]fluoranthene	<2.0	ug/L	
85 Dimethylbenzo(a)anthrace	<2.0	ug/L	
	<2.0	ug/L	
86 Benzo(k)fluoranthene	<2.0		
86 Benzo(k)fluoranthene 87 Benzo(a)pyrene	<2.0	ug/L	
* *		ug/L ug/L	
87 Benzo(a)pyrene	<2.0	O,	
87 Benzo(a)pyrene 88 3-Methylcholanthrene	<2.0 <2.0	ug/L	

Sample ID: 2018-1793 1-100 Operator: Ed Harris Instrument MS Instrument #1

Last Calibra 5/24/2018 11:27 Acquisition 5/30/2018 13:34

Target Compounds

Reported

Peaks: 91(" Peak Name Result Units
69 Pentachlorophenol 799 ug/L

Extracted MW-3S 5 mL Extracted Date 05-01-2018

Extracted by EH, JR

2018-1794 Sample ID: Operator: Ed Harris

Instrument ID: MS Instrument #1 Last Calibration 5/24/2018 11:27 Acquisition Date 5/30/2018 14:38

Target Compounds

				Reported		
Peaks: 91("#"	Peak Name	% Recovery		Result	Amount Units	Quallifier
			Acc. Criteria		ug/L	
			% Rec.		ug/L	
	7 2-Fluorophenol (Surr.)	53.4	15-80		ug/L	
	8 Nitrobenzene-d5 (Surr.)	59.7	50-150		ug/L	
	9 2-Fluorobiphenyl (Surr.)	59.7	50-150		ug/L	
10	0 2-4-6-Tribromophenol (Su	63.9	50-150		ug/L	
1	1 Terphenyl-d14 (Surr.)	80.5	50-150		ug/L	
1	2 Methyl Methanesulfonate			< 0.2	ug/L	
	3 Ethyl methanesulfonate			< 0.2	ug/L	
	4 Phenol			< 0.2	ug/L	
	5 Aniline			< 0.2	ug/L	
1	6 Bis(2-chloroethyl) ether			< 0.2	ug/L	
1	7 2-Chlorophenol			< 0.2	ug/L	
1	8 1,3-Dichlorobenzene			< 0.2	ug/L	
1	9 1,4-Dichlorobenzene			< 0.2	ug/L	
20	0 Benzyl Alcohol				0.25 ug/L	
2	1 1,2-Dichlorobenzene			< 0.2	ug/L	
2:	2 2-Methylphenol			< 0.2	ug/L	
2:	3 4-Methylphenol			< 0.2	ug/L	
2	4 Acetophenone			< 0.2	ug/L	
2	5 N-Nitroso-di-n-propylami			< 0.2	ug/L	
2	6 Hexachloroethane			< 0.2	ug/L	
2	7 Nitrobenzene			< 0.2	ug/L	
2	8 N-Nitrosopiperidine			< 0.2	ug/L	
2:	9 Isophorone			< 0.2	ug/L	
30	0 2-Nitrophenol			< 0.4	ug/L	
3:	1 2,4-Dimethylphenol			< 0.2	ug/L	L = Analyte failed (low) to recover within acceptance criteria in the LCS and/or LCS dup; result MAY be biased low
3:	2 Bis(2-chloroethoxy) meth			< 0.2	ug/L	
3:	3 2-4-Dichlorophenol			< 0.2	ug/L	
34	4 1-2-4-Trichlorobenzene			< 0.2	ug/L	
3	5 Naphthalene			< 0.2	ug/L	
3	6 4-Chloroaniline			< 0.2	ug/L	
3	7 2-6-Dichlorophenol			< 0.2	ug/L	
38	8 Hexachlorobutadiene			< 0.2	ug/L	
3:	9 N-Nitrosodibutylamine			< 0.2	ug/L	
4	0 4-Chloro-3-methylphenol			< 0.2	ug/L	
4:	1 2-Methylnaphthalene			< 0.2	ug/L	
4:	2 1-2-4-5-Tetrachlorobenze			< 0.2	ug/L	
4:	3 Hexachlorocyclopentadien			< 0.2	ug/L	
4	4 2,4,6-Trichlorophenol			< 0.2	ug/L	
4	5 2,4,5-Trichlorophenol			< 0.2	ug/L	
4	6 2-Chloronaphthalene			< 0.2	ug/L	
4	7 1-Chloronaphthalene			< 0.2	ug/L	
4	8 2-Nitroaniline			< 0.2	ug/L	
49	9 Dimethyl-phthalate			< 0.2	ug/L	
50	0 Acenaphthylene			< 0.2	ug/L	

Extracted MW-8S

Extracted by EH, JR

Extracted Date 05-01-2018

51	2-6-Dinitrotoluene	< 0.2	ug/L
52	3-Nitroaniline	< 0.2	ug/L
53	Acenaphthene	< 0.2	ug/L
54	2-4-Dinitrophenol	< 2.0	ug/L
55	Dibenzofuran	< 0.2	ug/L
56	4-Nitrophenol		0.81 ug/L
57	Pentachlorobenzene	< 0.2	ug/L
58	2-4-Dinitrotoluene	< 0.2	ug/L
59	2-3-4-6-Tetrachloropheno	< 0.4	ug/L
60	Fluorene	< 0.2	ug/L
61	Diethylphthalate	< 0.2	ug/L
62	4-Chlorophenyl-phenyl et	< 0.2	ug/L
63	4-Nitroaniline	< 0.2	ug/L
64	4-6-Dintro-2-methylpheno	< 2.0	ug/L
65	Diphenylamine	< 0.2	ug/L
66	Azobenzene	< 0.2	ug/L
67	4-Bromophenyl-phenyl eth	< 0.2	ug/L
68	Hexachlorobenzene	< 0.2	ug/L
69	Pentachlorophenol	< 1.0	ug/L
70	Pentachloronitrobenzene	< 0.2	ug/L
71	Pronamide	< 0.2	ug/L
72	Phenanthrene	< 0.2	ug/L
73	Anthracene	< 0.2	ug/L
74	Carbazole	< 0.2	ug/L
75	Di-n-butylphthalate	< 0.2	ug/L
76	Fluoranthene	< 0.2	ug/L
77	Pyrene	< 0.2	ug/L
78	Dimethylaminoazobenzene	< 0.2	ug/L
79	Butylbenzyl phthalate	< 0.2	ug/L
80	Benz[a]anthracene	< 0.2	ug/L
81	Chrysene	< 0.2	ug/L
82	Bis(2-ethylhexyl) phthal	< 0.2	ug/L
83	Di-n-octyl phthalate	< 0.2	ug/L
84	Benzo[b]fluoranthene	< 0.2	ug/L
85	Dimethylbenzo(a)anthrace	< 0.2	ug/L
	Benzo(k)fluoranthene	< 0.2	ug/L
	Benzo(a)pyrene	< 0.2	ug/L
	3-Methylcholanthrene	< 0.2	ug/L
	Indeno[1-2-3-cd]pyrene	< 0.2	ug/L
90	Dibenz(a-h)anthracene	< 0.2	ug/L
91	Benzo(ghi)perylene	< 0.2	ug/L

Sample ID: 2018-1795

Operator: Ed Harris Instrument MS Instrument #1 Extracted MW-8D Extracted Date 05-01-2018 Extracted by EH, JR

Last Calibra 5/24/2018 11:27 Acquisition 5/30/2018 15:08

Target Con

Target Compounds 	Δ	cc. Criter	ia Reported	d	
Peaks: 91(" Peak Name	% Recovery	% Rec.	Result	Amount Units	Qualifier
7 2-Fluorophenol (Surr.)	37.1	15-80		ug/L	
8 Nitrobenzene-d5 (Surr.)	53.3	50-150		ug/L	
9 2-Fluorobiphenyl (Surr.)	52.9	50-150		ug/L	
10 2-4-6-Tribromophenol (Su	51.8	50-150		ug/L	
11 Terphenyl-d14 (Surr.)	75.4	50-150		ug/L	
12 Methyl Methanesulfonate			< 0.2	ug/L	
13 Ethyl methanesulfonate			< 0.2	ug/L	
14 Phenol			< 0.2	ug/L	
15 Aniline			< 0.2	ug/L	
16 Bis(2-chloroethyl) ether			< 0.2	ug/L	
17 2-Chlorophenol			< 0.2	ug/L	
18 1,3-Dichlorobenzene			1.1	l2 ug/L	
19 1,4-Dichlorobenzene			< 0.2	ug/L	
20 Benzyl Alcohol			< 0.2	ug/L	
21 1,2-Dichlorobenzene			< 0.2	ug/L	
22 2-Methylphenol			< 0.2	ug/L	
23 4-Methylphenol			< 0.2	ug/L	
24 Acetophenone			< 0.2	ug/L	
25 N-Nitroso-di-n-propylami			< 0.2	ug/L	
26 Hexachloroethane			< 0.2	ug/L	
27 Nitrobenzene			< 0.2	ug/L	
28 N-Nitrosopiperidine			< 0.2	ug/L	
29 Isophorone			< 0.2	ug/L	
30 2-Nitrophenol			< 0.4	ug/L	
31 2,4-Dimethylphenol			< 0.2	ug/L	L = Analyte failed (low) to recover within accep
32 Bis(2-chloroethoxy) meth			< 0.2	ug/L	
33 2-4-Dichlorophenol			< 0.2	ug/L	
34 1-2-4-Trichlorobenzene			< 0.2	ug/L	
35 Naphthalene			< 0.2	ug/L	
36 4-Chloroaniline			< 0.2	ug/L	
37 2-6-Dichlorophenol			< 0.2	ug/L	
38 Hexachlorobutadiene			< 0.2	ug/L	
39 N-Nitrosodibutylamine			< 0.2	ug/L	
40 4-Chloro-3-methylphenol			< 0.2	ug/L	
41 2-Methylnaphthalene			< 0.2	ug/L	
42 1-2-4-5-Tetrachlorobenze			< 0.2	ug/L	
43 Hexachlorocyclopentadien			< 0.2	ug/L	
44 2,4,6-Trichlorophenol			< 0.2	ug/L	
45 2,4,5-Trichlorophenol			< 0.2	ug/L	
46 2-Chloronaphthalene			< 0.2	ug/L	
47 1-Chloronaphthalene			< 0.2	ug/L	
48 2-Nitroaniline			< 0.2	ug/L	
49 Dimethyl-phthalate			< 0.2	ug/L	
50 Acenaphthylene			< 0.2	ug/L	

eptance criteria in the LCS and/or LCS dup; result MAY be biased low

51 2-6-Dinitrotoluene	< 0.2	ug/L
52 3-Nitroaniline	< 0.2	ug/L
53 Acenaphthene	< 0.2	ug/L
54 2-4-Dinitrophenol	< 2.0	ug/L
55 Dibenzofuran	< 0.2	ug/L
56 4-Nitrophenol	<1.0	ug/L
57 Pentachlorobenzene	< 0.2	ug/L
58 2-4-Dinitrotoluene	< 0.2	ug/L
59 2-3-4-6-Tetrachloropheno	< 0.4	ug/L
60 Fluorene	< 0.2	ug/L
61 Diethylphthalate	< 0.2	ug/L
62 4-Chlorophenyl-phenyl et	< 0.2	ug/L
63 4-Nitroaniline	< 0.2	ug/L
64 4-6-Dintro-2-methylpheno	< 2.0	ug/L
65 Diphenylamine	< 0.2	ug/L
66 Azobenzene	< 0.2	ug/L
67 4-Bromophenyl-phenyl eth	< 0.2	ug/L
68 Hexachlorobenzene	< 0.2	ug/L
69 Pentachlorophenol	< 1.0	ug/L
70 Pentachloronitrobenzene	< 0.2	ug/L
71 Pronamide	< 0.2	ug/L
72 Phenanthrene	< 0.2	ug/L
73 Anthracene	< 0.2	ug/L
74 Carbazole	< 0.2	ug/L
75 Di-n-butylphthalate	< 0.2	ug/L
76 Fluoranthene	< 0.2	ug/L
77 Pyrene	< 0.2	ug/L
78 Dimethylaminoazobenzene	< 0.2	ug/L
79 Butylbenzyl phthalate	< 0.2	ug/L
80 Benz[a]anthracene	< 0.2	ug/L
81 Chrysene	< 0.2	ug/L
82 Bis(2-ethylhexyl) phthal		0.2 ug/L
83 Di-n-octyl phthalate	< 0.2	ug/L
84 Benzo[b]fluoranthene	< 0.2	ug/L
85 Dimethylbenzo(a)anthrace	< 0.2	ug/L
86 Benzo(k)fluoranthene	< 0.2	ug/L
87 Benzo(a)pyrene	< 0.2	ug/L
88 3-Methylcholanthrene	< 0.2	ug/L
89 Indeno[1-2-3-cd]pyrene	< 0.2	ug/L
90 Dibenz(a-h)anthracene	< 0.2	ug/L
91 Benzo(ghi)perylene	< 0.2	ug/L

Sample ID: 2018-1796

Operator: Ed Harris Instrument MS Instrument #1

Last Calibra 5/24/2018 11:27 Acquisition 5/30/2018 15:37

Target Compounds

		Acc. Criteria	Reported		
Peaks: 91(" Peak Name	% Recovery	% Rec.	Result	Amount Units	Qualifier
7 2-Fluorophenol (Surr.)	32.2	15-80		ug/L	
8 Nitrobenzene-d5 (Surr.)	52.5	50-150		ug/L	
9 2-Fluorobiphenyl (Surr.)	56.2	50-150		ug/L	
10 2-4-6-Tribromophenol (Su	49.8	50-150		ug/L	S = Surrogate failed to recover within acceptance criteria; all analytes associated with this surrogate will be qualified as "estimated"
11 Terphenyl-d14 (Surr.)	77.2	50-150		ug/L	Analytes associated with this surrogate MAY be biased low
12 Methyl Methanesulfonate			< 0.2	ug/L	
13 Ethyl methanesulfonate			< 0.2	ug/L	
14 Phenol			< 0.2	ug/L	
15 Aniline			< 0.2	ug/L	
16 Bis(2-chloroethyl) ether			< 0.2	ug/L	
17 2-Chlorophenol			< 0.2	ug/L	
18 1,3-Dichlorobenzene			< 0.2	ug/L	
19 1,4-Dichlorobenzene			< 0.2	ug/L	
20 Benzyl Alcohol			< 0.2	ug/L	
21 1,2-Dichlorobenzene			< 0.2	ug/L	
22 2-Methylphenol			< 0.2	ug/L	
23 4-Methylphenol			< 0.2	ug/L	
24 Acetophenone			< 0.2	ug/L	
25 N-Nitroso-di-n-propylami			< 0.2	ug/L	
26 Hexachloroethane			< 0.2	ug/L	
27 Nitrobenzene			< 0.2	ug/L	
28 N-Nitrosopiperidine			< 0.2	ug/L	
29 Isophorone			< 0.2	ug/L	
30 2-Nitrophenol			< 0.4	ug/L	
31 2,4-Dimethylphenol			< 0.2	ug/L	L = Analyte failed (low) to recover within acceptance criteria in the LCS and/or LCS dup; result MAY be biased low
32 Bis(2-chloroethoxy) meth			< 0.2	ug/L	
33 2-4-Dichlorophenol			< 0.2	ug/L	
34 1-2-4-Trichlorobenzene			< 0.2	ug/L	
35 Naphthalene			< 0.2	ug/L	
36 4-Chloroaniline			< 0.2	ug/L	
37 2-6-Dichlorophenol			< 0.2	ug/L	
38 Hexachlorobutadiene			< 0.2	ug/L	
39 N-Nitrosodibutylamine			< 0.2	ug/L	
40 4-Chloro-3-methylphenol			< 0.2	ug/L	
41 2-Methylnaphthalene			< 0.2	ug/L	
42 1-2-4-5-Tetrachlorobenze			< 0.2	ug/L	
43 Hexachlorocyclopentadien			< 0.2	ug/L	
44 2,4,6-Trichlorophenol			< 0.2	ug/L	
45 2,4,5-Trichlorophenol			< 0.2	ug/L	
46 2-Chloronaphthalene			< 0.2	ug/L	
47 1-Chloronaphthalene			< 0.2	ug/L	
48 2-Nitroaniline			< 0.2	ug/L	
49 Dimethyl-phthalate			< 0.2	ug/L	
50 Acenaphthylene			< 0.2	ug/L	
51 2-6-Dinitrotoluene			< 0.2	ug/L	
52 3-Nitroaniline			< 0.2	ug/L	
53 Acenaphthene			< 0.2	ug/L	
54 2-4-Dinitrophenol			< 2.0	ug/L	E = Estimated result due to surrogate failure; result MAY be biased low

Extracted EB-9
Extracted Date 05-01-2018

Extracted by EH, JR

55 Dibenzofuran	< 0.2	ug/L
56 4-Nitrophenol	<1.0	ug/L
57 Pentachlorobenzene	< 0.2	ug/L
58 2-4-Dinitrotoluene	< 0.2	ug/L
59 2-3-4-6-Tetrachloropheno	< 0.4	ug/L
60 Fluorene	< 0.2	ug/L
61 Diethylphthalate	< 0.2	ug/L
62 4-Chlorophenyl-phenyl et	< 0.2	ug/L
63 4-Nitroaniline	< 0.2	ug/L
64 4-6-Dintro-2-methylpheno	< 2.0	ug/L
65 Diphenylamine	< 0.2	ug/L
66 Azobenzene	< 0.2	ug/L
67 4-Bromophenyl-phenyl eth	< 0.2	ug/L
68 Hexachlorobenzene	< 0.2	ug/L
69 Pentachlorophenol	< 1.0	ug/L
70 Pentachloronitrobenzene	< 0.2	ug/L
71 Pronamide	< 0.2	ug/L
72 Phenanthrene	< 0.2	ug/L
73 Anthracene	< 0.2	ug/L
74 Carbazole	< 0.2	ug/L
75 Di-n-butylphthalate	< 0.2	ug/L
76 Fluoranthene	< 0.2	ug/L
77 Pyrene	< 0.2	ug/L
78 Dimethylaminoazobenzene	< 0.2	ug/L
79 Butylbenzyl phthalate	< 0.2	ug/L
80 Benz[a]anthracene	< 0.2	ug/L
81 Chrysene	< 0.2	ug/L
82 Bis(2-ethylhexyl) phthal	< 0.2	ug/L
83 Di-n-octyl phthalate	< 0.2	ug/L
84 Benzo[b]fluoranthene	< 0.2	ug/L
85 Dimethylbenzo(a)anthrace	< 0.2	ug/L
86 Benzo(k)fluoranthene	< 0.2	ug/L
87 Benzo(a)pyrene	< 0.2	ug/L
88 3-Methylcholanthrene	< 0.2	ug/L
89 Indeno[1-2-3-cd]pyrene	< 0.2	ug/L
90 Dibenz(a-h)anthracene	< 0.2	ug/L
91 Benzo(ghi)perylene	< 0.2	ug/L

E = Estimated result due to surrogate failure; result MAY be biased low E = Estimated result due to surrogate failure; result MAY be biased low E = Estimated result due to surrogate failure; result MAY be biased low E = Estimated result due to surrogate failure; result MAY be biased low E = Estimated result due to surrogate failure; result MAY be biased low E = Estimated result due to surrogate failure; result MAY be biased low E = Estimated result due to surrogate failure; result MAY be biased low E = Estimated result due to surrogate failure; result MAY be biased low E = Estimated result due to surrogate failure; result MAY be biased low E = Estimated result due to surrogate failure; result MAY be biased low E = Estimated result due to surrogate failure; result MAY be biased low E = Estimated result due to surrogate failure; result MAY be biased low E = Estimated result due to surrogate failure; result MAY be biased low E = Estimated result due to surrogate failure; result MAY be biased low E = Estimated result due to surrogate failure; result MAY be biased low E = Estimated result due to surrogate failure; result MAY be biased low E = Estimated result due to surrogate failure; result MAY be biased low E = Estimated result due to surrogate failure; result MAY be biased low E = Estimated result due to surrogate failure; result MAY be biased low E = Estimated result due to surrogate failure; result MAY be biased low Sample ID: 2018-1797

Operator: Ed Harris Instrument MS Instrument #1

Last Calibra 5/24/2018 11:27 5/30/2018 16:07 Acquisition

Extracted EB-10 Extracted Date 05-01-2018 Extracted by EH, JR

Peaks UP Peak Name	larget Compounds		Acc. Criteria	Reported		
8 Ntroberzened S (Durn) 73.4 50-150 Ug/L 3 2 -Riborophemy (Sum 7) 72.3 50-150 Ug/L 10 2 -46-Tribronophemol (Sum 47) 50-150 Ug/L 11 Repheri-44 (Sum 7) 107.0 50-150 Ug/L 12 Nterhy Methanesulfonate 0.02 Ug/L 13 Horishinesulfonate 0.02 Ug/L 14 Phenol 0.02 Ug/L 15 Riborophemol (Sum 7) 0.02 Ug/L 17 C hlorophemol 0.02 Ug/L 18 13 Dictorophemol 0.02 Ug/L 19 1,4 Dichioroberzene 0.02 Ug/L 19 1,4 Dichioroberzene 0.02 Ug/L 12 1,4 Methylphemol 0.02 Ug/L 13 1,4 Dichioroberzene 0.02 Ug/L 14 1,4 Methylphemol 0.02 Ug/L 15 1,4 Methylphemol 0.02 Ug/L 16 Riborophemol 0.02 Ug/L 17 2,4 Methylphemol 0.02 Ug/L 18 1,4 Dichioroberzene 0.02 Ug/L 19 1,4 Methylphemol 0.02 Ug/L 19 1,4	Peaks: 91(" Peak Name	% Recovery		•	Amount Units	Qualifier
8 Ntroberzened S (Durn) 73.4 50-150 Ug/L 3 2 -Riborophemy (Sum 7) 72.3 50-150 Ug/L 10 2 -46-Tribronophemol (Sum 47) 50-150 Ug/L 11 Repheri-44 (Sum 7) 107.0 50-150 Ug/L 12 Nterhy Methanesulfonate 0.02 Ug/L 13 Horishinesulfonate 0.02 Ug/L 14 Phenol 0.02 Ug/L 15 Riborophemol (Sum 7) 0.02 Ug/L 17 C hlorophemol 0.02 Ug/L 18 13 Dictorophemol 0.02 Ug/L 19 1,4 Dichioroberzene 0.02 Ug/L 19 1,4 Dichioroberzene 0.02 Ug/L 12 1,4 Methylphemol 0.02 Ug/L 13 1,4 Dichioroberzene 0.02 Ug/L 14 1,4 Methylphemol 0.02 Ug/L 15 1,4 Methylphemol 0.02 Ug/L 16 Riborophemol 0.02 Ug/L 17 2,4 Methylphemol 0.02 Ug/L 18 1,4 Dichioroberzene 0.02 Ug/L 19 1,4 Methylphemol 0.02 Ug/L 19 1,4	7 2-Fluorophenol (Surr.)	28.1	15-80		ug/L	
10 2-4-6-Tribromosphend Su	8 Nitrobenzene-d5 (Surr.)	73.4	50-150			
10 2-4-6-Tribromopheno(Su 47.9 50-150 ug/L 11 Traphe-yids (Surr.) 107.0 50-150 ug/L 20-150		72.3	50-150			
Methyl Methanesulfonate	10 2-4-6-Tribromophenol (Su	47.9	50-150			S= surrogate failed to recover within acceptance criteria; all analytes associated with this surrogate will be qualified as "estimated"
12 Methyl Methanesulfonate	11 Terphenyl-d14 (Surr.)	107.0	50-150			Analytes associated with this surrogate MAY be biased low
31 thly methanesulforate 0.2				< 0.2		
14 Phenol				< 0.2		
15 Anline				< 0.2		
15 Bid2-chlorechy) ether						
17 - Chlorophenol	16 Bis(2-chloroethyl) ether			< 0.2		
18 1.3-Dichlorobenzene						
19 1.4-Dichlorobenzene						
20 Benzy Alcohol 0.0.2 ug/L						
21 1,2 Dichlorobenzene						
22 2-Methylphenol	•					
23 4-Methylphenol	, , , , , , , , , , , , , , , , , , ,					
24 Acetophenone <0.2						
25 N-Nitrosodi-in-propylami						
26 Hexachloroethane 0.2 ug/L 27 Nitrobenzene 0.2 ug/L 28 N-Nitrosopiperidine ug/L 30 2-Nitrophenol 31 2,4-Dimethylphenol 32 Self-Chloroethoxy) meth						
27 Nitrobenzene						
28 N-Nitrosopiperidine < 0.2						
29 Isophorone < 0.2 ug/L 30 2-Nitrophenol < 0.4 ug/L 31 2,4-Dimethylphenol < 0.2 ug/L 32 Bis(2-chlorechtoxy) meth < 0.2 ug/L 33 2-4-Diichlorophenol < 0.2 ug/L 34 1-2-4-Trichlorobenzene < 0.2 ug/L 35 Naphthalene < 0.2 ug/L 36 4-Chloroaniline < 0.2 ug/L 37 2-6-Dichlorophenol < 0.2 ug/L 38 Hexachlorobutadiene < 0.2 ug/L 39 N-Nitrosodibutylamine < 0.2 ug/L 40 4-Chloro-a-methylphenol < 0.2 ug/L 41 2-Methylnaphthalene < 0.2 ug/L 42 1-2-4-5-Tetrachlorobenze < 0.2 ug/L 43 Hexachlorocyclopentadien < 0.2 ug/L 44 2-4,6-Trichlorophenol < 0.2 ug/L 45 2,4,5-Trichlorophenol < 0.2 ug/L 46 2-Chloronaphthalene < 0.2 ug/L 47 1-Chloronaphthalene < 0.2 ug/L 48 2-Nitroaniline < 0.2 ug/L 49 Dimethyl-phthalate < 0.2 ug/L 49 Dimethyl-phthalate < 0.2 ug/L 49 Dimethyl-phthalate < 0.2 ug/L 50 Acenaphthylene < 0.2 ug/L 51 2-G-Dinitrobulene < 0.2 ug/L 52 3-Nitroaniline < 0.2 ug/L 53 Acenaphthylene < 0.2 ug/L 54 Acenaphthylene < 0.2 ug/L 55 Acenaphthylene < 0.2 ug/L 56 Acenaphthylene < 0.2 ug/L 57 Acenaphthylene < 0.2 ug/L 58 Acenaphthylene < 0.2 ug/L 59 Acenaphthylene < 0.2 ug/L 50 Acenaphthylene < 0.2 ug/L 50 Acenaphthylene < 0.2 ug/L 50 Acenaphthylene < 0.2 ug/L 51 Acenaphthylene < 0.2 ug/L 52 Acenaphthylene < 0.2 ug/L 53 Acenaphthylene < 0.2 ug/L 54 Acenaphthylene < 0.2 ug/L 55 Acenaphthylene < 0.2 ug/L 56 Acenaphthylene < 0.2 ug/L 57 Acenaphthylene < 0.2 ug/L 58 Acenaphthylene < 0.2 ug/L 59 Acenaphthylene < 0.2 ug/L 50 Acenapht						
30 2-Nitrophenol						
31 2,4-Dimethylphenol						
32 Bis(2-chloroethoxy) meth < 0.2	•					L = Analyte failed (low) to recover within acceptance criteria in the LCS and/or LCS dup; result MAY be biased low
33 2.4-Dichlorophenol <0.2						
34 1-2-4-Trichlorobenzene < 0.2	The state of the s					
35 Naphthalene <0.2	•					
36 4-Chloroaniline < 0.2						
37 2-6-Dichlorophenol < 0.2	•					
38 Hexachlorobutadiene < 0.2						
39 N-Nitrosodibutylamine < 0.2	•			< 0.2		
40 4-Chloro-3-methylphenol < 0.2	39 N-Nitrosodibutylamine			< 0.2		
41 2-Methylnaphthalene < 0.2						
42 1-2-4-5-Tetrachlorobenze < 0.2				< 0.2		
44 2,4,6-Trichlorophenol < 0.2	42 1-2-4-5-Tetrachlorobenze			< 0.2		
44 2,4,6-Trichlorophenol < 0.2	43 Hexachlorocyclopentadien			< 0.2	ug/L	
45 2,4,5-Trichlorophenol < 0.2	44 2,4,6-Trichlorophenol			< 0.2		
46 2-Chloronaphthalene < 0.2	•					
47 1-Chloronaphthalene < 0.2				< 0.2		
48 2-Nitroaniline < 0.2	47 1-Chloronaphthalene			< 0.2		
49 Dimethyl-phthalate < 0.2 ug/L 50 Acenaphthylene < 0.2 ug/L 51 2-6-Dinitrotoluene < 0.2 ug/L 52 3-Nitroaniline < 0.2 ug/L 53 Acenaphthene < 0.2 ug/L	48 2-Nitroaniline			< 0.2		
50 Acenaphthylene < 0.2 ug/L 51 2-6-Dinitrotoluene < 0.2 ug/L 52 3-Nitroaniline < 0.2 ug/L 53 Acenaphthene < 0.2 ug/L	49 Dimethyl-phthalate			< 0.2		
51 2-6-Dinitrotoluene < 0.2						
52 3-Nitroaniline < 0.2 ug/L 53 Acenaphthene < 0.2 ug/L						
53 Acenaphthene < 0.2 ug/L	52 3-Nitroaniline			< 0.2		
54 2-4-Dinitrophenol < 2.0 ug/L E=Estimated result due to surrogate failure; result MAY be biased low	54 2-4-Dinitrophenol			< 2.0	ug/L	E=Estimated result due to surrogate failure; result MAY be biased low
55 Dibenzofuran < 0.2 ug/L E=Estimated result due to surrogate failure; result MAY be biased low						
56 4-Nitrophenol <1.0 ug/L E=Estimated result due to surrogate failure; result MAY be biased low						

57	Pentachlorobenzene	< 0.2	ug/L
58	2-4-Dinitrotoluene	< 0.2	ug/L
59	2-3-4-6-Tetrachloropheno	< 0.4	ug/L
60	Fluorene	< 0.2	ug/L
61	Diethylphthalate	< 0.2	ug/L
62	4-Chlorophenyl-phenyl et	< 0.2	ug/L
63	4-Nitroaniline	< 0.2	ug/L
64	4-6-Dintro-2-methylpheno	< 2.0	ug/L
65	Diphenylamine	< 0.2	ug/L
66	Azobenzene	< 0.2	ug/L
67	4-Bromophenyl-phenyl eth	< 0.2	ug/L
68	Hexachlorobenzene	< 0.2	ug/L
69	Pentachlorophenol	< 1.0	ug/L
70	Pentachloronitrobenzene	< 0.2	ug/L
71	Pronamide	< 0.2	ug/L
72	Phenanthrene	< 0.2	ug/L
73	Anthracene	< 0.2	ug/L
74	Carbazole	< 0.2	ug/L
75	Di-n-butylphthalate	< 0.2	ug/L
76	Fluoranthene	< 0.2	ug/L
77	Pyrene	< 0.2	ug/L
78	Dimethylaminoazobenzene	< 0.2	ug/L
79	Butylbenzyl phthalate	< 0.2	ug/L
80	Benz[a]anthracene	< 0.2	ug/L
81	Chrysene	< 0.2	ug/L
	Bis(2-ethylhexyl) phthal	0.23	ug/L
	Di-n-octyl phthalate	< 0.2	ug/L
	Benzo[b]fluoranthene	< 0.2	ug/L
	Dimethylbenzo(a)anthrace	< 0.2	ug/L
86	Benzo(k)fluoranthene	< 0.2	ug/L
	Benzo(a)pyrene	< 0.2	ug/L
	3-Methylcholanthrene	< 0.2	ug/L
	Indeno[1-2-3-cd]pyrene	< 0.2	ug/L
	Dibenz(a-h)anthracene	< 0.2	ug/L
91	Benzo(ghi)perylene	< 0.2	ug/L

E=Estimated result due to surrogate failure; result MAY be biased low E=Estimated result due to surrogate failure; result MAY be biased low E=Estimated result due to surrogate failure; result MAY be biased low E=Estimated result due to surrogate failure; result MAY be biased low E=Estimated result due to surrogate failure; result MAY be biased low E=Estimated result due to surrogate failure; result MAY be biased low E=Estimated result due to surrogate failure; result MAY be biased low E=Estimated result due to surrogate failure; result MAY be biased low E=Estimated result due to surrogate failure; result MAY be biased low E=Estimated result due to surrogate failure; result MAY be biased low E=Estimated result due to surrogate failure; result MAY be biased low E=Estimated result due to surrogate failure; result MAY be biased low E=Estimated result due to surrogate failure; result MAY be biased low E=Estimated result due to surrogate failure; result MAY be biased low E=Estimated result due to surrogate failure; result MAY be biased low E=Estimated result due to surrogate failure; result MAY be biased low E=Estimated result due to surrogate failure; result MAY be biased low E=Estimated result due to surrogate failure; result MAY be biased low

Sample ID: 2018-1798 1-10

Operator: Ed Harris

Instrument MS Instrument #1
Last Calibra 5/24/2018 11:27
Acquisition 5/30/2018 16:36

51 2-6-Dinitrotoluene

52 3-Nitroaniline

53 Acenaphthene

55 Dibenzofuran

56 4-Nitrophenol

60 Fluorene

54 2-4-Dinitrophenol

57 Pentachlorobenzene

59 2-3-4-6-Tetrachloropheno

62 4-Chlorophenyl-phenyl et

58 2-4-Dinitrotoluene

61 Diethylphthalate

Target Compounds

Extracted IDW-1 Extracted Date 05-01-2018 Extracted by EH, JR

<2.0

<2.0

<20.0

< 10.0

< 2.0

< 2.0

< 4.0

< 2.0

< 2.0

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

3.4 ug/L

Rep. limit = 2.0 ug/L

E = Estimated result due to surrogate failure; result MAY be biased low

E = Estimated result due to surrogate failure; result MAY be biased low

E = Estimated result due to surrogate failure; result MAY be biased low

E = Estimated result due to surrogate failure; result MAY be biased low

E = Estimated result due to surrogate failure; result MAY be biased low

E = Estimated result due to surrogate failure; result MAY be biased low

E = Estimated result due to surrogate failure; result MAY be biased low

Rep. limit = 2.0 ug/L E = Estimated result due to surrogate failure; result MAY be biased low

7.41 ug/L

4.0 ug/L

Reported Acc. Criteria Peaks: 91("Peak Name % Recovery % Rec. Result Amount Units Qualifier 7 2-Fluorophenol (Surr.) 24.5 15-80 ug/L 8 Nitrobenzene-d5 (Surr.) 72.5 50-150 ug/L 9 2-Fluorobiphenyl (Surr.) 74.2 50-150 ug/L S = Surrogate failed to recover within acceptance criteria; all analytes associated with this surrogate will be qualified as "estimated" 10 2-4-6-Tribromophenol (Su 36.8 50-150 ug/L 101.5 Analytes associated with this surrogate MAY be biased low 11 Terphenyl-d14 (Surr.) 50-150 ug/L 12 Methyl Methanesulfonate <2.0 ug/L 13 Ethyl methanesulfonate <2.0 ug/L 14 Phenol <2.0 ug/L 15 Aniline <2.0 ug/L 16 Bis(2-chloroethyl) ether <2.0 ug/L 17 2-Chlorophenol <2.0 ug/L 18 1,3-Dichlorobenzene <2.0 ug/L 19 1,4-Dichlorobenzene <2.0 ug/L 20 Benzyl Alcohol <2.0 ug/L 21 1,2-Dichlorobenzene < 2.0 ug/L 22 2-Methylphenol <2.0 ug/L 23 4-Methylphenol <2.0 ug/L 24 Acetophenone <2.0 ug/L 25 N-Nitroso-di-n-propylami <2.0 ug/L 26 Hexachloroethane <2.0 ug/L <2.0 27 Nitrobenzene ug/L <2.0 28 N-Nitrosopiperidine ug/L 29 Isophorone <2.0 ug/L 30 2-Nitrophenol <4.0 ug/L 31 2,4-Dimethylphenol <2.0 ug/L L = Analyte failed (low) to recover within acceptance criteria in the LCS and/or LCS dup; result MAY be biased low 32 Bis(2-chloroethoxy) meth <2.0 ug/L 33 2-4-Dichlorophenol <2.0 ug/L 34 1-2-4-Trichlorobenzene <2.0 ug/L 35 Naphthalene 2.91 ug/L Rep. limit = 2.0 ug/L 36 4-Chloroaniline <2.0 ug/L 37 2-6-Dichlorophenol <2.0 ug/L 38 Hexachlorobutadiene <2.0 ug/L 39 N-Nitrosodibutylamine <2.0 ug/L 40 4-Chloro-3-methylphenol <2.0 ug/L 41 2-Methylnaphthalene <2.0 ug/L 42 1-2-4-5-Tetrachlorobenze <2.0 ug/L 43 Hexachlorocyclopentadien <2.0 ug/L 44 2,4,6-Trichlorophenol <2.0 ug/L 45 2,4,5-Trichlorophenol < 2.0 ug/L 46 2-Chloronaphthalene <2.0 ug/L 47 1-Chloronaphthalene <2.0 ug/L 48 2-Nitroaniline <2.0 ug/L 49 Dimethyl-phthalate <2.0 ug/L 50 Acenaphthylene <2.0 ug/L

63	4-Nitroaniline	< 2.0	ug/L
64	4-6-Dintro-2-methylpheno	< 20.0	ug/L
65	Diphenylamine	< 2.0	ug/L
66	Azobenzene	< 2.0	ug/L
67	4-Bromophenyl-phenyl eth	< 2.0	ug/L
68	Hexachlorobenzene	< 2.0	ug/L
69	Pentachlorophenol	11.4	ug/L
70	Pentachloronitrobenzene	< 2.0	ug/L
71	Pronamide	< 2.0	ug/L
72	Phenanthrene	2.7	ug/L
73	Anthracene	< 2.0	ug/L
74	Carbazole	< 2.0	ug/L
75	Di-n-butylphthalate	5.1	ug/L
76	Fluoranthene	< 2.0	ug/L
77	Pyrene	< 2.0	ug/L
78	Dimethylaminoazobenzene	< 2.0	ug/L
79	Butylbenzyl phthalate	< 2.0	ug/L
80	Benz[a]anthracene	< 2.0	ug/L
81	Chrysene	< 2.0	ug/L
82	Bis(2-ethylhexyl) phthal	2.1	ug/L
83	Di-n-octyl phthalate	< 2.0	ug/L
84	Benzo[b]fluoranthene	< 2.0	ug/L
85	Dimethylbenzo(a)anthrace	< 2.0	ug/L
86	Benzo(k)fluoranthene	< 2.0	ug/L
87	Benzo(a)pyrene	< 2.0	ug/L
88	3-Methylcholanthrene	< 2.0	ug/L
89	Indeno[1-2-3-cd]pyrene	< 2.0	ug/L
90	Dibenz(a-h)anthracene	< 2.0	ug/L
91	Benzo(ghi)perylene	< 2.0	ug/L

E = Estimated result due to surrogate failure; result MAY be biased low
E = Estimated result due to surrogate failure; result MAY be biased low
E = Estimated result due to surrogate failure; result MAY be biased low
E = Estimated result due to surrogate failure; result MAY be biased low
E = Estimated result due to surrogate failure; result MAY be biased low
E = Estimated result due to surrogate failure; result MAY be biased low
E = Estimated result due to surrogate failure; result MAY be biased low
E = Estimated result due to surrogate failure; result MAY be biased low
E = Estimated result due to surrogate failure; result MAY be biased low
E = Estimated result due to surrogate failure; result MAY be biased low
E = Estimated result due to surrogate failure; result MAY be biased low
E = Estimated result due to surrogate failure; result MAY be biased low
E = Estimated result due to surrogate failure; result MAY be biased low

Rep. limit = 2.0 ug/L

Rep. limit = 2.0 ug/L

Sample ID: Ext Blank Operator: Ed Harris

Instrument MS Instrument #1
Last Calibra 5/24/2018 11:27
Acquisition 5/30/2018 9:09

Target Compounds

Target Con	npounds					
D L 04/II		0/ 0		Acc. Criteria	Reported	A
•	Peak Name	% Recovery		% Rec.	Result	Amount Units
	2-Fluorophenol (Surr.)		4.4	15-80		ug/L
	Nitrobenzene-d5 (Surr.)		6.7	50-150		ug/L
	2-Fluorobiphenyl (Surr.) 2-4-6-Tribromophenol (S		6.9	50-150		ug/L
	. ,		9.3	50-150		ug/L
	Terphenyl-d14 (Surr.) Methyl Methanesulfona	133	3.5	50-150	< 0.2	ug/L
	•	te			< 0.2	ug/L
	Ethyl methanesulfonate Phenol				< 0.2	ug/L
= :	Aniline				< 0.2	ug/L
						ug/L
	Bis(2-chloroethyl) ether				< 0.2	ug/L
	2-Chlorophenol				< 0.2	ug/L
	1,3-Dichlorobenzene 1,4-Dichlorobenzene				< 0.2	ug/L
	•				< 0.2 < 0.2	ug/L
	Benzyl Alcohol 1,2-Dichlorobenzene				< 0.2	ug/L ug/L
	=				< 0.2	ug/L ug/L
	2-Methylphenol 4-Methylphenol				< 0.2	ug/L ug/L
	Acetophenone				< 0.2	ug/L ug/L
	N-Nitroso-di-n-propylam	i			< 0.2	ug/L ug/L
	Hexachloroethane				< 0.2	ug/L ug/L
	Nitrobenzene				< 0.2	ug/L ug/L
=-	N-Nitrosopiperidine				< 0.2	ug/L ug/L
	Isophorone				< 0.2	ug/L ug/L
	2-Nitrophenol				< 0.4	ug/L ug/L
	2,4-Dimethylphenol				< 0.4	ug/L
	Bis(2-chloroethoxy) met	h			< 0.2	ug/L
	2-4-Dichlorophenol				< 0.2	ug/L
	1-2-4-Trichlorobenzene				< 0.2	ug/L
	Naphthalene				< 0.2	ug/L
	4-Chloroaniline				< 0.2	ug/L
	2-6-Dichlorophenol				< 0.2	ug/L
	Hexachlorobutadiene				< 0.2	ug/L
	N-Nitrosodibutylamine				< 0.2	ug/L
	4-Chloro-3-methylpheno	ol			< 0.2	ug/L
	2-Methylnaphthalene				< 0.2	ug/L
	1-2-4-5-Tetrachlorobenz	e			< 0.2	ug/L
	Hexachlorocyclopentadio				< 0.2	ug/L
	2,4,6-Trichlorophenol				< 0.2	ug/L
					-	<u>.</u>

Extracted Method Blank

Extracted Date 05-01-2018 Extracted by EH, JR

45 2,4,5-Trichlorophenol	< 0.2	ug/L
46 2-Chloronaphthalene	< 0.2	ug/L
47 1-Chloronaphthalene	< 0.2	ug/L
48 2-Nitroaniline	< 0.2	ug/L
49 Dimethyl-phthalate	< 0.2	ug/L
50 Acenaphthylene	< 0.2	ug/L
51 2-6-Dinitrotoluene	< 0.2	ug/L
52 3-Nitroaniline	< 0.2	ug/L
53 Acenaphthene	< 0.2	ug/L
54 2-4-Dinitrophenol	< 2.0	ug/L
55 Dibenzofuran	< 0.2	ug/L
56 4-Nitrophenol	< 1.0	ug/L
57 Pentachlorobenzene	< 0.2	ug/L
58 2-4-Dinitrotoluene	< 0.2	ug/L
59 2-3-4-6-Tetrachloropheno	< 0.4	ug/L
60 Fluorene	< 0.2	ug/L ug/L
61 Diethylphthalate	< 0.2	ug/L ug/L
62 4-Chlorophenyl-phenyl et	< 0.2	ug/L ug/L
63 4-Nitroaniline	< 0.2	
	< 2.0	ug/L
64 4-6-Dintro-2-methylpheno 65 Diphenylamine	< 0.2	ug/L
66 Azobenzene	< 0.2	ug/L
	< 0.2	ug/L
67 4-Bromophenyl-phenyl eth 68 Hexachlorobenzene	< 0.2	ug/L
		ug/L
69 Pentachlorophenol	< 1.0	ug/L
70 Pentachloronitrobenzene 71 Pronamide	< 0.2	ug/L
71 Pronamice 72 Phenanthrene	< 0.2	ug/L
	< 0.2	ug/L
73 Anthracene	< 0.2	ug/L
74 Carbazole	< 0.2	ug/L
75 Di-n-butylphthalate	< 0.2	ug/L
76 Fluoranthene	< 0.2	ug/L
77 Pyrene	< 0.2	ug/L
78 Dimethylaminoazobenzene	< 0.2	ug/L
79 Butylbenzyl phthalate	< 0.2	ug/L
80 Benz[a]anthracene	< 0.2	ug/L
81 Chrysene	< 0.2	ug/L
82 Bis(2-ethylhexyl) phthal	< 0.2	ug/L
83 Di-n-octyl phthalate	< 0.2	ug/L
84 Benzo[b]fluoranthene	< 0.2	ug/L
85 Dimethylbenzo(a)anthrace	< 0.2	ug/L
86 Benzo(k)fluoranthene	< 0.2	ug/L
87 Benzo(a)pyrene	< 0.2	ug/L
88 3-Methylcholanthrene	< 0.2	ug/L
89 Indeno[1-2-3-cd]pyrene	< 0.2	ug/L
90 Dibenz(a-h)anthracene	< 0.2	ug/L
91 Benzo(ghi)perylene	< 0.2	ug/L

Sample ID: LCS-1 5-1-18

Operator: Ed Harris

Instrument MS Instrument #1

Last Calibra 5/24/2018 11:27 Acquisition 5/30/2018 9:38

Target Compounds

			Acc. Criteria
Peaks: 91('	Peak Name	% Recovery	% Rec.
7	2-Fluorophenol (Surr.)	57.8	15-80
8	Nitrobenzene-d5 (Surr.)	98.7	50-150
9	2-Fluorobiphenyl (Surr.)	91.7	50-150
10	2-4-6-Tribromophenol (Su	90.5	50-150
11	Terphenyl-d14 (Surr.)	110.8	50-150
12	Methyl Methanesulfonate	98.9	50-150
13	Ethyl methanesulfonate	120.2	50-150
14	Phenol	60.2	30-120
15	Aniline	69.7	50-150
16	Bis(2-chloroethyl) ether	118.3	50-150
17	2-Chlorophenol	106.6	30-120
18	1,3-Dichlorobenzene	69.0	50-150
19	1,4-Dichlorobenzene	76.2	50-150
20	Benzyl Alcohol	112.6	50-150
21	1,2-Dichlorobenzene	81.2	50-150
22	2-Methylphenol	94.2	30-120
23	4-Methylphenol	86.9	30-120
24	Acetophenone	117.0	50-150
25	N-Nitroso-di-n-propylami	119.5	50-150
26	Hexachloroethane	57.1	50-150
27	Nitrobenzene	114.2	50-150
28	N-Nitrosopiperidine	141.6	50-150
29	Isophorone	123.3	50-150
30	2-Nitrophenol	109.7	30-120
31	2,4-Dimethylphenol	27.4	30-120
32	Bis(2-chloroethoxy) meth	112.7	50-150
33	2-4-Dichlorophenol	108.7	30-120
34	1-2-4-Trichlorobenzene	83.9	50-150
35	Naphthalene	101.7	50-150
36	4-Chloroaniline	94.8	50-150
37	2-6-Dichlorophenol	106.9	30-120
38	Hexachlorobutadiene	55.8	50-150
39	N-Nitrosodibutylamine	121.5	50-150
40	4-Chloro-3-methylphenol	105.2	30-120
41	2-Methylnaphthalene	103.1	50-150
42	1-2-4-5-Tetrachlorobenze	90.9	50-150
43	Hexachlorocyclopentadien	75.0	50-150
	2,4,6-Trichlorophenol	105.6	30-120
45	2,4,5-Trichlorophenol	109.8	30-120
46	2-Chloronaphthalene	115.3	50-150
	1-Chloronaphthalene	118.3	50-150
	2-Nitroaniline	120.3	50-150
	Dimethyl-phthalate	126.7	50-150
50	Acenaphthylene	113.4	50-150

Extracted LCS-1

Extracted Date 05-01-2018 Extracted by EH, JR

Qualifier

R= RPD of LCS/LCS dup did not meet acceptance criteria R= RPD of LCS/LCS dup did not meet acceptance criteria

L= Analyte failed (low) to recover within acceptance criteria in the LCS and/or LCS dup; R - RPD did not meet acc. Criteria

51 2-6-Dinitrotoluene	116.9	50-150
52 3-Nitroaniline	110.9	50-150
53 Acenaphthene	115.5	50-150
54 2-4-Dinitrophenol	96.8	30-120
55 Dibenzofuran	112.0	50-150
56 4-Nitrophenol	45.3	30-120
57 Pentachlorobenzene	96.4	50-150
58 2-4-Dinitrotoluene	124.6	50-150
59 2-3-4-6-Tetrachloropheno	110.9	30-120
60 Fluorene	121.2	50-150
61 Diethylphthalate	125.4	50-150
62 4-Chlorophenyl-phenyl et	113.6	50-150
63 4-Nitroaniline	99.5	50-150
64 4-6-Dintro-2-methylpheno	108.7	30-120
65 Diphenylamine	115.3	50-150
66 Azobenzene	111.7	50-150
67 4-Bromophenyl-phenyl eth	104.6	50-150
68 Hexachlorobenzene	105.2	50-150
69 Pentachlorophenol	101.4	30-120
70 Pentachloronitrobenzene	105.3	50-150
71 Pronamide	115.9	50-150
72 Phenanthrene	113.1	50-150
73 Anthracene	110.8	50-150
74 Carbazole	113.7	50-150
75 Di-n-butylphthalate	166.9	50-150
76 Fluoranthene	112.2	50-150
77 Pyrene	128.3	50-150
78 Dimethylaminoazobenzene	125.2	50-150
79 Butylbenzyl phthalate	131.6	50-150
80 Benz[a]anthracene	126.3	50-150
81 Chrysene	124.4	50-150
82 Bis(2-ethylhexyl) phthal	128.6	50-150
83 Di-n-octyl phthalate	108.4	50-150
84 Benzo[b]fluoranthene	103.1	50-150
85 Dimethylbenzo(a)anthrace	100.3	50-150
86 Benzo(k)fluoranthene	107.5	50-150
87 Benzo(a)pyrene	94.1	50-150
88 3-Methylcholanthrene	78.4	50-150
89 Indeno[1-2-3-cd]pyrene	86.4	50-150
90 Dibenz(a-h)anthracene	85.7	50-150
91 Benzo(ghi)perylene	92.1	50-150

R= RPD of LCS/LCS dup did not meet acceptance criteria

Sample ID: LCS-2 5-1-18

Operator: Ed Harris

Instrument MS Instrument #1

Last Calibra 5/24/2018 11:27 Acquisition 5/30/2018 10:07

Target Compounds

Extracted LCS-2 Extracted Date 05-01-2018 Extracted by EH, JR

			Acc. Criteria	Acc. Criteria	Qualifier
Peaks: 91("Peak Name	% Recovery RP	D (%)	% Rec.	RPD	
7 2-Fluorophenol (Surr.)	47.4		15-80		
8 Nitrobenzene-d5 (Surr.)	81.9		50-150		
9 2-Fluorobiphenyl (Surr.)	77.2		50-150		
10 2-4-6-Tribromophenol (Su	80.4		50-150		
11 Terphenyl-d14 (Surr.)	100.3		50-150		
12 Methyl Methanesulfonate	79.6	11.4	50-150	0-20	
13 Ethyl methanesulfonate	94.9	13.5	50-150	0-20	
14 Phenol	47.9	11.1	30-120	0-20	
15 Aniline	61.7	3.8	50-150	0-20	
16 Bis(2-chloroethyl) ether	93.6	12.6	50-150	0-20	
17 2-Chlorophenol	83.3	10.0	30-120	0-20	
18 1,3-Dichlorobenzene	59.1	10.3	50-150	0-20	
19 1,4-Dichlorobenzene	64.6	11.2	50-150	0-20	
20 Benzyl Alcohol	88.5	17.6	50-150	0-20	
21 1,2-Dichlorobenzene	67.0	13.7	50-150	0-20	
22 2-Methylphenol	82.9	6.0	30-120	0-20	
23 4-Methylphenol	77.2	2.6	30-120	0-20	
24 Acetophenone	97.7	17.3	50-150	0-20	
25 N-Nitroso-di-n-propylami	96.5	17.6	50-150	0-20	
26 Hexachloroethane	52.2	21.2	50-150	0-20	R= RPD of LCS/LCS dup did not meet acceptance criteria
27 Nitrobenzene	85.7	24.9	50-150	0-20	R= RPD of LCS/LCS dup did not meet acceptance criteria
28 N-Nitrosopiperidine	120.8	11.0	50-150	0-20	
29 Isophorone	100.8	16.9	50-150	0-20	
30 2-Nitrophenol	91.1	12.2	30-120	0-20	
31 2,4-Dimethylphenol	77.9	41.1	30-120	0-20	R= RPD of LCS/LCS dup did not meet acceptance criteria
32 Bis(2-chloroethoxy) meth	93.1	15.7	50-150	0-20	
33 2-4-Dichlorophenol	90.7	13.3	30-120	0-20	
34 1-2-4-Trichlorobenzene	71.8	19.1	50-150	0-20	
35 Naphthalene	86.2	14.2	50-150	0-20	
36 4-Chloroaniline	83.2	9.4	50-150	0-20	
37 2-6-Dichlorophenol	92.6	14.9	30-120	0-20	
38 Hexachlorobutadiene	51.2	18.2	50-150	0-20	
39 N-Nitrosodibutylamine	102.6	13.4	50-150	0-20	
40 4-Chloro-3-methylphenol	92.1	8.9	30-120	0-20	
41 2-Methylnaphthalene	88.0	13.5	50-150	0-20	
42 1-2-4-5-Tetrachlorobenze	75.3	21.5	50-150	0-20	
43 Hexachlorocyclopentadien	62.1	19.6	50-150	0-20	
44 2,4,6-Trichlorophenol	92.3	15.3	30-120	0-20	

45 2,4,5-Trichlorophenol	94.1	9.6	30-120	0-20
46 2-Chloronaphthalene	89.0	12.0	50-150	0-20
47 1-Chloronaphthalene	91.8	8.5	50-150	0-20
48 2-Nitroaniline	107.9	7.3	50-150	0-20
49 Dimethyl-phthalate	104.7	10.3	50-150	0-20
50 Acenaphthylene	98.4	12.1	50-150	0-20
51 2-6-Dinitrotoluene	99.7	1.9	50-150	0-20
52 3-Nitroaniline	105.7	2.9	50-150	0-20
53 Acenaphthene	96.6	12.8	50-150	0-20
54 2-4-Dinitrophenol	92.0	9.5	30-120	0-20
55 Dibenzofuran	98.9	10.6	50-150	0-20
56 4-Nitrophenol	47.2	5.3	30-120	0-20
57 Pentachlorobenzene	87.8	10.9	50-150	0-20
58 2-4-Dinitrotoluene	108.8	6.3	50-150	0-20
59 2-3-4-6-Tetrachloropheno	99.8	6.7	30-120	0-20
60 Fluorene	108.5	7.8	50-150	0-20
61 Diethylphthalate	107.4	7.9	50-150	0-20
62 4-Chlorophenyl-phenyl et	101.3	1.5	50-150	0-20
63 4-Nitroaniline	102.4	6.5	50-150	0-20
64 4-6-Dintro-2-methylpheno	92.9	8.5	30-120	0-20
65 Diphenylamine	98.4	4.3	50-150	0-20
66 Azobenzene	92.0	9.5	50-150	0-20
67 4-Bromophenyl-phenyl eth	95.1	11.9	50-150	0-20
68 Hexachlorobenzene	90.0	20.5	50-150	0-20
69 Pentachlorophenol	88.7	13.2	30-120	0-20
70 Pentachloronitrobenzene	92.8	16.1	50-150	0-20
71 Pronamide	107.7	12.5	50-150	0-20
72 Phenanthrene	97.6	10.5	50-150	0-20
73 Anthracene	98.5	5.0	50-150	0-20
74 Carbazole	100.5	14.7	50-150	0-20
75 Di-n-butylphthalate	147.4	11.5	50-150	0-20
76 Fluoranthene	104.7	12.7	50-150	0-20
77 Pyrene	106.6	8.3	50-150	0-20
78 Dimethylaminoazobenzene	121.3	6.5	50-150	0-20
79 Butylbenzyl phthalate	121.6	3.9	50-150	0-20
80 Benz[a]anthracene	114.0	3.6	50-150	0-20
81 Chrysene	113.0	5.5	50-150	0-20
82 Bis(2-ethylhexyl) phthal	121.9	7.0	50-150	0-20
83 Di-n-octyl phthalate	103.3	5.5	50-150	0-20
84 Benzo[b]fluoranthene	96.2	14.2	50-150	0-20
85 Dimethylbenzo(a)anthrace	93.2	11.3	50-150	0-20
86 Benzo(k)fluoranthene	99.4	5.8	50-150	0-20
87 Benzo(a)pyrene	90.8	12.1	50-150	0-20
88 3-Methylcholanthrene	76.1	3.8	50-150	0-20
89 Indeno[1-2-3-cd]pyrene	73.3	14.6	50-150	0-20
90 Dibenz(a-h)anthracene	71.7	15.8	50-150	0-20
91 Benzo(ghi)perylene	74.7	16.8	50-150	0-20

R= RPD of LCS/LCS dup did not meet acceptance criteria

Sample ID: Operator:

2018-1778 Ed Harris

MS Instrument #1

Extracted Sample MW-19S Extracted Date 04-26-2018 Extracted by EH, JR

Instrument ID: Last Calibration: Acquisition Date:

5/24/2018 11:27 5/24/2018 21:26

Peaks: 91("#"	Pea

			Acc. Criteria	Reported	
	Peak Name	% Recovery	% Recovery	Result	Amount Units
7	2-Fluorophenol (Surr.)	45.2	15-80		ug/L
8	Nitrobenzene-d5 (Surr.)	59.8	50-150		ug/L
9	2-Fluorobiphenyl (Surr.)	58.9	50-150		ug/L
10	2-4-6-Tribromophenol (Su	63	50-150		ug/L
11	Terphenyl-d14 (Surr.)	65	50-150		ug/L
12	Methyl Methanesulfonate			< 0.2	ug/L
13	Ethyl methanesulfonate			< 0.2	ug/L
14	Phenol			< 0.2	ug/L
15	Aniline			< 0.2	ug/L
16	Bis(2-chloroethyl) ether			< 0.2	ug/L
17	2-Chlorophenol			< 0.2	ug/L
18	1,3-Dichlorobenzene			< 0.2	ug/L
19	1,4-Dichlorobenzene			< 0.2	ug/L
20	Benzyl Alcohol			0.26	ug/L
21	1,2-Dichlorobenzene			< 0.2	ug/L
22	2-Methylphenol			< 0.2	ug/L
23	4-Methylphenol			< 0.2	ug/L
24	Acetophenone			< 0.2	ug/L
25	N-Nitroso-di-n-propylami			< 0.2	ug/L
26	Hexachloroethane			< 0.2	ug/L
27	Nitrobenzene			< 0.2	ug/L
28	N-Nitrosopiperidine			< 0.2	ug/L
29	Isophorone			< 0.2	ug/L
30	2-Nitrophenol			< 0.4	ug/L
31	2,4-Dimethylphenol			< 0.2	ug/L
32	Bis(2-chloroethoxy) meth			< 0.2	ug/L
33	2-4-Dichlorophenol			< 0.2	ug/L
34	1-2-4-Trichlorobenzene			< 0.2	ug/L
35	Naphthalene			< 0.2	ug/L
36	4-Chloroaniline			< 0.2	ug/L
37	2-6-Dichlorophenol			< 0.2	ug/L
38	Hexachlorobutadiene			< 0.2	ug/L
39	N-Nitrosodibutylamine			< 0.2	ug/L
40	4-Chloro-3-methylphenol			< 0.2	ug/L
41	2-Methylnaphthalene			< 0.2	ug/L
42	1-2-4-5-Tetrachlorobenze			< 0.2	ug/L
43	Hexachlorocyclopentadien			< 0.2	ug/L
44	2,4,6-Trichlorophenol			< 0.2	ug/L

45	5 2,4,5-Trichlorophenol	< 0.2	ug/L
46	5 2-Chloronaphthalene	< 0.2	ug/L
47	7 1-Chloronaphthalene	< 0.2	ug/L
48	3 2-Nitroaniline	< 0.2	ug/L
49	9 Dimethyl-phthalate	< 0.2	ug/L
50) Acenaphthylene	< 0.2	ug/L
	1 2-6-Dinitrotoluene	< 0.2	ug/L
	2 3-Nitroaniline	< 0.2	ug/L
	3 Acenaphthene	< 0.2	ug/L
	2-4-Dinitrophenol	< 2.0	ug/L
	5 Dibenzofuran	< 0.2	ug/L
	5 4-Nitrophenol	< 1.0	ug/L
	7 Pentachlorobenzene	< 0.2	ug/L
	3 2-4-Dinitrotoluene	< 0.2	ug/L
	9 2-3-4-6-Tetrachloropheno	< 0.4	ug/L
) Fluorene	< 0.2	ug/L
	L Diethylphthalate	< 0.2	ug/L
	2 4-Chlorophenyl-phenyl et	< 0.2	ug/L
	3 4-Nitroaniline	< 0.2	ug/L
	4 4-6-Dintro-2-methylpheno	< 2.0	ug/L
	5 Diphenylamine	< 0.2	ug/L
	5 Azobenzene	< 0.2 < 0.2	ug/L
	7 4-Bromophenyl-phenyl eth 3 Hexachlorobenzene	< 0.2	ug/L
		< 1.0	ug/L
	9 Pentachlorophenol 9 Pentachloronitrobenzene	< 0.2	ug/L ug/L
	L Pronamide	< 0.2	ug/L ug/L
	2 Phenanthrene	< 0.2	ug/L ug/L
	3 Anthracene	< 0.2	ug/L ug/L
	1 Carbazole	< 0.2	ug/L
	5 Di-n-butylphthalate	< 0.2	ug/L
	5 Fluoranthene	< 0.2	ug/L
	7 Pyrene	< 0.2	ug/L
	3 Dimethylaminoazobenzene	< 0.2	ug/L
	Butylbenzyl phthalate	< 0.2	ug/L
	D Benz[a]anthracene	< 0.2	ug/L
	L Chrysene	< 0.2	ug/L
	2 Bis(2-ethylhexyl) phthal	< 0.2	ug/L
83	B Di-n-octyl phthalate	< 0.2	ug/L
84	Benzo[b]fluoranthene	< 0.2	ug/L
85	5 Dimethylbenzo(a)anthrace	< 0.2	ug/L
86	5 Benzo(k)fluoranthene	< 0.2	ug/L
87	7 Benzo(a)pyrene	< 0.2	ug/L
88	3 3-Methylcholanthrene	< 0.2	ug/L
89	9 Indeno[1-2-3-cd]pyrene	< 0.2	ug/L
90	Dibenz(a-h)anthracene	< 0.2	ug/L
91	L Benzo(ghi)perylene	< 0.2	ug/L

IDW Waste Manifest

Table D.1 Historical Water Level and NAPL Data Table, Old Midland Products Superfund Site.

	Casing		Depth to	Depth to	Groundwater	Total Depth
Well ID	Elevation (ft) ¹	Date	Water (ft)	NAPL (ft)	Elevation	(ft)
RW-1	349.53	9/29/2006	13.85		335.68	29.00
		12/18/2006	7.80		341.73	29.00
		3/19/2007	1.55	28.34	347.98	29.00
		10/8/2008	3.80		345.73	
		5/22/2009	NM	NM	NM	NM
		11/2/2009	0.40		349.13	28.50
		4/28/2010	0.70		348.83	28.90
		10/4/2010	7.62		341.91	28.90
		4/4/2011	7.20		342.33	28.95
		10/10/2011	7.73		341.80	28.93
		4/9/2012	0.40		349.13	28.97
		10/15/2012	8.55		340.98	29.00
		4/29/2013	0.85		348.68	29.05
		9/30/2013	7.23	Obs. NAPL	342.30	28.92
		4/21/2014	0.26	0.01	349.27	28.30
		10/6/2014	4.20		345.33	29.00
		4/13/2015	1.11	1.10	348.42	29.05
		11/10/2015	5.01		344.52	29.11
		4/4/2016	0.15	28.85	349.38	28.95
		10/24/2016	4.38	Obs. NAPL	345.15	28.95
		4/24/2017	NM	NM	NM	NM
	347.45	10/23/2017	5.31	Obs. NAPL	342.14	28.90
		4/23/2018	0.06	Obs. NAPL	347.39	28.95
RW-2	349.05	9/29/2006	13.15		335.90	28.70
		12/18/2006	7.30	19.00	341.75	28.70
		3/19/2007	2.00	19.00	347.05	28.70
		10/10/2008	4.28		344.77	NM
		5/22/2009	NM	NM	NM	NM
		11/2/2009	NM	NM	NM	NM
		4/28/2010	0.00		349.05	28.00
		10/4/2010	6.75		342.30	27.90
		4/4/2011	3.72		345.33	28.62
		10/10/2011	7.05		342.00	28.50
		4/9/2012	0.20		348.85	28.20
		10/15/2012	8.00		341.05	28.20
		4/29/2013	0.30		348.75	28.20
		9/30/2013	7.03		342.02	28.00
		4/21/2014	NM	NM	NM	NM
		10/6/2014	3.73		345.32	28.05
		11/10/2015	4.45		344.60	27.94
		4/4/2016	NM	NM	NM	NM
		10/24/2016	3.90		345.15	28.68
		4/24/2017	NM	NM	NM	NM
	346.94	10/23/2017	4.81	Obs. NAPL	342.13	28.12
		4/23/2018	NM	NM	NM	NM

Table D.1 Historical Water Level and NAPL Data Table, Old Midland Products Superfund Site.

	Casing		Depth to	Depth to	Groundwater	Total Depth
Well ID	Elevation (ft) ¹	Date	Water (ft)	NAPL (ft)	Elevation	(ft)
RW-3	348.77	9/29/2006	12.60		336.17	28.80
		12/18/2006	6.75		342.02	28.80
		3/19/2007	0.81	27.98	347.96	28.80
		10/9/2008	2.78		345.99	NM
		5/22/2009	NM	NM	NM	NM
		11/2/2009	NM	NM	NM	NM
		4/28/2010	NM	NM	NM	NM
		10/4/2010	6.60		342.17	28.85
		4/4/2011	3.13		345.64	28.85
		10/10/2011	6.62		342.15	28.55
		4/9/2012	NM	NM	NM	NM
		10/15/2012	NM	NM	NM	NM
		4/29/2013	NM	NM	NM	NM
		9/30/2013	6.50		342.27	28.80
		4/21/2014	NM	NM	NM	NM
		10/6/2014	3.17		345.60	28.88
		11/10/2015	3.80		344.97	28.89
		4/4/2016	NM	NM	NM	NM
		10/24/2016	3.32		345.45	28.80
	244.20	4/24/2017	NM	NM	NM	NM
	346.39	10/23/2017	4.24		342.15	28.90
		4/23/2018	NM	NM	NM	NM
RW-4	348.21	9/29/2006	14.15		334.06	28.20
		12/18/2006	8.40		339.81	28.20
		3/19/2007	3.78	28.00	344.43	28.20
		10/9/2008	0.03		348.18	NM
		5/22/2009	NM	NM	NM	NM
		11/2/2009	NM	NM	NM	NM
		4/28/2010	NM	NM	NM	NM
		10/4/2010	9.80		338.41	28.40
		4/4/2011	NM	NM	NM	NM
		10/10/2011	10.04		338.17	28.75
		4/9/2012	NM	NM	NM	NM
		10/15/2012	NM	NM	NM	NM
		4/29/2013	NM	NM	NM	NM
		9/30/2013	9.91		338.30	28.52
		4/21/2014	NM	NM	NM	NM
		10/6/2014	5.90		342.31	28.55
		11/10/2015	NM	NM	NM	NM
		4/4/2016	NM	NM	NM	NM
		10/24/2016	5.04		343.17	28.54
		4/24/2017	NM	NM	NM	NM
	345.93	10/23/2017	5.25		340.68	28.46
		4/23/2018	NM	NM	NM	NM

Table D.1 Historical Water Level and NAPL Data Table, Old Midland Products Superfund Site.

Well ID Elevation (ft)¹ Date Water (ft) NAPL (ft) Elevation (ft) RW-5 347.71 9/29/2006 13.68 334.03 33.30 3/19/2007 2.00 32.95 345.71 33.30 10/11/2009 NM NM NM 5/22/2009 NM NM NM NM 11/2/2009 NM NM NM NM 4/28/2010 NM NM NM NM 10/4/2011 8.64 339.07 33.40 4/4/2011 NM NM NM NM 10/10/2011 9.03 338.68 33.55 4/9/2012 NM NM NM NM NM 10/10/2011 9.03 338.68 33.55 4/9/2012 NM NM NM NM NM 4/29/2013 NM NM NM NM NM NM 10		G i.e.		Double	Donahar	Carrant	Terel Dend
RW-5 347.71 9/29/2006 13.68 334.03 33.30 33.30 3/19/2007 2.00 32.95 345.71 33.30 10/11/2009 NM	W.11 ID	_	Б.,	-	_		Total Depth
12/18/2006	Well ID	Elevation (II).	Date	water (It)	NAPL (II)	Elevation	(11)
12/18/2006							
3/19/2007 2.00 32.95 345.71 33.30 10/11/2009 NM	RW-5	347.71					
10/11/2009 NM							
5/22/2009 NM NM NM NM NM NM NM N							
11/2/2009							
A/28/2010							
10/4/2010							
A/4/2011							
10/10/2011 9.03 338.68 33.55							
A/9/2012 NM NM NM NM NM NM NM N							
10/15/2012							
RW-6 349.39 9/29/2006 15.28 334.11 29.00 1/10/10/2008 5.59 343.80 343.80 343.80 343.80 343.80 343.80 343.80 343.80 343.80 343.80 343.80 343.80 343.80 344.80 342.70 349.20 349.20 349.20 349.40 342.70 349.20							
RW-6 349.39 9/29/2006 15.28 334.11 29.00 3/19/2007 3.20 28.32 346.19 29.00 3/19/2007 3.20 28.32 346.19 29.00 10/10/2008 5.59 343.80 343.80 342.70 28.72 10/10/2011 9.90 339.89 28.90 4/4/2011 6.69 342.70 28.72 10/15/2012 10.70 338.69 28.67 4/29/2013 2.75 346.64 28.65 9/30/2013 9.79 Obs. NAPL 339.60 28.75							
A/21/2014							
RW-6 349.39 9/29/2006 15.28 334.11 29.00 12/18/2006 9.50 339.89 29.00 3/19/2007 3.20 28.32 346.19 29.00 10/10/2008 5.59 343.80 343.80 342.70 28.72 10/10/2010 9.50 339.89 28.90 4/4/2010 9.50 339.89 28.90 4/4/2010 9.50 339.89 28.90 4/4/2010 9.50 339.89 28.70 4/9/2012 2.87 339.49 28.72 4/29/2013 2.75 346.64 28.65 9/30/2013 9.79 Obs. NAPL 339.60 28.75							
RW-6 349.39 9/29/2006 15.28 334.11 29.00 12/18/2006 9.50 343.80 3							
4/4/2016 NM NM NM NM NM 10/24/2016 4.03 343.68 33.44 4/24/2017 NM NM NM NM NM 345.41 10/23/2017 6.03 339.38 33.41 4/23/2018 NM NM NM NM NM RW-6 349.39 9/29/2006 15.28 334.11 29.00 12/18/2006 9.50 339.89 29.00 3/19/2007 3.20 28.32 346.19 29.00 10/10/2008 5.59 343.80 5/22/2009 NM NM NM NM 11/2/2009 2.56 346.83 28.82 4/28/2010 1.50 347.89 28.74 10/4/2010 9.50 339.89 28.90 4/4/2011 6.69 342.70 28.72 10/10/2011 9.90 339.49 28.72 4/9/2012 2.87 <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>							
RW-6 349.39 9/29/2006 15.28 334.11 29.00 12/18/2006 9.50 339.89 29.00 3/19/2007 3.20 28.32 346.19 29.00 10/10/2008 5.59 343.80 346.83 28.82 4/28/2010 1.50 347.89 28.74 10/4/2010 9.50 339.89 28.70 10/10/2011 9.90 339.89 28.70 28.72 4/9/2012 2.87 339.49 28.75 10/15/2012 10.70 338.69 28.67 4/29/2013 2.75 346.64 28.65 9/30/2013 9.79 Obs. NAPL 339.60 28.75							
RW-6 349.39 9/29/2006 15.28 334.11 29.00 12/18/2006 9.50 339.89 29.00 3/19/2007 3.20 28.32 346.19 29.00 10/10/2008 5.59 343.80 346.83 28.82 4/28/2010 1.50 347.89 28.74 10/4/2010 9.50 339.89 28.70 10/10/2011 9.90 339.89 28.90 4/4/2011 6.69 342.70 28.72 10/10/2011 9.90 339.49 28.72 4/9/2012 2.87 346.52 28.67 4/29/2013 2.75 346.64 28.65 9/30/2013 9.79 Obs. NAPL 339.60 28.75							
RW-6 349.39 9/29/2006 15.28 334.11 29.00 12/18/2006 9.50 339.89 29.00 3/19/2007 3.20 28.32 346.19 29.00 10/10/2008 5.59 343.80 344.83 28.82 4/28/2010 1.50 347.89 28.74 10/4/2011 6.69 342.70 28.72 10/10/2011 9.90 339.49 28.72 4/9/2012 2.87 346.52 28.67 4/29/2013 2.75 346.64 28.65 9/30/2013 9.79 Obs. NAPL 339.60 28.75							
RW-6 349.39 9/29/2006 15.28 334.11 29.00 12/18/2006 9.50 339.89 29.00 3/19/2007 3.20 28.32 346.19 29.00 10/10/2008 5.59 343.80 5/22/2009 NM NM NM NM NM 11/2/2009 2.56 346.83 28.82 4/28/2010 1.50 347.89 28.74 10/4/2011 6.69 342.70 28.72 10/10/2011 9.90 339.49 28.72 4/9/2012 2.87 346.52 28.67 10/15/2012 10.70 338.69 28.67 4/29/2013 2.75 346.64 28.65 9/30/2013 9.79 Obs. NAPL 339.60 28.75							
RW-6 349.39 9/29/2006 15.28 334.11 29.00 12/18/2006 9.50 339.89 29.00 3/19/2007 3.20 28.32 346.19 29.00 10/10/2008 5.59 343.80 5/22/2009 NM NM NM NM 11/2/2009 2.56 346.83 28.82 4/28/2010 1.50 347.89 28.74 10/4/2010 9.50 339.89 28.90 4/4/2011 6.69 342.70 28.72 10/10/2011 9.90 339.49 28.72 4/9/2012 2.87 346.52 28.67 10/15/2012 10.70 338.69 28.67 4/29/2013 2.75 346.64 28.65 9/30/2013 9.79 Obs. NAPL 339.60 28.75		345.41					
12/18/2006 9.50 339.89 29.00 3/19/2007 3.20 28.32 346.19 29.00 10/10/2008 5.59 343.80 5/22/2009 NM NM NM NM 11/2/2009 2.56 346.83 28.82 4/28/2010 1.50 347.89 28.74 10/4/2010 9.50 339.89 28.90 4/4/2011 6.69 342.70 28.72 10/10/2011 9.90 339.49 28.72 4/9/2012 2.87 346.52 28.67 10/15/2012 10.70 338.69 28.67 4/29/2013 2.75 346.64 28.65 9/30/2013 9.79 Obs. NAPL 339.60 28.75			4/23/2018	NM	NM	NM	NM
3/19/2007 3.20 28.32 346.19 29.00 10/10/2008 5.59 343.80 5/22/2009 NM NM NM NM 11/2/2009 2.56 346.83 28.82 4/28/2010 1.50 347.89 28.74 10/4/2010 9.50 339.89 28.90 4/4/2011 6.69 342.70 28.72 10/10/2011 9.90 339.49 28.72 4/9/2012 2.87 346.52 28.67 10/15/2012 10.70 338.69 28.67 4/29/2013 2.75 346.64 28.65 9/30/2013 9.79 Obs. NAPL 339.60 28.75	RW-6	349.39	9/29/2006	15.28		334.11	29.00
3/19/2007 3.20 28.32 346.19 29.00 10/10/2008 5.59 343.80 5/22/2009 NM NM NM NM 11/2/2009 2.56 346.83 28.82 4/28/2010 1.50 347.89 28.74 10/4/2010 9.50 339.89 28.90 4/4/2011 6.69 342.70 28.72 10/10/2011 9.90 339.49 28.72 4/9/2012 2.87 346.52 28.67 10/15/2012 10.70 338.69 28.67 4/29/2013 2.75 346.64 28.65 9/30/2013 9.79 Obs. NAPL 339.60 28.75			12/18/2006	9.50		339.89	29.00
5/22/2009 NM NM NM NM 11/2/2009 2.56 346.83 28.82 4/28/2010 1.50 347.89 28.74 10/4/2010 9.50 339.89 28.90 4/4/2011 6.69 342.70 28.72 10/10/2011 9.90 339.49 28.72 4/9/2012 2.87 346.52 28.67 10/15/2012 10.70 338.69 28.67 4/29/2013 2.75 346.64 28.65 9/30/2013 9.79 Obs. NAPL 339.60 28.75					28.32		
11/2/2009 2.56 346.83 28.82 4/28/2010 1.50 347.89 28.74 10/4/2010 9.50 339.89 28.90 4/4/2011 6.69 342.70 28.72 10/10/2011 9.90 339.49 28.72 4/9/2012 2.87 346.52 28.67 10/15/2012 10.70 338.69 28.67 4/29/2013 2.75 346.64 28.65 9/30/2013 9.79 Obs. NAPL 339.60 28.75			10/10/2008	5.59		343.80	
4/28/2010 1.50 347.89 28.74 10/4/2010 9.50 339.89 28.90 4/4/2011 6.69 342.70 28.72 10/10/2011 9.90 339.49 28.72 4/9/2012 2.87 346.52 28.67 10/15/2012 10.70 338.69 28.67 4/29/2013 2.75 346.64 28.65 9/30/2013 9.79 Obs. NAPL 339.60 28.75			5/22/2009	NM	NM	NM	NM
10/4/2010 9.50 339.89 28.90 4/4/2011 6.69 342.70 28.72 10/10/2011 9.90 339.49 28.72 4/9/2012 2.87 346.52 28.67 10/15/2012 10.70 338.69 28.67 4/29/2013 2.75 346.64 28.65 9/30/2013 9.79 Obs. NAPL 339.60 28.75			11/2/2009	2.56		346.83	28.82
4/4/2011 6.69 342.70 28.72 10/10/2011 9.90 339.49 28.72 4/9/2012 2.87 346.52 28.67 10/15/2012 10.70 338.69 28.67 4/29/2013 2.75 346.64 28.65 9/30/2013 9.79 Obs. NAPL 339.60 28.75			4/28/2010	1.50		347.89	28.74
10/10/2011 9.90 339.49 28.72 4/9/2012 2.87 346.52 28.67 10/15/2012 10.70 338.69 28.67 4/29/2013 2.75 346.64 28.65 9/30/2013 9.79 Obs. NAPL 339.60 28.75			10/4/2010	9.50		339.89	28.90
4/9/2012 2.87 346.52 28.67 10/15/2012 10.70 338.69 28.67 4/29/2013 2.75 346.64 28.65 9/30/2013 9.79 Obs. NAPL 339.60 28.75			4/4/2011	6.69		342.70	28.72
10/15/2012 10.70 338.69 28.67 4/29/2013 2.75 346.64 28.65 9/30/2013 9.79 Obs. NAPL 339.60 28.75			10/10/2011	9.90		339.49	28.72
4/29/2013 2.75 346.64 28.65 9/30/2013 9.79 Obs. NAPL 339.60 28.75			4/9/2012	2.87		346.52	28.67
9/30/2013 9.79 Obs. NAPL 339.60 28.75			10/15/2012	10.70		338.69	28.67
			4/29/2013	2.75		346.64	28.65
4/21/2014 2.25 Obs. NAPL 347.14 NM			9/30/2013	9.79	Obs. NAPL	339.60	28.75
			4/21/2014	2.25	Obs. NAPL	347.14	NM
10/6/2014 6.30 343.09 28.70			10/6/2014	6.30		343.09	28.70
4/13/2015 3.50 345.89 28.70			4/13/2015	3.50		345.89	28.70
11/10/2015 6.99 342.40 28.94			11/10/2015	6.99		342.40	28.94
4/4/2016 1.23 348.16 28.90			4/4/2016	1.23		348.16	28.90
							28.89
4/24/2017 NM NM NM NM					NM		
347.17 10/23/2017 7.41 Obs. NAPL 339.76 28.88		347 17		-			
4/23/2018 NM NM NM NM		547.17					

Table D.1 Historical Water Level and NAPL Data Table, Old Midland Products Superfund Site.

	Casing		Depth to	Depth to	Groundwater	Total Depth
Well ID	Elevation (ft) ¹	Date	Water (ft)	NAPL (ft)	Elevation	(ft)
WCH ID	Elevation (It)	Date	water (it)	IVAI L (It)	Lievation	(11)
DW 7	210 76	9/29/2006	2.56		346.20	20 00
RW-7	348.76	12/18/2006	2.56 8.70		340.20	28.80 28.80
		3/19/2007	1.40	25.68	340.06	28.80
		10/8/2008	3.87	23.08	347.30	20.00
		5/22/2009	NM		NM	NM
		11/2/2009	0.10		348.66	27.45
		4/28/2010	0.10		348.15	26.91
		10/4/2010	7.38		341.38	26.80
		4/4/2011	4.30		344.46	26.70
		10/10/2011	7.40		341.36	26.79
		4/9/2012	0.40		348.36	26.93
		10/15/2012	9.00		339.76	26.90
		4/29/2013	0.60		348.16	26.90
		9/30/2013	7.38		341.38	26.70
		4/21/2014	0.00		348.76	26.80
		10/6/2014	4.10		344.66	26.75
		4/13/2015	0.68		348.08	26.91
		11/10/2015	4.82		343.94	27.76
		4/4/2016	NM	NM	NM	NM
		10/24/2016	4.18	Obs. NAPL	344.58	26.77
		4/24/2017	NM	NM	NM	NM
	347.22	10/23/2017	5.02	Obs. NAPL	342.20	26.63
		4/23/2018	NM	NM	NM	NM
RW-8	349.40	9/29/2006	18.15		331.25	28.80
		12/18/2006	8.60		340.80	28.80
		3/19/2007	1.30	28.11	348.10	28.80
		10/8/2008	3.80		345.60	
		5/22/2009	NM	NM	NM	NM
		11/2/2009	0.00		349.40	28.85
		4/28/2010	0.46		348.94	28.38
		10/4/2010	7.38		342.02	28.25
		4/4/2011	4.25		345.15	28.32
		10/10/2011	7.42		341.98	28.30
		4/9/2012	0.50		348.90	28.37
		10/15/2012	8.90		340.50	28.40
		4/29/2013	0.85	OL NADI	348.55	28.45
		9/30/2013	7.32	Obs. NAPL	342.08	28.20
		4/21/2014	0.00 4.05		349.40 345.35	28.30
		10/6/2014 11/10/2015	4.05 4.86		345.35 344.54	28.50
			4.86 NM	NM		28.43 NM
		4/4/2016 10/24/2016	4.10	Obs. NAPL	NM 345.30	NM 28.42
		4/24/2017	4.10 NM	NM	343.30 NM	26.42 NM
	347.13	10/23/2017	5.01	Obs. NAPL	342.12	28.33
	547.13	4/23/2017	NM	NM	NM	NM

Table D.1 Historical Water Level and NAPL Data Table, Old Midland Products Superfund Site.

Well ID	Casing Elevation (ft) ¹	Date	Depth to Water (ft)	Depth to NAPL (ft)	Groundwater Elevation	Total Depth (ft)
) W 1 4 G	261.40	0 /00 /000 6	0.70		252.50	10.50
MW-1S	361.49	9/29/2006	8.70		352.79	19.50
		12/18/2006	5.06		356.43	19.50
		3/19/2007	6.36		355.13	19.50
		10/1/2008	4.85		356.64	19.17
		5/18/2009	4.45		357.04	19.15 19.19
		11/2/2009 4/28/2010	4.59 5.21		356.90 356.28	19.19
		10/4/2010	12.97		348.52	19.13
		4/4/2010	4.93		346.52 356.56	19.12
		10/10/2011	13.27		348.22	19.14
		4/9/2012	5.30		356.19	19.17
		10/15/2012	8.23		353.26	19.17
		4/29/2013	4.85		356.64	19.10
		9/30/2013	11.05		350.44	19.20
		4/21/2014	5.17		356.32	19.19
		10/6/2014	7.56		353.93	19.16
		4/13/2015	5.49		356.00	19.18
		11/10/2015	5.94	NM	355.55	19.14
		4/4/2016	5.05		356.44	19.16
		10/24/2016	9.10		352.39	19.16
		4/24/2017	4.39		357.10	19.17
	359.13	10/23/2017	10.56		348.57	19.15
		4/23/2018	4.75	NM	354.38	19.15
MW-1D	361.06	9/29/2006	7.84		353.22	44.30
		12/18/2006	4.27		356.79	44.30
		3/19/2007	5.35		355.71	44.30
		9/30/2008	5.65		355.41	44.00
		5/18/2009	3.36		357.70	43.96
		11/2/2009	3.49		357.57	44.05
		4/28/2010	4.19		356.87	44.00
		10/4/2010	12.33		348.73	43.95
		4/4/2011	4.37		356.69	44.00
		10/10/2011	12.69		348.37	44.15
		4/9/2012	4.48		356.58	44.05
		10/15/2012	7.52		353.54	44.02
		4/29/2013	4.25		356.81	43.90
		9/30/2013	10.71		350.35	44.00
		4/21/2014	4.17		356.89	44.05
		10/6/2014	7.13		353.93	44.00
		4/13/2015	4.54		356.52	43.99
		11/10/2015	5.65	NM	355.41	43.96
		4/4/2016	4.20		356.86	43.96
		10/24/2016	8.56		352.50	44.00
	0.50	4/24/2017	3.65		357.41	44.00
	358.66	10/23/2017	9.92		348.74	43.98
		4/23/2018	3.89	NM	354.77	44.00

Table D.1 Historical Water Level and NAPL Data Table, Old Midland Products Superfund Site.

Well ID	Casing Elevation (ft) ¹	Date	Depth to Water (ft)	Depth to NAPL (ft)	Groundwater Elevation	Total Depth (ft)
MW-3S	353.43	9/29/2006	16.55		336.88	24.30
W W - 33	333.43	12/18/2006	13.90		339.53	24.30
		3/19/2007	8.01		345.42	24.30
		10/22/2008	10.45		342.98	24.30
		5/20/2009	5.38		348.05	24.09
		11/2/2009	7.82		345.61	24.12
		4/28/2010	5.90		347.53	24.10
		10/4/2010	15.25		338.18	24.05
		4/4/2011	11.23		342.20	24.09
		10/10/2011	15.64		337.79	24.10
		4/9/2012	7.73		345.70	24.12
		10/15/2012	15.70		337.73	24.12
		4/29/2013	8.50		344.93	24.15
		9/30/2013	15.54		337.89	24.11
		4/21/2014	7.35		346.08	24.11
		10/6/2014	11.67		341.76	24.09
		4/13/2015	5.66		347.77	24.15
		11/9/2015	12.14	NM	341.29	24.10
		4/4/2016	6.03		347.40	24.10
		10/24/2016	12.35		341.08	24.10
		4/24/2017	5.75		347.68	24.11
	351.03	10/23/2017	12.81		338.22	24.10
		4/23/2018	6.38		344.65	24.11
MW-3D	352.83	9/29/2006	19.50		333.33	38.75
		12/18/2006	12.37	38.10	340.46	38.75
		3/19/2007	5.70		347.13	38.75
		10/22/2008	8.11		344.72	
		5/20/2009	3.50		349.33	38.53
		11/2/2009	4.82		348.01	38.94
		4/28/2010	4.35		348.48	38.57
		10/4/2010	12.00		340.83	38.53
		4/4/2011	8.70	38.05	344.13	38.55
		10/10/2011	12.18		340.65	38.61
		4/9/2012	5.15		347.68	38.59
		10/15/2012	13.19		339.64	38.55
		4/29/2013	5.40		347.43	38.55
		9/30/2013	12.18	12.19/37.95	340.65	38.60
		4/21/2014	4.55	38.00	348.28	38.55
		10/6/2014	8.72	38.11	344.11	38.68
		4/13/2015	3.84	38.40	348.99	38.60
		11/9/2015 4/4/2016	9.41 4.05	Obs. NAPL Obs. NAPL	343.42 348.78	38.53 38.49
		10/24/2016	4.05 8.98	38.50		
		4/24/2016	8.98 3.70	Obs. NAPL	343.85 349.13	38.55 38.55
	350.43	10/23/2017	9.75	38.55	349.13	38.65
	330.43	4/23/2017	4.14	Obs. NAPL	346.29	38.55

Table D.1 Historical Water Level and NAPL Data Table, Old Midland Products Superfund Site.

Well ID	Casing Elevation (ft) ¹	Date	Depth to Water (ft)	Depth to NAPL (ft)	Groundwater Elevation	Total Depth (ft)
MW-5S	344.34	9/29/2006	10.40		333.94	20.50
		12/18/2006	8.25		336.09	20.50
		3/19/2007	5.60		338.74	20.50
		9/25/2008	7.84		336.50	20.50
		5/26/2009	3.61		340.73	20.49
		11/2/2009	6.52		337.82	20.60
		4/28/2010	4.16		340.18	20.52
		10/4/2010	10.70		333.64	20.45
		4/4/2011	7.79		336.55	20.50
		10/10/2011	11.78		332.56	20.51
		4/9/2012	5.55		338.79	20.52
		10/15/2012	11.63		332.71	20.50
		4/29/2013	6.20		338.14	20.50
		9/30/2013	12.34		332.00	20.50
		4/21/2014	5.53		338.81	20.52
		10/6/2014	8.88		335.46	20.50
		4/13/2015	3.45		340.89	20.45
		11/10/2015	9.24	NM	335.10	20.48
		4/4/2016	4.01		340.33	20.50
		10/24/2016	9.22		335.12	20.03
		4/24/2017	4.28		340.06	21.29
	341.95	10/23/2017	9.80		332.15	20.62
		4/23/2018	4.62		337.33	20.50

Table D.1 Historical Water Level and NAPL Data Table, Old Midland Products Superfund Site.

Well ID	Casing Elevation (ft) ¹	Date	Depth to Water (ft)	Depth to NAPL (ft)	Groundwater Elevation	Total Depth (ft)
MW-8S	349.60	9/29/2006	13.76		335.84	22.35
		12/18/2006	10.61		338.99	22.35
		3/19/2007	7.20		342.40	22.35
		9/26/2008	9.55		340.05	22.35
		5/20/2009	4.41		345.19	22.40
		11/2/2009	7.28		342.32	22.39
		4/28/2010	5.13		344.47	22.35
		10/4/2010	12.96		336.64	22.37
		4/4/2011	9.73		339.87	22.37
		10/10/2011	13.87		335.73	22.16
		4/9/2012	6.70		342.90	22.42
		10/15/2012	13.72		335.88	22.39
		4/29/2013	8.90		340.70	22.39
		9/30/2013	13.99		335.61	22.39
		4/21/2014	6.10		343.50	22.42
		10/6/2014	10.18		339.42	22.39
		4/13/2015	4.47		345.13	22.39
		11/10/2015	10.37	NM	339.23	22.35
		4/4/2016	4.87		344.73	22.38
		10/24/2016	10.50		339.10	22.38
	247.22	4/24/2017	4.72		344.88	22.40
	347.22	10/23/2017	11.07		336.15	22.40
		4/23/2018	5.31		341.91	22.42
MW-8D	350.87	9/29/2006	15.15		335.72	44.40
		12/18/2006	12.14		338.73	44.40
		3/19/2007	8.80		342.07	44.40
		9/26/2008	11.12		339.75	44.40
		5/21/2009	6.00		344.87	44.39
		11/2/2009	9.03		341.84	44.34
		4/28/2010	6.56		344.31	44.40
		10/4/2010	14.32		336.55	44.40
		4/4/2011	11.22		339.65	44.32
		10/10/2011	15.22		335.65	44.22
		4/9/2012	8.25		342.62	44.28
		10/15/2012	15.08		335.79	44.32
		4/29/2013	7.30		343.57	44.32
		9/30/2013	15.32		335.55	44.37
		4/21/2014	7.70		343.17	44.38
		10/6/2014	11.52		339.35	44.32
		4/13/2015	5.86		345.01	44.32
		11/10/2015	11.79	NM	339.08	44.32
		4/4/2016	6.30		344.57	44.32
		10/24/2016	11.80		339.07	44.30
		4/24/2017	6.32		344.55	44.37
	348.48	10/23/2017	12.32		336.16	44.25
		4/23/2018	6.76		341.72	44.28

Table D.1 Historical Water Level and NAPL Data Table, Old Midland Products Superfund Site.

Well ID	Casing Elevation (ft) ¹	Date	Depth to Water (ft)	Depth to NAPL (ft)	Groundwater Elevation	Total Depth (ft)
MW-9S	350.21	9/29/2006	17.19		333.02	20.30
W W-93	330.21	12/18/2006	17.19		338.21	20.30
		3/19/2007	6.75		343.46	20.30
		10/14/2008	9.75		340.46	20.45
		5/26/2009	3.30		346.91	19.60
		11/2/2009	6.22		343.99	19.15
		4/28/2010	4.26	4.25	345.95	19.44
		10/4/2010	14.41		335.80	19.80
		4/4/2011	9.88		340.33	19.37
		10/10/2011	15.05		335.16	19.39
		4/9/2012	7.01		343.20	19.50
		10/15/2012	14.56		335.65	19.59
		4/29/2013	7.45		342.76	19.60
		9/30/2013	14.90		335.31	19.65
		4/21/2014	6.64		343.57	19.86
		10/6/2014	11.43		338.78	20.30
		4/13/2015	4.32		345.89	20.02
		11/10/2015	11.74	NM	338.47	19.94
		4/4/2016	4.86		345.35	18.99
		10/24/2016	12.96		337.25	18.65
		4/24/2017	4.63		345.58	20.36
	348.52	10/23/2017	12.53		335.99	20.30
		4/23/2018	5.32		343.20	20.36
MW-9D	350.85	9/29/2006	17.28		333.57	42.90
		12/18/2006	11.55		339.30	42.90
		3/19/2007	5.45		345.40	42.90
		10/14/2008	7.85		343.00	42.90
		5/22/2009	3.00		347.85	42.89
		11/2/2009	4.70		346.15	42.90
		4/28/2010	3.62	3.61	347.23	43.15
		10/4/2010	11.73		339.12	42.82
		4/4/2011	8.22		342.63	42.88
		10/10/2011	11.97		338.88	42.90
		4/9/2012	4.92		345.93	42.92
		10/15/2012	12.61		338.24	42.87
		4/29/2013	5.20		345.65	42.85
		9/30/2013	11.93		338.92	43.00
		4/21/2014	4.36		346.49	42.91
		10/6/2014	8.35		342.50	42.88
		4/13/2015	3.19	NIM	347.66	42.89
		11/10/2015	8.95	NM	341.90	42.82 42.90
		4/4/2016 10/24/2016	3.52		347.33	42.90 42.90
		4/24/2016	8.68 3.38		342.17 347.47	42.90 42.90
	349.18	10/23/2017	9.40		347.47	42.90
	349.10	4/23/2017	3.75		345.43	42.84

Table D.1 Historical Water Level and NAPL Data Table, Old Midland Products Superfund Site.

Well ID	Casing Elevation (ft) ¹	Date	Depth to Water (ft)	Depth to NAPL (ft)	Groundwater Elevation	Total Depth (ft)
MW 100	245 20	0/20/2006	0.24		226.15	20.40
MW-10S	345.39	9/29/2006 12/18/2006	9.24 7.25		336.15 338.14	20.40 20.40
		3/19/2007	3.95		341.44	20.40
		10/6/2008	6.22		339.17	20.40
		5/21/2009	0.22		344.69	20.36
		11/2/2009	4.54		340.85	20.50
		4/28/2010	0.97		344.42	20.47
		10/4/2010	9.02		336.37	20.48
		4/4/2011	6.39		339.00	20.38
		10/10/2011	10.00		335.39	20.38
		4/9/2012	3.55		341.84	20.39
		10/15/2012	9.80		335.59	20.37
		4/29/2013	4.25		341.14	20.37
		9/30/2013	10.09		335.30	20.40
		4/21/2014	3.04		342.35	20.39
		10/6/2014	6.28		339.11	20.35
		4/13/2015	0.43		344.96	20.49
		11/10/2015	6.67		338.72	20.34
		4/4/2016	1.06		344.33	20.37
		10/24/2016	6.49		338.90	20.36
		4/24/2017	1.15		344.24	20.36
	343.02	10/23/2017	7.01		336.01	20.35
		4/23/2018	1.70		341.32	20.36
MW-10D	345.97	9/29/2006	10.31		335.66	37.45
		12/18/2006	7.80		338.17	37.45
		3/19/2007	4.40		341.57	37.45
		10/6/2008	6.64		339.33	37.40
		5/21/2009	1.02		344.95	37.40
		11/2/2009	4.93		341.04	37.43
		4/28/2010	1.37		344.60	37.35
		10/4/2010	9.50		336.47	37.37
		4/4/2011	6.86		339.11	37.32
		10/10/2011	10.46		335.51	37.36
		4/9/2012	4.03		341.94	37.36
		10/15/2012	10.32		335.65	37.33
		4/29/2013	4.70		341.27	37.33
		9/30/2013	10.53		335.44	37.34
		4/21/2014	3.51		342.46	37.38
		10/6/2014	6.71		339.26	37.35
		4/13/2015	0.81		345.16	37.34
		11/10/2015	7.15		338.82	37.29
		4/4/2016	1.46		344.51	37.35
		10/24/2016	6.91		339.06	37.32
	246.55	4/24/2017	1.54		344.43	37.37
	343.57	10/23/2017	7.39		336.18	37.34
		4/23/2018	2.11		341.46	37.36

Table D.1 Historical Water Level and NAPL Data Table, Old Midland Products Superfund Site.

Well ID	Casing Elevation (ft) ¹	Date	Depth to Water (ft)	Depth to NAPL (ft)	Groundwater Elevation	Total Depth (ft)
MW-12S	353.32	9/29/2006	2.10		351.22	21.00
		12/18/2006	0.00		353.32	21.00
		3/19/2007	-0.30		353.62	21.00
		10/22/2008	NM	NM	NM	NM
		5/21/2009	NM	NM	NM	NM
		11/2/2009	0.00		353.32	19.19
		4/28/2010	NM	NM	NM	NM
		10/4/2010	5.70		347.62	21.05
		4/4/2011	NM	NM	NM	NM
		10/10/2011	6.45		346.87	21.00
		4/9/2012	NM	NM	NM	NM
		10/15/2012	2.71		350.61	21.05
		4/29/2013	NM	NM	NM	NM
		9/30/2013	4.08		349.24	20.91
		4/21/2014	NM	NM	NM	NM
		10/6/2014	0.60		352.72	20.94
		11/10/2015	0.57	NM	352.75	20.97
		4/4/2016	-0.21		353.53	21.06
		10/24/2016	2.72		350.60	NM
		4/24/2017	Above TOC			NM
	354.92	10/23/2017	7.83		347.09	24.89
		4/23/2018	2.16	NM	352.76	24.88

Table D.1 Historical Water Level and NAPL Data Table, Old Midland Products Superfund Site.

Well ID	Casing Elevation (ft) ¹	Date	Depth to Water (ft)	Depth to NAPL (ft)	Groundwater Elevation	Total Depth (ft)
MW-16S	356.09	9/29/2006	18.64		337.45	30.00
W - 103	330.09	12/18/2006	14.09		342.00	30.00
		3/19/2007	8.40		347.69	30.00
		9/30/2008	11.11		344.98	30.45
		5/19/2009	5.47		350.62	30.43
		11/2/2009	6.91		349.18	30.44
		4/28/2010	7.43		348.66	30.45
		10/4/2010	14.41		341.68	30.40
		4/4/2011	11.97		344.12	30.43
		10/10/2011	14.59		341.50	30.43
		4/9/2012	7.34		348.75	30.48
		10/15/2012	16.60		339.49	30.42
		4/29/2013	7.40		348.69	30.45
		9/30/2013	14.75		341.34	30.50
		4/21/2014	6.27		349.82	30.40
		10/6/2014	11.16		344.93	30.41
		4/13/2015	6.44		349.65	30.50
		11/10/2015	12.15		343.94	30.43
		4/4/2016	6.48		349.61	30.44
		10/24/2016	11.08		345.01	30.45
		4/24/2017	5.53		350.56	30.39
	353.71	10/23/2017	12.05		341.66	30.03
		4/23/2018	6.41		347.30	30.43
MW-16D	355.69	9/29/2006	19.60		336.09	43.20
		12/18/2006	15.24		340.45	43.20
		3/19/2007	9.75		345.94	43.20
		9/30/2008	12.16		343.53	42.20
		5/19/2009	6.62		349.07	42.20
		11/2/2009	8.72		346.97	42.03
		4/28/2010	7.93		347.76	42.02
		10/4/2010	15.46		340.23	42.18
		4/4/2011	12.57		343.12	42.19
		10/10/2011	15.81		339.88	42.19
		4/9/2012	8.78		346.91	42.19
		10/15/2012	17.06		338.63	42.20
		4/29/2013	9.05		346.64	42.25
		9/30/2013	15.93		339.76	42.10
		4/21/2014	7.97		347.72	42.20
		10/6/2014	12.26		343.43	42.00
		4/13/2015	7.08		348.61	42.20
		11/10/2015	13.02		342.67	42.21
		4/4/2016 10/24/2016	7.36		348.33	42.20
		4/24/2016	12.37 7.01		343.32 348.68	42.15 42.14
	353.32	10/23/2017	13.20		348.68	42.14
	333.34	4/23/2017	7.53		340.12	42.11

Table D.1 Historical Water Level and NAPL Data Table, Old Midland Products Superfund Site.

Well ID	Casing Elevation (ft) ¹	Date	Depth to Water (ft)	Depth to NAPL (ft)	Groundwater Elevation	Total Depth (ft)
MW-17S	353.65	9/29/2006	17.48		336.17	25.50
		12/18/2006	8.95		344.70	25.50
		3/19/2007	5.55		348.10	25.50
		9/25/2008	6.70		346.95	25.50
		5/20/2009	3.21		350.44	25.50
		11/2/2009	3.64		350.01	25.55
		4/28/2010	3.70		349.95	25.50
		10/4/2010	10.79		342.86	25.45
		4/4/2011	7.02		346.63	25.50
		10/10/2011	10.90		342.75	25.49
		4/9/2012	3.94		349.71	25.51
		10/15/2012	11.14		342.51	25.51
		4/29/2013	3.95		349.70	25.50
		9/30/2013	10.60		343.05	25.50
		4/21/2014	3.46		350.19	25.53
		10/6/2014	7.27	7.26	346.38	25.50
		4/13/2015	3.32		350.33	25.55
		11/9/2015	7.77	NM	345.88	25.51
		4/4/2016	3.27		350.38	25.50
		10/24/2016	7.53		346.12	25.49
		4/24/2017	2.79		350.86	25.51
	351.27	10/23/2017	8.56		342.71	25.50
		4/23/2018	3.24		348.03	25.50

Table D.1 Historical Water Level and NAPL Data Table, Old Midland Products Superfund Site.

Well ID	Casing Elevation (ft) ¹	Date	Depth to Water (ft)	Depth to NAPL (ft)	Groundwater Elevation	Total Depth (ft)
MW-18S	352.39	9/29/2006	14.65		337.74	26.55
WI W-105	332.39	12/18/2006	9.53		342.86	26.55
		3/19/2007	5.68		346.71	26.55
		10/22/2008	7.14		345.25	
		5/21/2009	3.98		348.41	26.50
		11/2/2009	4.32		348.07	26.46
		4/28/2010	3.22		349.17	26.47
		10/4/2010	11.68		340.71	26.45
		4/4/2011	7.07		345.32	26.50
		10/10/2011	12.09		340.30	26.49
		4/9/2012	4.32		348.07	26.49
		10/15/2012	10.85		341.54	26.50
		4/29/2013	4.55		347.84	26.50
		9/30/2013	11.39		341.00	26.50
		4/21/2014	3.91	3.92	348.48	26.53
		10/6/2014	7.96		344.43	26.50
		4/13/2015	2.94		349.45	26.47
		11/10/2015	8.19	NM	344.20	26.44
		4/4/2016	3.14		349.25	26.51
		10/24/2016	8.64		343.75	26.47
	349.88	4/24/2017	3.10 9.51		349.29	26.53
	349.88	10/23/2017 4/23/2018	9.51 3.42		340.37 346.46	26.50 26.52
		4/23/2016	3.42		340.40	20.32
MW-18D	352.71	9/29/2006	17.18		335.53	39.60
		12/18/2006	11.82		340.89	39.60
		3/19/2007	7.47		345.24	39.60
		10/1/2008	9.46		343.25	39.60
		5/21/2009	4.41		348.30	39.55
		11/2/2009	6.61		346.10	39.55
		4/28/2010	4.66		348.05	39.51
		10/4/2010	13.30		339.41	39.53
		4/4/2011	9.67		343.04 339.07	39.50
		10/10/2011 4/9/2012	13.64 6.63			39.53 39.50
		10/15/2012	13.76		346.08 338.95	39.50
		4/29/2013	7.25		345.46	39.50
		9/30/2013	13.62		339.09	39.50
		4/21/2014	6.09		346.62	39.49
		10/6/2014	10.06		342.65	39.49
		4/13/2015	4.48		348.23	39.45
		11/10/2015	10.45	NM	342.26	39.46
		4/4/2016	4.86		347.85	39.48
		10/24/2016	10.35		342.36	39.44
		4/24/2017	4.56		348.15	39.50
	350.29	10/23/2017	12.91		337.38	39.56
		4/23/2018	5.21		345.08	39.56

Table D.1 Historical Water Level and NAPL Data Table, Old Midland Products Superfund Site.

Well ID	Casing Elevation (ft) ¹	Date	Depth to Water (ft)	Depth to NAPL (ft)	Groundwater Elevation	Total Depth (ft)
MW-19S	353.13	9/29/2006	18.36		334.77	26.90
W W-195	333.13	12/18/2006	13.63		339.50	26.90
		3/19/2007	8.20		344.93	26.90
		9/29/2008	10.44		342.69	26.86
		5/20/2009	5.11		348.02	26.84
		11/2/2009	7.76		345.37	26.90
		4/28/2010	6.85	6.84	346.28	26.90
		10/4/2010	14.10		339.03	26.80
		4/4/2011	11.17		341.96	26.86
		10/10/2011	14.50		338.63	26.92
		4/9/2012	7.65		345.48	26.89
		10/15/2012	15.17		337.96	26.85
		4/29/2013	8.10		345.03	26.85
		9/30/2013	14.60		338.53	26.89
		4/21/2014	7.14		345.99	26.91
		10/6/2014	10.95		342.18	26.87
		4/13/2015	5.41		347.72	26.95
		11/10/2015	11.63	NM	341.50	26.88
		4/4/2016	5.92		347.21	26.86
		10/24/2016	11.40		341.73	26.88
		4/24/2017	5.71		347.42	26.86
	350.75	10/23/2017	12.01		338.74	26.88
		4/23/2018	6.46		344.29	26.87
MW-19D	353.44	9/29/2006	19.12		334.32	40.10
		12/18/2006	13.27		340.17	40.10
		3/19/2007	7.25		346.19	40.10
		9/29/2008	9.57		343.87	40.10
		5/20/2009	4.69		348.75	40.03
		11/2/2009	6.39		347.05	39.98
		4/28/2010	5.45	5.44	347.99	40.09
		10/4/2010	13.37		340.07	40.00
		4/4/2011	10.11		343.33	40.04
		10/10/2011	13.62		339.82	40.02
		4/9/2012	6.67		346.77	40.05
		10/15/2012	14.58		338.86	40.04
		4/29/2013	7.10		346.34	40.05
		9/30/2013	13.65		339.79	39.99
		4/21/2014	5.98	10.02	347.46	39.99
		10/6/2014	10.04 4.96	10.03	343.40 348.48	40.05 40.05
		4/13/2015 11/10/2015	4.96 10.78	NM	348.48 342.66	40.03
		4/4/2016	5.25	NWI	342.66 348.19	
		10/24/2016	10.33		348.19	40.08 40.06
		4/24/2016	5.14		343.11	40.08
	351.05	10/23/2017	3.14 11.11		348.30	39.90
	331.03	4/23/2018	5.43		345.62	40.04

Table D.1 Historical Water Level and NAPL Data Table, Old Midland Products Superfund Site.

Well ID	Casing Elevation (ft) ¹	Date	Depth to Water (ft)	Depth to NAPL (ft)	Groundwater Elevation	Total Depth (ft)
MW-20S	354.67	9/29/2006	18.55		336.12	31.30
W -205	334.07	12/18/2006	14.08		340.59	31.30
		3/19/2007	8.80		345.87	31.30
		10/22/2008	11.15		343.52	
		5/18/2009	5.54		349.13	31.27
		11/2/2009	7.73		346.94	31.31
		4/28/2010	6.90	6.89	347.77	31.32
		10/4/2010	14.45		340.22	31.30
		4/4/2011	11.56		343.11	31.19
		10/10/2011	14.83		339.84	31.35
		4/9/2012	7.81		346.86	31.35
		10/15/2012	16.08		338.59	31.31
		4/29/2013	8.15		346.52	31.30
		9/30/2013	15.00		339.67	31.35
		4/21/2014	7.04		347.63	31.20
		10/6/2014	11.35		343.32	40.00
		4/13/2015	6.22		348.45	31.21
		11/10/2015	12.16	NM	342.51	31.36
		4/4/2016	6.49		348.18	31.32
		10/24/2016	11.52		343.15	31.30
		4/24/2017	6.16		348.51	31.32
	352.27	10/23/2017	12.33		339.94	31.31
		4/23/2018	6.74		345.53	31.22
MW-20D	354.83	9/29/2006	18.71		336.12	39.10
		12/18/2006	14.37		340.46	39.10
		3/19/2007	8.60		346.23	39.10
		10/22/2008	11.30		343.53	
		5/18/2009	5.70		349.13	39.10
		11/2/2009	7.37		347.46	39.10
		4/28/2010	7.04	7.02	347.79	39.03
		10/4/2010	14.56		340.27	39.15
		4/4/2011	11.73		343.10	39.16
		10/10/2011	14.66		340.17	38.85
		4/9/2012	7.91		346.92	39.16
		10/15/2012	16.20		338.63	39.13
		4/29/2013	8.20		346.63	39.15
		9/30/2013	15.06		339.77	39.50
		4/21/2014	7.12		347.71	38.90
		10/6/2014	11.37		343.46	39.15
		4/13/2015	6.23		348.60	39.23
		11/10/2015	12.15	NM	342.68	39.16
		4/4/2016	6.19		348.64	38.87
		10/24/2016	11.50		343.33	39.13
	252.45	4/24/2017	6.17		348.66	39.19
	352.45	10/23/2017 4/23/2018	12.35 6.66		340.10 345.79	39.15 39.18

Table D.1 Historical Water Level and NAPL Data Table, Old Midland Products Superfund Site.

Well ID	Casing Elevation (ft) ¹	Date	Depth to Water (ft)	Depth to NAPL (ft)	Groundwater Elevation	Total Depth (ft)	
MW-21S	348.76	9/29/2006	14.02		334.74	27.65	
WI W -215	346.70	12/18/2006	10.85		337.91	27.65	
		3/19/2007	7.65		341.11	27.65	
		10/15/2008	9.83		338.93	27.15	
		5/22/2009	3.88		344.88	27.15	
		11/2/2009	8.05		340.71	26.90	
		4/28/2010	4.01		344.75	27.14	
		10/4/2010	12.93		335.83	27.09	
		4/4/2011	10.17		338.59	27.12	
		10/10/2011	13.79		334.97	27.13	
		4/9/2012	7.33		341.43	27.15	
		10/15/2012	13.51		335.25	27.12	
		4/29/2013	8.10		340.66	27.15	
		9/30/2013	13.78		334.98	27.07	
		4/21/2014	6.80		341.96	27.18	
		10/6/2014	9.81		338.95	27.12	
		4/13/2015	3.56		345.20	27.12	
		11/10/2015	10.19	NM	338.57	27.10	
		4/4/2016	4.31		344.45	27.11	
		10/24/2016	10.16		338.60	27.09	
	2.17.0.1	4/24/2017	4.40		344.36	27.17	
	347.04	10/23/2017	10.46		336.58	27.08	
		4/23/2018	5.06		341.98	27.09	
MW-21D	348.61	9/29/2006	13.72		334.89	48.90	
		12/18/2006	11.30		337.31	48.90	
		3/19/2007	6.70		341.91	48.90	
		10/15/2008	8.79		339.82	47.23	
		5/22/2009	3.12		345.49	47.07	
		11/2/2009	6.89		341.72	47.01	
		4/28/2010	3.46		345.15	47.18	
		10/4/2010	12.00		336.61	47.05	
		4/4/2011	9.27		339.34	47.07	
		10/10/2011	12.78		335.83	46.97	
		4/9/2012	6.40		342.21	47.05	
		10/15/2012	12.81		335.80	47.03	
		4/29/2013	7.00		341.61	47.05	
		9/30/2013	12.72		335.89	46.97	
		4/21/2014	5.78		342.83	47.06	
		10/6/2014	8.89 3.11		339.72 345.50	47.05 46.95	
		4/13/2015	3.11 9.62	NM	345.50 338.99	46.95 46.97	
		11/10/2015 4/4/2016		INIVI	338.99 344.73	46.97 47.04	
		10/24/2016	3.88 9.18		339.43	47.04 47.01	
		4/24/2016	9.18 3.95		339.43 344.66	47.01	
	346.95	10/23/2017	9.74		337.21		
	540.75	4/23/2017	4.56		342.39	40.87 46.95	

Table D.1 Historical Water Level and NAPL Data Table, Old Midland Products Superfund Site.

Well ID	Casing Elevation (ft) ¹	Date	Depth to Water (ft)	Depth to NAPL (ft)	Groundwater Elevation	Total Depth (ft)				
MW-22S	352.97	9/29/2006	17.20		335.77	27.12				
		12/18/2006	13.93		339.04	27.12				
		3/19/2007 9/28/2008 5/19/2009 11/2/2009 4/28/2010	9.95		343.02	27.12				
			5/19/2009 11/2/2009	12.30		340.67	27.12			
				11/2/2009 4/28/2010 10/4/2010	11/2/2009 4/28/2010	6.37		346.60	27.10	
						4/28/2010	7.73		345.24	31.31
								7.18 15.53		345.79
					337.44	27.10				
		10/10/2011	12.88 16.26		340.09 336.71	27.11 27.11				
		4/9/2012 10/15/2012 4/29/2013 9/30/2013	10.20		342.57	27.11				
			16.60		336.37	27.14				
			10.45		342.52	27.11				
			16.43		336.54	27.11				
		4/21/2014	8.96		344.01	27.10				
		10/6/2014	12.57		340.40	27.14				
		4/13/2015	6.90		346.07	27.14				
		11/10/2015	1.18	NM	351.79	27.14				
		4/4/2016	7.13		345.84	27.13				
		10/24/2016	12.74		340.23	27.15				
		4/24/2017	6.98		345.99	27.12				
	350.57	10/23/2017	13.27		337.30	27.10				
		4/23/2018	7.78		342.79	27.14				
MW-22D	352.67	9/29/2006	16.30		336.37	43.45				
		12/18/2006	12.32		340.35	43.45				
		3/19/2007	7.10		345.57	43.45				
		9/26/2008	9.59		343.08	42.25				
		5/19/2009	4.29		348.38	42.25				
		11/2/2009	6.25		346.42	42.19				
		4/28/2010	5.21		347.46	42.34				
		10/4/2010	12.85		339.82	42.22				
		4/4/2011	10.04		342.63	42.25				
		10/10/2011	13.35		339.32	42.24				
		4/9/2012	6.36		346.31	42.28				
		10/15/2012	14.50		338.17	42.24				
		4/29/2013	6.90		345.77	42.24				
		9/30/2013	13.60		339.07	42.33				
		4/21/2014	5.75		346.92	42.30				
		10/6/2014	9.97		342.70	42.27				
		4/13/2015	4.75		347.92	42.35				
		11/10/2015	10.74	NM	341.93	42.26				
		4/4/2016	5.07		347.60	42.26				
		10/24/2016	10.22		342.45	42.29				
	250.20	4/24/2017	4.87		347.80	42.25				
	350.28	10/23/2017	11.03		339.25	42.08				
		4/23/2018	5.47		344.81	42.22				

Table D.1 Historical Water Level and NAPL Data Table, Old Midland Products Superfund Site.

Well ID	Casing Elevation (ft) ¹	Date	Depth to Water (ft)	Depth to NAPL (ft)	Groundwater Elevation	Total Depth (ft)
MW-23	351.12	9/29/2006	15.50		335.62	53.85
		12/18/2006	12.78		338.34	53.85
		3/19/2007	9.60		341.52	53.85
		9/25/2008	11.84		339.28	53.85
		5/19/2009	6.63		344.49	52.50
		11/2/2009	10.01		341.11	52.22
		4/28/2010	7.08		344.04	52.23
		10/4/2010	14.80		336.32	52.25
		4/4/2011	11.90		339.22	52.25
		10/10/2011	15.76		335.36	52.60
		4/9/2012	9.06		342.06	52.30
		10/15/2012	15.55		335.57	52.30
		4/29/2013	10.20		340.92	52.30
		9/30/2013	15.87		335.25	52.23
		4/21/2014	8.56		342.56	43.30
		10/6/2014	12.14		338.98	52.21
		4/13/2015	6.42		344.70	52.23
		11/10/2015	12.43	NM	338.69	52.30
		4/4/2016	6.96		344.16	52.22
		10/24/2016	12.39		338.73	52.18
		4/24/2017	7.07		344.05	52.28
	348.75	10/23/2017	12.91		335.84	53.40
		4/23/2018	7.49		341.26	52.30

Table D.1 Historical Water Level and NAPL Data Table, Old Midland Products Superfund Site.

	Casing		Depth to	Depth to	Groundwater	Total Depth		
Well ID	Elevation (ft) ¹	Date	Water (ft)	NAPL (ft)	Elevation	(ft)		
P-2S	362.88	9/29/2006	8.25		354.63	22.85		
		12/18/2006	4.55		358.33	22.85		
		3/19/2007	5.95		356.93	22.85		
		9/23/2008	5.23	NM	357.65	22.85		
		5/19/2009	5/19/2009		3.68	NM	359.20	NM
		11/2/2009	0.00		362.88	15.71		
		4/28/2010	4.41		358.47	22.84		
		10/4/2010	13.96		348.92	22.80		
		4/4/2011	5.10		357.78	22.85		
		10/10/2011	14.33		348.55	22.87		
		4/9/2012	4.90		357.98	22.87		
		10/15/2012	7.51		355.37	22.87		
		4/29/2013	4.60		358.28	22.60		
		9/30/2013	12.65		350.23	15.70		
		4/21/2014	4.41		358.47	22.89		
		10/6/2014	9.56		353.32	15.69		
		4/13/2015	4.93		357.95	22.85		
		11/10/2015	6.56		356.32	22.87		
		4/4/2016	4.58		358.30	22.86		
		10/24/2016	9.75		353.13	22.81		
		4/24/2017	3.70		359.18	22.86		
	360.47	10/23/2017	11.18		349.29	22.85		
		4/23/2018	4.07	NM	356.40	22.84		
P-2D	362.51	9/29/2006	8.25		354.26	35.60		
		12/18/2006	4.68		357.83	35.60		
		3/19/2007	5.95		356.56	35.60		
		9/23/2008	5.29		357.22	35.60		
		5/19/2009	3.79	NM	358.72	NM		
		11/2/2009	3.56		358.95	24.60		
		4/28/2010	4.51		358.00	35.55		
		10/4/2010	15.67		346.84	35.69		
		4/4/2011	5.17		357.34	35.60		
		10/10/2011	13.97		348.54	35.53		
		4/9/2012	4.91		357.60	35.59		
		10/15/2012	8.14		354.37	35.57		
		4/29/2013	4.65		357.86	35.62		
		9/30/2013	12.60		349.91	35.60		
		4/21/2014	4.55		357.96	35.65		
		10/6/2014	8.95		353.56	35.60		
		4/13/2015	4.96		357.55	24.55		
		11/10/2015	6.94	NM	355.57	35.64		
		4/4/2016	4.69		357.82	35.64		
		10/24/2016	9.37		353.14	35.59		
		4/24/2017	3.89		358.62	35.65		
	360.13	10/23/2017	10.91		349.22	35.59		
		4/23/2018	4.26	NM	355.87	35.60		

Table D.1 Historical Water Level and NAPL Data Table, Old Midland Products Superfund Site.

Well ID	Casing Elevation (ft) ¹	Date	Depth to Water (ft)	Depth to NAPL (ft)	Groundwater Elevation	Total Depth (ft)
P-3S	352.25	9/29/2006	11.40		340.85	20.80
P-33	332.23	12/18/2006	4.27		340.83	20.80
		3/19/2007	3.99		348.26	20.80
		9/24/2008	4.26		347.99	20.80
		5/19/2009	1.57	NM	350.68	NM
		11/2/2009	2.10		350.15	20.85
		4/28/2010	2.52		349.73	20.78
		10/4/2010	11.70		340.55	20.78
		4/4/2011	4.26		347.99	19.82
		10/10/2011	12.21		340.04	20.83
		4/9/2012	2.88		349.37	20.84
		10/15/2012	10.25		342.00	20.83
		4/29/2013	2.60		349.65	20.81
		9/30/2013	12.11		340.14	20.80
		4/21/2014	2.31		349.94	20.85
		10/6/2014	8.15		344.10	20.82
		4/13/2015	2.46		349.79	20.81
		11/10/2015	6.88	NM	345.37	20.82
		4/4/2016	2.21		350.04	20.82
		10/24/2016	8.96		343.29	20.82
		4/24/2017	1.68		350.57	20.82
	349.88	10/23/2017	10.31		339.57	20.82
		4/23/2018	1.06	NM	348.82	20.81
P-3D	352.28	9/29/2006	13.85		338.43	44.21
		12/18/2006	8.21		344.07	44.21
		3/19/2007	5.10		347.18	44.21
		9/24/2008	7.00		345.28	44.21
		5/19/2009	2.67	NM	349.61	NM
		11/2/2009	3.96		348.32	42.35
		4/28/2010	4.02		348.26	42.19
		10/4/2010	12.09		340.19	42.19
		4/4/2011	7.36		344.92	42.21
		10/10/2011	12.62		339.66	41.98
		4/9/2012	4.39		347.89	42.26
		10/15/2012	12.88		339.40	42.25
		4/29/2013	4.60		347.68	42.25
		9/30/2013	12.77		339.51	42.15
		4/21/2014	3.72		348.56	42.27
		10/6/2014	8.96		343.32	42.23
		4/13/2015	3.49	 ND 4	348.79	42.22
		11/10/2015	8.90	NM	343.38	42.24
		4/4/2016	3.53		348.75	42.21
		10/24/2016	9.27		343.01	42.21
	250.02	4/24/2017	3.19		349.09	42.23
	350.02	10/23/2017 4/23/2018	10.50 3.70	NM	339.52 346.32	42.22 42.21

Table D.1 Historical Water Level and NAPL Data Table, Old Midland Products Superfund Site.

Well ID	Casing Elevation (ft) ¹	Date	Depth to Water (ft)	Depth to NAPL (ft)	Groundwater Elevation	Total Depth (ft)
D 46	246.55	0/20/2006	12.20		224.25	12.60
P-4S	346.55	9/29/2006	12.30 10.00		334.25	12.60
		12/18/2006 3/19/2007	7.00		336.55	12.60
		10/13/2008	7.00 9.22	NM	339.55 337.33	12.60 12.50
		5/19/2009	3.97	NM	342.58	12.30 NM
		11/2/2009	7.78	INIVI	338.77	12.90
		4/28/2010	4.19		342.36	7.86
		10/4/2010	11.82		342.30	20.00
		4/4/2010	9.31		334.73	20.00
		10/10/2011	12.85		337.24	20.00
		4/9/2012	6.59		339.96	20.03
		10/15/2012	12.61		333.94	20.08
		4/29/2013	7.35		339.20	20.04
		9/30/2013	13.00		333.55	20.03
		4/21/2014	6.07		340.48	20.06
		10/6/2014	9.34		340.48	20.06
		4/13/2015	9.54 3.64		342.91	20.04
		11/10/2015	9.72	NM	342.91	20.02
			9.72 4.24	INIVI		
		4/4/2016			342.31	12.89
		10/24/2016	9.57 4.44		336.98 342.11	20.06
	345.34	4/24/2017			335.30	20.08
	343.34	10/23/2017 4/23/2018	10.04 4.90		333.30 340.44	20.03 20.04
		4/23/2018	4.90		340.44	20.04
P-4D	346.28	9/29/2006	12.05		334.23	24.50
		12/18/2006	9.00		337.28	24.50
		3/19/2007	6.75		339.53	24.50
		10/13/2008	8.98		337.30	24.22
		5/19/2009	3.85	NM	342.43	NM
		11/2/2009	7.45		338.83	28.19
		4/28/2010	4.24		342.04	20.25
		10/4/2010	11.67		334.61	40.15
		4/4/2011	9.05		337.23	40.20
		10/10/2011	12.70		333.58	40.22
		4/9/2012	6.35		339.93	40.28
		10/15/2012	12.43		333.85	40.28
		4/29/2013	7.10		339.18	40.28
		9/30/2013	12.85		333.43	28.10
		4/21/2014	5.98		340.30	40.27
		10/6/2014	9.22		337.06	40.24
		4/13/2015	3.55		342.73	40.21
		11/10/2015	9.58	NM	336.70	40.17
		4/4/2016	4.13		342.15	28.16
		10/24/2016	9.50		336.78	40.20
		4/24/2017	4.33		341.95	40.23
	345.07	10/23/2017	9.07		336.00	40.17
		4/23/2018	4.74		340.33	28.16

Table D.1 Historical Water Level and NAPL Data Table, Old Midland Products Superfund Site.

Well ID	Casing Elevation (ft) ¹	Date	Depth to Water (ft)	Depth to NAPL (ft)	Groundwater Elevation	Total Depth (ft)
D 50	255 20	0/20/2006	2.00		251.42	14.60
P-5S	355.32	9/29/2006 12/18/2006	3.90 0.82		351.42 354.50	14.60 14.60
		3/19/2007	0.62		354.69	14.60
		10/15/2008	1.20		354.12	14.60
		5/19/2009	6.44	NM	348.88	NM
		11/2/2009	0.30	11111	355.02	14.10
		4/28/2010	0.54		354.78	21.25
		10/4/2010	4.59		350.73	21.15
		4/4/2011	0.88		354.44	21.19
		10/10/2011	8.36		346.96	21.29
		4/9/2012	NM	NM	NM	NM
		10/15/2012	4.50		350.82	21.30
		4/29/2013	1.00		354.32	21.30
		9/30/2013	5.97		349.35	14.07
		4/21/2014	0.51		354.81	14.70
		10/6/2014	2.55		352.77	14.56
		4/13/2015	0.50		354.82	14.06
		11/10/2015	2.40	NM	352.92	21.26
		4/4/2016	0.50		354.82	14.06
		10/24/2016	4.66		350.66	NM
		4/24/2017	0.28		355.04	21.29
	352.89	10/23/2017	5.69		347.20	21.26
		4/23/2018	Above TOC			14.08
P-5D	354.73	9/29/2006	3.60		351.13	40.81
		12/18/2006	0.95		353.78	40.81
		3/19/2007	0.92		353.81	40.81
		10/16/2008	1.01		353.72	40.81
		5/19/2009	0.51	NM	354.22	NM
		11/2/2009	0.50		354.23	40.90
		4/28/2010	0.60		354.13	40.77
		10/4/2010	4.22		350.51	40.77
		4/4/2011	0.98		353.75	40.80
		10/10/2011	7.81		346.92	40.81
		4/9/2012	NM	NM	NM	NM
		10/15/2012	4.38		350.35	40.82
		4/29/2013	1.00		353.73	40.85
		9/30/2013	5.97		348.76	40.81
		4/21/2014	0.55		354.18	40.85
		10/6/2014	2.49		352.24	40.81
		4/13/2015	0.40		354.33	40.80
		11/10/2015	2.12	NM	352.61	41.77
		4/4/2016	0.70		354.03	40.82
		10/24/2016	4.08		350.65	NM
	252 25	4/24/2017	Above TOC			40.82
	352.35	10/23/2017	5.30		347.05	40.78
		4/23/2018	Above TOC			40.80

Table D.1 Historical Water Level and NAPL Data Table, Old Midland Products Superfund Site.

Well ID	Casing Elevation (ft) ¹	Date	Depth to Water (ft)	Depth to NAPL (ft)	Groundwater Elevation	Total Depth (ft)
P-6S	350.79	9/29/2006	16.51		334.28	17.70
P-05	330.79	12/18/2006	13.10		334.28	17.70
		3/19/2007	8.05		342.74	17.70
		10/14/2008	11.44		339.35	20.50
		5/19/2009	4.83	NM	345.96	20.30 NM
		11/2/2009	8.43	11111	342.36	13.15
		4/28/2010	4.88		345.91	13.18
		10/4/2010	16.52		334.27	20.05
		4/4/2011	10.88		339.91	20.05
		10/10/2011	16.98		333.81	20.16
		4/9/2012	7.85		342.94	20.16
		10/15/2012	15.68		335.11	20.22
		4/29/2013	4.60		346.19	20.25
		9/30/2013	15.98		334.81	20.10
		4/21/2014	7.44		343.35	21.08
		10/6/2014	12.04		338.75	20.10
		4/13/2015	4.77		346.02	20.13
		11/10/2015	11.83	NM	338.96	20.11
		4/4/2016	5.22		345.57	13.15
		10/24/2016	13.29		337.50	20.02
		4/24/2017	5.18		345.61	20.22
	349.09	10/23/2017	13.28		335.81	20.01
		4/23/2018	5.72		343.37	13.15
P-6D	350.68	9/29/2006	17.35		333.33	30.75
		12/18/2006	10.45		340.23	30.75
		3/19/2007	4.60		346.08	30.75
		10/14/2008	7.17		343.51	30.75
		5/19/2009	2.51	NM	348.17	NM
		11/2/2009	4.03		346.65	39.75
		4/28/2010	3.02		347.66	39.98
		10/4/2010	11.01		339.67	39.63
		4/4/2011	7.43		343.25	39.69
		10/10/2011	10.23		340.45	39.95
		4/9/2012	4.20		346.48	39.73
		10/15/2012	11.73		338.95	39.70
		4/29/2013	8.45		342.23	39.70
		9/30/2013	11.20		339.48	39.65
		4/21/2014	3.76		346.92	39.73
		10/6/2014	7.71		342.97	39.72
		4/13/2015	2.74		347.94	39.71
		11/10/2015	8.29	NM	342.39	39.63
		4/4/2016	3.00		347.68	39.71
		10/24/2016	8.81		341.87	39.66
	240.00	4/24/2017	2.96		347.72	39.72
	349.00	10/23/2017	9.00		340.00	39.70
		4/23/2018	3.31		345.69	39.71

Table D.1 Historical Water Level and NAPL Data Table, Old Midland Products Superfund Site.

	Casing		Depth to	Depth to	Groundwater	Total Depth	
Well ID	Elevation (ft) ¹	Date	Water (ft)	NAPL (ft)	Elevation	(ft)	
	(==================================	Bute		2 12 22 22 (23)		(=5)	
P-7S	354.50	9/29/2006	3.10		351.40	21.00	
1-75	334.30	12/18/2006	0.00		354.50	21.00	
		3/19/2007	0.00		354.50	21.00	
		10/17/2008	0.69		353.81	21.00	
		5/19/2009	>TOC	NM	NM	NM	
		11/2/2009	0.00	14141	354.50	21.00	
		4/28/2010	0.00		354.50	21.00	
		10/4/2010	6.80		347.70	21.00	
		4/4/2011	0.21		354.29	20.96	
		10/10/2011	7.60		346.90	20.94	
		4/9/2012	NM	NM	NM	NM	
		10/15/2012	3.69		350.81	20.95	
		4/29/2013	NM	NM	NM	NM	
		9/30/2013	5.15		349.35	19.23	
		4/21/2014	0.00		354.50	21.03	
		10/6/2014	2.75		351.75	21.00	
		4/13/2015	0.00	NM	354.50	21.00	
		11/10/2015	1.58	NM	352.92	21.36	
		4/4/2016	0.00		354.50	9.03	
		10/24/2016	2.72		351.78	NM	
		4/24/2017	Above TOC			9.04	
	354.46	10/23/2017	7.26		347.20	23.40	
		4/23/2018	1.44	NM	353.02	23.36	
P-8S	354.41	9/29/2006	2.88		351.53	21.40	
		12/18/2006			354.41	21.40	
		3/19/2007	0.00		354.41	21.40	
		10/17/2008	0.33		354.08	21.40	
		5/19/2009	NM	NM	NM	NM	
		11/2/2009	0.00		354.41	21.41	
		4/28/2010	0.00		354.41	21.40	
		10/4/2010	6.70		347.71	21.40	
		4/4/2011	NM		NM	NM	
		10/10/2011	7.59		346.82	21.39	
		4/9/2012	NM	NM	NM	NM	
		10/15/2012	3.46		350.95	21.39	
		4/29/2013	NM	NM	NM	NM	
		9/30/2013	4.92		349.49	21.40	
		4/21/2014	0.00		354.41	21.45	
		10/6/2014	1.66		352.75	21.40	
		4/13/2015	0.00	NM	354.41	21.4	
		11/10/2015	1.41	NM	353.00	21.36	
		4/4/2016	0.00		354.41	21.41	
		10/24/2016	3.79		350.62	NM	
	25/11	4/24/2017	Above TOC			21.42	
	354.14	10/23/2017	6.86		347.28	23.48	
NM = Not mea	<u> </u>	4/23/2018	1.10	NM	353.04	23.55	

NM = Not measured.

⁻⁻⁻ = No product observed or measured.

NAPL = Non-aqueous phase liquid.

Obs. NAPL = NAPL observed during field measurements, but not detected by interface probe.

TOC = Top of casing.

¹ Initial elevations provided by ADEQ with unspecified datum (email communication with Charles Johnson, ADEQ on 10/21/2013). Wells surveyed to NAVD88 November 16, 2017 Harmon Surveying, Inc., survey report.

Historical Analytical Data

Table E.1. Summary of Pentachlorophenol and PAHs in groundwater, Old Midland Products Superfund Site.

								rophenor un		•									
Well Da ID Samj Cleanup Levels (pled	$\begin{array}{c} (T_i^{\beta m}) \\ (T_i^{\beta m}) \end{array}$: (T/s/d (T/s/d) Carbazole*	ουσιου Ε (μg/L) 240	Lagger (Lggμ) Acenaphthene (Lggμ) 370	which the decomposition of the matter of th	Pagη (Lggμ) 940	μg/L) A70	(1/gμ) (1/gμ) 0081	$\begin{array}{c} L_{\rm g} = 1.00 \\	180 (mg/L) Pyrene	μg/L) 0.2 Benzo [a] anthracene	oueskeue (µg/L) 9.2	(Pg Benzo [b] (Pg fluoranthene 0.2	(T/gm) Benzo [k] (T/gm) fluoranthene	$(\mu_{\rm g}^{\rm g})$ Benzo [a] byrene $(\mu_{\rm g}^{\rm g})$	0.5 ga Indeno [1,2,3-cd] (T) pyrene	m Dibenzo [a,h] [7] anthracene *	Derylene (g,h,i] 7 perylene
	4000	4.0	_																
7/21/		<10	<5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
10/26/		<10	<5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
1/18/		<10	<5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
4/19/		<10	<5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
7/24/		<10	<5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
1/23/		<10	<5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
7/30/		<10	<5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
8/26/		<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
3/27/		<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
8/26/		<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
2/24/		<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
8/24/		<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
2/21/		<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
8/22/		<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
2/21/2		<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
8/22/		<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
9/27/		<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
12/18/		<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
3/20/		<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
10/1/2		<2	< 0.2	< 0.12	< 0.12	< 0.04	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.2	< 0.2	< 0.16	< 0.16	< 0.16	< 0.24	< 0.24	< 0.24
5/18/		<2	< 0.2	< 0.12	< 0.12	< 0.04	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.2	< 0.2	< 0.16	< 0.16	< 0.16	< 0.24	< 0.24	< 0.24
11/4/		<2	< 0.2	< 0.12	< 0.12	< 0.04	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.2	< 0.2	< 0.16	< 0.16	< 0.16	< 0.24	< 0.24	< 0.24
4/29/		<2	< 0.2	< 0.12	< 0.12	< 0.04	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.2	< 0.2	< 0.16	< 0.16	< 0.16	< 0.24	< 0.24	< 0.24
10/5/		<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
4/4/2		<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
10/11/		<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
4/10/		<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
10/16/		<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	0.1	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
5/2/2		<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
10/2/		<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
4/21/		<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
10/7/		<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
4/14/		<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
11/13/		<1	< 0.1	< 0.1	< 0.1	0.235	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
4/6/2		<1	< 0.1	< 0.1	< 0.1	0.171	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
10/27/		<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
4/24/		<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
10/24/		<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
4/25/	2018	<1	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2

Table E.1. Summary of Pentachlorophenol and PAHs in groundwater, Old Midland Products Superfund Site.

									4 1 7 11 15 III g										
Cleanup Lev	Date Sampled vels (µg/L)	1 (%) Pentachlorophenol	: (T/gat) (T/gat)	ουοιου (μg/L) 240	γ(L) Acenaphthene 370	$\begin{array}{c} \text{maphthalenc} \\ \text{mg/L} \\ \text{6.2} \end{array}$	(L) Acenaphthylene 940	μς Δη (μς/Ση Απου Απου Απου Απου Απου Απου Απου Απου	(L/gμ) (Mg/gμ)	$(L/g\mu)$ Eluoranthene 1500	180 (hg/r) Pyrene	(Lg Benzo [a] anthracene (a. 0.2)	chrysene (hg/L)	(b) Benzo [b] (c) (d) Benzo [b] (d) (e) (d) (e) (e) (e) (e) (e) (e) (e) (e) (e) (e	(T/gm) Benzo [k] (Tluoranthene	$(\mathbf{L}_{\mathbf{g}}^{\mathbf{g}})$ Benzo [a] byrene $\mathbf{L}_{\mathbf{g}}^{\mathbf{g}}$	(T) (12,3-cd) (T) (T) (T) (T) (T) (T) (T) (T) (T) (T	The Dibenzo [a,h] The Dibenzo [a,h] The Dibenzo [a,h] The Dibenzo [a,h]	θ Benzo [g,h,i] 0 T perylene
MW-1D																			
II	7/21/1999	<10	<5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
1	10/26/1999	<10	<5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
1	1/18/2000	<10	<5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
4	4/19/2000	<10	<5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
7	7/24/2000	<10	<5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
1	1/23/2001	<10	<5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
7	7/30/2001	<10	<5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
8	8/26/2002	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	3/3/2003	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
8	8/26/2003	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
2	2/24/2004	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
8	8/25/2004	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
II	2/21/2005	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	8/22/2005	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
II	2/21/2006	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
II	8/22/2006	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
II	9/27/2006	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
II	12/19/2006	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
II	3/20/2007	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
1	9/30/2008	<2	< 0.2	< 0.12	< 0.12	< 0.04	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	<0.2	< 0.2	< 0.16	< 0.16	< 0.16	< 0.24	< 0.24	< 0.24
	5/18/2009	<2	<0.2	< 0.12	< 0.12	< 0.04	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	<0.2	< 0.2	< 0.16	< 0.16	< 0.16	< 0.24	< 0.24	< 0.24
	11/5/2009	<2	<0.2	0.246	0.324	0.085	< 0.08	0.705	< 0.08	0.236	0.093	<0.2	<0.2	< 0.16	< 0.16	< 0.16	< 0.24	< 0.24	< 0.24
II	4/28/2010	<2	< 0.2	< 0.12	< 0.12	< 0.04	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.2	<0.2	< 0.16	< 0.16	< 0.16	< 0.24	< 0.24	< 0.24
II	10/5/2010	<1	< 0.1	<0.12	< 0.12	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	<0.1	< 0.1	<0.1	< 0.16	< 0.16	< 0.16	<0.2	< 0.16	< 0.16
II	4/4/2011	<1	<0.1	<0.1	<0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	<0.1	<0.1	< 0.16	< 0.16	< 0.16	<0.2	< 0.16	< 0.16
II	10/11/2011	<1	<0.1	<0.1	<0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	<0.1	<0.1	< 0.16	< 0.16	<0.16	<0.2	< 0.16	< 0.16
II	4/10/2012	<1	<0.1	<0.1	<0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	<0.1	<0.1	< 0.16	< 0.16	< 0.16	<0.2	< 0.16	< 0.16
II	10/16/2012	<1	<0.1	<0.1	<0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	<0.1	<0.1	< 0.16	< 0.16	<0.16	<0.2	< 0.16	< 0.16
	5/2/2013	<1	<0.1	0.126	<0.1	< 0.08	< 0.08	0.995	0.132	0.44	0.307	<0.1	<0.1	<0.16	<0.16	<0.16	<0.2	< 0.16	< 0.16
	9/30/2013	<1	<0.1	<0.120	<0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	<0.1	<0.1	< 0.16	<0.16	<0.16	<0.2	< 0.16	< 0.16
II	4/21/2014	<1	<0.1	<0.1	<0.1	< 0.08	< 0.08	< 0.08	< 0.08	<0.08	< 0.08	<0.1	<0.1	< 0.16	< 0.16	< 0.16	<0.2	< 0.16	< 0.16
II	10/7/2014	<1	<0.1	<0.1	<0.1	< 0.08	<0.08	< 0.08	<0.08	< 0.08	< 0.08	<0.1	<0.1	< 0.16	<0.16	< 0.16	<0.2	< 0.16	< 0.16
	4/13/2015	<1	<0.1	<0.1	<0.1	< 0.08	<0.08	< 0.08	<0.08	< 0.08	< 0.08	<0.1	<0.1	< 0.16	< 0.16	< 0.16	<0.2	< 0.16	< 0.16
II	11/13/2015	<1	<0.1	<0.1	<0.1	0.228	<0.08	< 0.08	<0.08	<0.08	< 0.08	<0.1	<0.1	<0.16	<0.16	< 0.16	<0.2	< 0.16	<0.16
II	4/6/2016	<1 <1	<0.1	<0.1	<0.1	0.228	<0.08	< 0.08	<0.08	<0.08	<0.08	<0.1	<0.1	<0.16	<0.16	< 0.16	<0.2	< 0.16	<0.16
III .	10/27/2016				<0.1	< 0.08	<0.1	<0.08	<0.08		<0.08		<0.1 <0.1	<0.16			<0.2	< 0.16	<0.16 <0.16
	4/24/2016	<1 <1	<0.1 <0.1	<0.1 <0.1	<0.1	<0.08	<0.08	< 0.08	<0.08	<0.08 <0.08	<0.08	<0.1 <0.1	<0.1 <0.1	<0.16	<0.16 <0.16	<0.16 <0.16	<0.2	< 0.16	<0.16
	10/24/2017	<1	<0.1	<0.1	<0.1	<0.08	<0.08	< 0.08	<0.08	<0.08	< 0.08	<0.1	<0.1	< 0.16	< 0.16	< 0.16	<0.2	< 0.16	<0.16
	4/25/2018	<1	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2

Table E.1. Summary of Pentachlorophenol and PAHs in groundwater, Old Midland Products Superfund Site.

Well	Date	Pentachlorophenol	Carbazole*	Fluorene	Acenaphthene	Naphthalene	Acenaphthylene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Benzo [a] anthracene	Chrysene	Benzo [b] fluoranthene	Benzo [k] fluoranthene	Benzo [a] pyrene	Indeno [1,2,3-cd] pyrene	Dibenzo [a,h] anthracene *	Benzo [g,h,i] perylene
ID	Sampled	(µg/L)	(µg/L)	(µg/L)	(µg/L)	$(\mu g/L)$	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
Cleanup L	evels (µg/L)	1		240	370	6.2	940	470	1800	1500	180	0.2	9.2	0.2	0.92	0.2	0.2		470
MW-3S																			
	7/15/1999	2780	< 50	35.3	59.5	34.3	< 20	45.8	< 20	99.8	59	< 20	< 20	< 20	< 20	< 20	<20	<20	< 20
	10/26/1999	2000	<5	252	258	140	<2	487	105	743	578	109	115	99.6	49.3	67	22.2	<2	<2
	1/20/2000	1290	< 50	330	392	85.7	< 20	756	115	654	725	155	165	78.4	32.8	40.3	<20	<20	54
	4/24/2000	1920	< 50	426	445	150	< 20	913	135	641	386	133	142	69.2	27.1	40	64.4	71.5	73.4
	7/26/2000	<11	< 5.5	39.4	52.9	79.1	< 2.2	61.2	7.43	28.4	31.3	7.55	8.29	4.16	<2.2	2.51	< 2.2	< 2.2	<2.2
	1/25/2001	1840	< 50	732	1150	177	< 20	2060	341	1880	928	347	355	150	61.2	77.4	57	31.9	50.3
	7/30/2001	757	<5	83.6	104	41	<2	170	74.7	152	135	37.6	34.8	19.6	11.6	10.7	2.96	<2	3.01
	8/26/2002	650	<8	99	88	32	<8	220	26	130	95	23	23	10	9.2	<20	<8	<8	<8
	3/4/2003	890	<10	260	200	87	17	1100	190	700	650	120	120	47	47	35	11	<10	10
	8/26/2003	530	<8	93	100	29	<8	190	17	86	76	17	19	<8	<8	<20	<8	<8	<8
	2/24/2004	970	<20	310	220	51	< 20	910	79	380	310	65	64	26	20	< 50	<20	<20	<20
	8/25/2004	320	<20	320	210	45	< 20	810	85	310	210	51	50	< 20	20	< 50	<20	<20	<20
	2/22/2005	530	<20	270	190	38	< 20	670	63	280	200	48	51	24	24	< 50	<20	<20	<20
	8/23/2005	910	<40	480	420	72	<40	1700	170	770	440	110	140	43	48	<100	<40	<40	<40
	2/21/2006	1400	<100	910	800	110	<100	3700	420	1800	930	230	230	140	<100	< 300	<100	<100	<100
	8/22/2006	< 500	<100	210	140	<100	<100	550	<100	300	190	<100	<100	<100	<100	<300	<100	<100	<100
	10/9/2006	260	<10	27	24	<10	<10	32	<10	25	26	<10	<10	<10	<10	<30	<10	<10	<10
	12/21/2006	220	<10	24	21	<10	<10	27	<10	11	<10	<10	<10	<10	<10	<30	<10	<10	<10
	3/21/2007	190	<2	24	22	10	<2	24	23	5.5	3.4	<2	<2	<2	<2	<5	<2	<2	<2
	5/20/2009	697	2.879	30.6	27.9	24.3	2.023	35.7	3.19	10.1	6.892	1.117	0.701	< 0.16	< 0.16	0.468	0.298	< 0.24	< 0.24
	11/4/2009	1840	9.17	34.2	29.5	48.4	1.869	30.3	3.006	6.954	3.902	<2	<2	<1.6	<1.6	<1.6	<2.4	<2.4	<2.4
	4/29/2010	1160	<20	35.7	34.2	55.2	<8	26.6	<8	9.017	<8	<20	<20	<16	<16	<16	<24	<24	<24
	10/11/2010	953	<10	23.5	20.2	26.6	<8	21.5	<8	<8	<8	<10	<10	<16	<16	<16	<20	<16	<16
	4/13/2011	280	2.98	19.2	17.2	24.7	2.2	14.9	1.78	7.77	4	<1	<1	<1.6	<1.6	<1.6	<2	<1.6	<1.6
	10/18/2011	534	4.03	16	15.9	26.5	1.81	17	1.03	1.37	1.44	<1	<1	<1.6	<1.6	<1.6	<2	<1.6	<1.6
	4/19/2012	322	2.51	13.3	12.1	23.5	1.73	9.21	< 0.8	2.61	1.6	<1	<1	<1.6	<1.6	<1.6	<2	<1.6	<1.6
	10/23/2012	795	3.85	18.2	16.2	25.9	2.34	15	1.18	3.96	3.36	1.27	<1	1.69	<1.6	<1.6	<2	<1.6	<1.6
	5/6/2013	442	1.59	22	41	30.3	2.12	10.2	1.46	5.45	3.4	<1	<1	<1.6	<1.6	<1.6	<2	<1.6	<1.6
	10/3/2013	688	6.59	16.9	12.8	32.4	1.9	14.2(B)	< 0.8	2.71(B)	1.58	<1	<1	<1.6	<1.6	<1.6	<2	<1.6	<1.6
	4/23/2014	609	5.07	17.2	15.9	28	1.7	12.7	< 0.8	3.12	2.56	<1	<1	<1.6	<1.6	<1.6	<2	<1.6	<1.6
	10/8/2014	875	6.32	10.1	8.93	18	1.09	9.29	< 0.8	1.24	1.24	<1	<1	<1.6	<1.6	<1.6	<2	<1.6	<1.6
	4/15/2015	246	4.97	10.6	10.7	18.2	1.03	9.03	< 0.8	2.9	2.19	<1	<1	<1.6	<1.6	<1.6	<2	<1.6	<1.6
	11/13/2015	360	5.57	4.97	5.12	8.09	< 0.8	3.88	< 0.8	1.15	0.898	<1	<1	<1.6	<1.6	<1.6	<2	<1.6	<1.6
	4/5/2016	649	3.40	6.37	6.45	8.48	0.823	5.11	< 0.08	2.45	1.86	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	10/26/2016	512	3.43	3.08	2.21	4.53	< 0.8	2.75	< 0.08	2.83	2.73	<1	<1	<1.6	<1.6	<1.6	<2	<1.6	<1.6
	4/27/2017	341	3.16	2.46	2.14	4.13	< 0.8	2.23	< 0.8	2.2	1.39	<1	<1	<1.6	<1.6	<1.6	<2	<1.6	<1.6
	10/26/2017	286	4.16	2.06	1.96	4.9	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	<1	<1	<1.6	<1.6	<1.6	<2	<1.6	<1.6
	4/26/2018	799	2.89	3.53	3.57	4.01	<2	2.49	<2	2.61	<2	<2	<2	<2	<2	<2	<2	<2	<2

Table E.1. Summary of Pentachlorophenol and PAHs in groundwater, Old Midland Products Superfund Site.

								торпеног анс				4)							
Well	Date	Pentachlorophenol	Carbazole*	Fluorene	Acenaphthene	Naphthalene	Acenaphthylene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Benzo [a] anthracene	Chrysene	Benzo [b] fluoranthene	Benzo [k] fluoranthene	Benzo [a] pyrene	Indeno [1,2,3-cd] pyrene	Dibenzo [a,h] anthracene *	Benzo [g,h,i] perylene
ID	Sampled	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	$(\mu g \! / \! L)$	(µg/L)	(µg/L)	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$
Cleanup I	Levels (µg/L)	1		240	370	6.2	940	470	1800	1500	180	0.2	9.2	0.2	0.92	0.2	0.2		470
MW-3D																			
	7/15/1999	154	< 50	858	1240	1040	25.6	2330	376	867	612	153	158	80.1	24.5	51.1	<20	<20	<20
	10/26/1999	<10	6.69	479	678	580	27.3	1210	200	647	372	133	158	57.1	268	42.3	<2	<2	<2
	1/20/2000	<100	< 50	1190	1500	457	37.9	3020	498	1470	998	259	238	132	51.6	91.4	40.3	<20	30.6
	4/24/2000	18.1	<5	299	546	525	20.2	523	81.7	137	126	31.4	29.7	11.9	5.86	8.86	<2	<2	<2
	7/26/2000	<10	<5	46.7	85.1	266	2.14	59.1	7.8	5.41	6.89	<2	<2	<2	<2	<2	<2	<2	<2
	1/25/2001	134	< 50	671	921	380	24.8	1370	244	423	541	97.4	93.2	45.4	< 20	32.9	<20	<20	<20
	7/30/2001	<100	< 50	336	518	440	< 20	620	113	258	168	49.7	40.3	<20	< 20	<20	<20	<20	<20
	8/27/2002	<100	<20	550	830	1000	25	1300	230	540	390	87	86	38	31	< 50	<20	<20	21
	3/27/2003	<100	<20	830	1100	1200	28	2200	350	900	580	150	140	55	58	50	<20	<20	<20
	8/26/2003	<40	31	180	470	550	9.3	310	39	73	59	11	12	<8	<8	<20	<8	<8	<8
	2/24/2004	< 50	27	250	440	560	<10	540	82	190	130	31	32	11	12	<30	<10	<10	<10
	8/25/2004	<10	<2	130	310	330	8.1	140	20	21	12	<2	<2	<2	<2	<5	<2	<2	<2
	2/22/2005	<40	35	190	330	460	<8	320	50	120	83	18	18	<8	<8	<20	<8	<8	<8
	8/23/2005	<40	35	130	270	420	<8	170	26	40	23	<8	<8	<8	<8	<20	<8	<8	<8
	2/21/2006	< 50	29	190	370	560	12	260	44	95	54	13	12	<100	<100	< 300	<10	<10	<100
	8/22/2006	< 500	<100	320	580	150	<100	710	<100	340	200	<100	<100	<100	<100	< 300	<100	<100	<100
	10/9/2006	<10	45	100	200	490	5.4	110	15	18	9	<2	<2	<2	<2	<5	<2	<2	<2
	12/21/2006	< 50	<10	150	310	350	<10	170	24	44	32	<10	<10	<10	<10	<30	<10	<10	<10
	3/21/2007	<10	24	110	240	430	7.8	100	17	23	15	2.2	2.1	<2	<2	<5	<2	<2	<2
	5/20/2009	<20	46	147	297	467	6.184	183	23.5	33.1	20.3	4.248	3.313	2.532	<1.6	<1.6	< 2.4	< 2.4	< 2.4
	11/4/2009	< 200	122	257	254	435	<8	239	<8	120	89.9	31.6	< 20	<16	<16	28.3	<24	<24	<24
	5/4/2010	<2	45.1	151	280	448	7.157	202	26.1	42.4	22.1	3.982	2.994	2.464	0.368	3.045	0.911	0.262	0.493
	10/12/2010	<100	40.2	117	238	486	<8	156	17.6	31.1	18.4	<10	<10	<16	<16	<16	<20	<16	<16
	4/13/2011	<10	1.37	164	328	117	8.8	201	26.6	57.1	31.7	5.77	4.65	3.36	<1.6	2.32	<2	<1.6	<1.6
	10/18/2011	<10	34.8	77.8	176	443	5.26	94.2	10.5	9.58	8.81	1.29	<1	<1.6	<1.6	<1.6	<2	<1.6	<1.6
	4/19/2012	<10	<1	87.5	192	244	7.91	64.3	9.97	14.4	7.85	<1	<1	<1.6	<1.6	<1.6	<2	<1.6	<1.6
	10/23/2012	<10	32.5	70.5	144	420	4.45	91.4	10.8	18.6	11.9	2.75	2	<1.6	<1.6	<1.6	<2	<1.6	<1.6
	5/6/2013	<10	10.6	97.8	217	237	7.14	88.6	10.3	12.9	7.76	<1	<1	<1.6	<1.6	<1.6	<2	<1.6	<1.6
	10/3/2013	<10	38.3	69.1	139	187	3.27	76.8(B)	7.29	10.2(B)	7.53	1.54	1.08	<1.6	<1.6	<1.6	<2	<1.6	<1.6
	4/23/2014	<10	<1	114	218	261	6.75	161	24.5	47.4	30.3	5.91	5.98	1.92	<1.6	2.06	<2	<1.6	<1.6
	10/8/2014	<10	35.3	63.3	141	261	2.91	72.2	6.19	11.3	6.95	1.82	1.6	<1.6	<1.6	<1.6	<2	<1.6	<1.6
	4/15/2015	<10	<1	48.2	114	15	4.54	26.7	3.40	8.96	4.58	<1	<1	<1.6	<1.6	<1.6	<2	<1.6	<1.6
	11/13/2015	<10	46.4	100	192	403	5.47	141	17.5	36.2	23.1	4.60	4.87	1.90	<1.6	<1.6	<2	<1.6	<1.6
	4/5/2016	<10	<1	66.6	144	146	4.52	74.9	8	9.73	6.53	<1	<1	<1.6	<1.6	<1.6	<2	<1.6	<1.6
	10/26/2016	<10	32.9	53.6	112	203	3.04	57.2	< 0.08	7.66	5.4	<1	<1	<1.6	<1.6	<1.6	<2	<1.6	<1.6
	4/27/2017	<10	<1	62.6	129	85.9	3.75	63	7.46	10.5	6.61	<1	<1	<1.6	<1.6	<1.6	<2	<1.6	<1.6
	10/26/2017	<10	42	73.4	147	302	3.03	95.4	13.80	26.1	16.9	3.63	3.5	<1.6	<1.6	<1.6	<2	<1.6	<1.6
	4/26/2018	<10	<2	90.4	211	141	4.3	108	8.75	5.06	8.23	<2	<2	<2	<2	<2	<2	<2	<2

Table E.1. Summary of Pentachlorophenol and PAHs in groundwater, Old Midland Products Superfund Site.

Well Date	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
7/14/1999	2 2 2 2 2 2 2 2 2 2 2 2 2 2
10/26/1999	2 2 2 2 2 2 2 2 2 2 2 2 2 2
1/18/2000	
4/19/2000	<2 <2 <2 <2 <2 <2 <2 <2 <2
7/24/2000	<2 <2 <2 <2 <2 <2
1/23/2001	<2 <2 <2 <2
7/31/2001	<2 <2 <2
8/27/2002	<2 <2
3/4/2003	<2
8/26/2003	
2/24/2004	<2
8/26/2004	~~
2/22/2005	<2
8/22/2005	<2
2/27/2006 <10 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	<2
8/24/2006	<2
10/5/2006 <10	<2
12/20/2006 <10 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	<2
3/20/2007 <10 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	<2
	<2
9/25/2008 <2 <0.2 <0.12 <0.12 <0.04 <0.08 <0.08 <0.08 <0.08 <0.0 <0.02 <0.16 <0.16 <0.16 <0.16 <0.24 <0.24	<2
	< 0.24
5/26/2009 <2 <0.2 <0.12 <0.12 <0.04 <0.08 <0.08 <0.08 <0.08 <0.0 <0.02 <0.16 <0.16 <0.16 <0.16 <0.24 <0.24	< 0.24
11/10/2009 <2 <0.2 <0.12 <0.12 <0.04 <0.08 <0.08 <0.08 <0.08 <0.0 <0.02 <0.16 <0.16 <0.16 <0.16 <0.24 <0.24	< 0.24
4/28/2010 <10 <0.2 <0.12 <0.12 <0.2 <0.08 <0.08 <0.08 <0.08 <0.0 <0.2 <0.16 <0.16 <0.16 <0.16 <0.24 <0.24	< 0.24
$10/7/2010 \qquad <1 \qquad <0.1 \qquad <0.1 \qquad <0.1 \qquad <0.08 \qquad <0.08 \qquad <0.08 \qquad <0.08 \qquad <0.08 \qquad <0.1 \qquad <0.1 \qquad <0.16 \qquad <0.16 \qquad <0.16 \qquad <0.2 \qquad <0.16 \qquad <$	< 0.16
$4/6/2011 \qquad <1 \qquad <0.1 \qquad <0.1 \qquad <0.1 \qquad <0.08 \qquad <0.08 \qquad <0.08 \qquad <0.08 \qquad <0.08 \qquad <0.1 \qquad <0.1 \qquad <0.16 \qquad <0.16 \qquad <0.16 \qquad <0.2 \qquad <0.16 \qquad <0$	< 0.16
$10/11/2011 \qquad <1 \qquad <0.1 \qquad <0.1 \qquad <0.1 \qquad <0.08 \qquad <0.08 \qquad <0.08 \qquad <0.08 \qquad <0.08 \qquad <0.1 \qquad <0.1 \qquad <0.16 \qquad <0.16 \qquad <0.16 \qquad <0.2 \qquad <0.16 \qquad $	< 0.16
$4/10/2012 \qquad <1 \qquad <0.1 \qquad <0.1 \qquad <0.1 \qquad <0.08 \qquad <0.08 \qquad <0.08 \qquad <0.08 \qquad <0.08 \qquad <0.1 \qquad <0.1 \qquad <0.16 \qquad <0.16 \qquad <0.16 \qquad <0.2 \qquad <0.16 \qquad <$	< 0.16
$10/16/2012 \qquad <1 \qquad <0.1 \qquad <0.1 \qquad <0.1 \qquad <0.08 \qquad <0.08 \qquad <0.08 \qquad <0.08 \qquad <0.08 \qquad <0.1 \qquad <0.1 \qquad <0.16 \qquad <0.16 \qquad <0.16 \qquad <0.2 \qquad <0.16 \qquad $	< 0.16
$4/30/2013 \qquad <1 \qquad <0.1 \qquad <0.1 \qquad <0.1 \qquad <0.08 \qquad <0.08 \qquad <0.08 \qquad <0.08 \qquad <0.08 \qquad <0.1 \qquad <0.1 \qquad <0.16 \qquad <0.16 \qquad <0.16 \qquad <0.2 \qquad <0.16 \qquad <$	< 0.16
$10/1/2013 \qquad <1 \qquad <0.1 \qquad <0.1 \qquad <0.1 \qquad <0.08 \qquad <0.08 \qquad <0.08 \qquad <0.08 \qquad <0.08 \qquad <0.1 \qquad <0.1 \qquad <0.16 \qquad <0.16 \qquad <0.16 \qquad <0.2 \qquad <0.16 \qquad <$	< 0.16
$4/23/2014 \qquad <1 \qquad <0.1 \qquad <0.1 \qquad <0.1 \qquad <0.08 \qquad <0.08 \qquad <0.08 \qquad <0.08 \qquad <0.08 \qquad <0.1 \qquad <0.1 \qquad <0.16 \qquad <0.16 \qquad <0.16 \qquad <0.2 \qquad <0.16 \qquad <$	< 0.16
$10/9/2014 \qquad <1 \qquad <0.1 \qquad <0.1 \qquad <0.1 \qquad <0.08 \qquad <0.08 \qquad <0.08 \qquad <0.08 \qquad <0.08 \qquad <0.1 \qquad <0.1 \qquad <0.16 \qquad <0.16 \qquad <0.16 \qquad <0.2 \qquad <0.16 \qquad <$	< 0.16
4/16/2015 <1 <0.1 <0.1 <0.1 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.1 <0.1 <0.16 <0.16 <0.16 <0.2 <0.16	< 0.16
11/11/2015 <1 <0.1 <0.1 <0.1 <0.08 <0.08 <0.08 <0.08 <0.08 <0.0 <0.1 <0.1 <0.16 <0.16 <0.16 <0.2 <0.16	< 0.16
4/4/2016 <1 <0.1 <0.1 <0.1 <0.08 <0.1 <0.08 <0.08 <0.08 <0.08 <0.1 <0.1 <0.16 <0.16 <0.16 <0.2 <0.16	.0.1.
10/27/2016 <1 <0.1 <0.1 <0.1 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.1 <0.1 <0.16 <0.16 <0.16 <0.2 <0.16	< 0.16
4/27/2017 <1 <0.1 <0.1 <0.1 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.1 <0.1 <0.16 <0.16 <0.16 <0.2 <0.16	<0.16 <0.16
10/24/2017 <1 <0.1 <0.1 <0.1 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.1 <0.1 <0.16 <0.16 <0.16 <0.2 <0.16	
4/25/2018 <1 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	< 0.16

Table E.1. Summary of Pentachlorophenol and PAHs in groundwater, Old Midland Products Superfund Site.

Well Date													
7/14/1999	T/Shi) (T/Shi) (T/Shi	(T/gth) (T/gth) (T/gth) (T/gth) (T/gth) (T/gth) (T/gth) (T/gth)	(T/Sth) (T/Sth) (T/Sth)	$(\mu g/L)$	(µg/L)	$(\mu g/L)$	(μg/L)	$(\mu g/L)$	$(\mu g \! / \! L)$	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	ID Sampled Cleanup Levels (µg/L)
10/27/1999													
1/18/2000													
4/19/2000	2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	<2 <2 <2	<2 <2	<2	<2	<2	<2	<2	<2	<2	<5	<10	10/27/1999
7/24/2000	2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	<2 <2 <2	<2 <2	<2	<2	<2	<2	<2	<2	<2	<5	<10	1/18/2000
1/23/2001 <10	2	<2 <2 <2	<2 <2	<2	<2	<2	<2	<2	<2	<2	<5	<10	4/19/2000
7/30/2001	2	<2 <2 <2	<2 <2	<2	<2	<2	<2	<2	<2	<2	<5	<10	7/24/2000
8/27/2002	2	<2 <2 <2	<2 <2	<2	<2	<2	<2	<2	<2	<2	<5	<10	1/23/2001
3/4/2003	2	<2 <2 <2	<2 <2	<2	<2	<2	<2	<2	<2	<2	<5	<10	7/30/2001
8/26/2003	2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	<2 <2 <2	<2 <2	<2	<2	<2	<2	<2	<2	<2	<2	<10	8/27/2002
2/24/2004	2	<2 <2 <2	<2 <2	<2	<2	<2	<2	<2	<2	<2	<2	<10	3/4/2003
8/26/2004	2	<2 <2 <2	<2 <2	<2	<2	<2	<2	<2	<2	<2	<2	<10	8/26/2003
2/22/2005	2	<2 <2 <2	<2 <2	<2	<2	<2	<2	<2	<2	<2	<2	<10	2/24/2004
8/23/2005 < 10	2	<2 <2 <2	<2 <2	<2	<2	<2	<2	<2	<2	<2	<2	<10	8/26/2004
2/23/2006	2	<2 <2 <2	<2 <2	<2	<2	<2	<2	<2	<2	<2	<2	<10	2/22/2005
8/24/2006	2	<2 <2 <2	<2 <2	<2	<2	<2	<2	<2	<2	<2	<2	<10	8/23/2005
10/9/2006 <10 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	2	<2 <2 <2	<2 <2	<2	<2	<2	<2	<2	<2	<2	<2	<10	2/23/2006
12/19/2006 <10 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	10 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	<2 <2 <2	<2 <2	<2	<2	<2	<2	<2	<10	<2	<2	<10	8/24/2006
3/22/2007 <10 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	2	<2 <2 <2	<2 <2	<2	<2	<2	<2	<2	<2	<2	<2	<10	10/9/2006
10/17/2008 <2 <0.2 <0.12 <0.12 <0.04 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.02 <0.1 <0.16 <0.16 <0.16 <0.16 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.17 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24	2	<2 <2 <2	<2 <2	<2	<2	<2	<2	<2	<2	<2	<2	<10	12/19/2006
5/20/2009 <2 <0.2 <0.12 <0.12 <0.04 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.12 <0.16 <0.16 <0.16 <0.16 <0.16 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.25 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15	2	<2 <2 <2	<2 <2	<2	<2	<2	<2	<2	<2	<2	<2	<10	3/22/2007
11/3/2009 <2 <0.2 <0.12 <0.12 <0.04 <0.08 <0.08 <0.08 <0.08 <0.08 <0.02 <0.16 <0.16 <0.16 <0.16 <0.24 <0.24	.12 <0.04 <0.08 <0.08 <0.08 <0.08 <0.08 <0.02 <0.16 <0.16 <0.16 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24	<0.2 <0.2 <0.16	< 0.08 < 0.2	< 0.08	< 0.08	< 0.08	< 0.08	< 0.04	< 0.12	< 0.12	< 0.2	<2	10/17/2008
	.12 <0.04 <0.08 <0.08 <0.8 <0.08 <0.08 <0.2 <0.2 <0.16 <0.16 <0.16 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <	<0.2 <0.2 <0.16	< 0.08 < 0.2	< 0.08	< 0.8	< 0.08	< 0.08	< 0.04	< 0.12	< 0.12	< 0.2	<2	5/20/2009
4/28/2010 <2 <0.2 <0.12 <0.04 <0.08 <0.08 <0.08 <0.08 <0.08 <0.2 <0.16 <0.16 <0.16 <0.24 <0.24	.12 <0.04 <0.08 <0.08 <0.08 <0.08 <0.08 <0.02 <0.10 <0.16 <0.16 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24 <0.24	<0.2 <0.2 <0.16	< 0.08 < 0.2	< 0.08	< 0.08	< 0.08	< 0.08	< 0.04	< 0.12	< 0.12	< 0.2	<2	11/3/2009
	.12 <0.04 <0.08 <0.08 <0.08 <0.08 <0.08 <0.02 <0.2 <0.16 <0.16 <0.16 <0.24 <0.24	<0.2 <0.2 <0.16	< 0.08 < 0.2	< 0.08	< 0.08	< 0.08	< 0.08	< 0.04	< 0.12	< 0.12	< 0.2	<2	4/28/2010
$10/5/2010 \qquad <1 \qquad <0.1 \qquad <0.1 \qquad <0.1 \qquad <0.1 \qquad <0.08 \qquad <0.08 \qquad <0.08 \qquad <0.08 \qquad <0.08 \qquad <0.1 \qquad <0.1 \qquad <0.16 \qquad <0.16 \qquad <0.16 \qquad <0.16 \qquad <0.2 \qquad <0.16 \qquad <0$	$0.1 \qquad <0.08 \qquad <0.08 \qquad <0.08 \qquad <0.08 \qquad <0.08 \qquad <0.08 \qquad <0.1 \qquad <0.1 \qquad <0.16 \qquad <0.16 \qquad <0.16 \qquad <0.2 \qquad <0.16 \qquad <0.16 \qquad <0.2 \qquad <0.16 \qquad <0.16 \qquad <0.2 \qquad <0.16 \qquad <0.$	<0.1 <0.1 <0.16	< 0.08 < 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.1	<1	10/5/2010
$4/5/2011 \qquad <1 \qquad <0.1 \qquad <0.1 \qquad <0.1 \qquad <0.08 \qquad <0.08 \qquad <0.08 \qquad <0.08 \qquad <0.08 \qquad <0.08 \qquad <0.1 \qquad <0.1 \qquad <0.16 \qquad <$	0.1 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.1 <0.1 <0.16 <0.16 <0.16 <0.2 <0.16	<0.1 <0.1 <0.16	< 0.08 < 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.1	<1	4/5/2011
$10/11/2011 \qquad <1 \qquad <0.1 \qquad <0.1 \qquad <0.1 \qquad <0.08 \qquad <0.08 \qquad <0.08 \qquad <0.08 \qquad <0.08 \qquad <0.08 \qquad <0.1 \qquad <0.1 \qquad <0.16 \qquad$	$0.1 \qquad <0.08 \qquad <0.08 \qquad <0.08 \qquad <0.08 \qquad <0.08 \qquad <0.1 \qquad <0.1 \qquad <0.16 \qquad <0.16 \qquad <0.16 \qquad <0.2 \qquad <0.16 \qquad <$	<0.1 <0.1 <0.16	< 0.08 < 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.1	<1	10/11/2011
$4/11/2012 \qquad <1 \qquad <0.1 \qquad <0.1 \qquad <0.1 \qquad <0.08 \qquad <0.08 \qquad <0.08 \qquad <0.08 \qquad <0.08 \qquad <0.1 \qquad <0.1 \qquad <0.16 \qquad $	$0.1 \qquad <0.08 \qquad <0.08 \qquad <0.08 \qquad <0.08 \qquad <0.08 \qquad <0.1 \qquad <0.1 \qquad <0.16 \qquad <0.16 \qquad <0.16 \qquad <0.2 \qquad <0.16 \qquad <$	<0.1 <0.1 <0.16	< 0.08 < 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.1	<1	4/11/2012
$10/16/2012 \qquad <1 \qquad <0.1 \qquad <0.1 \qquad <0.1 \qquad <0.08 \qquad <0.08 \qquad <0.08 \qquad <0.08 \qquad <0.08 \qquad <0.08 \qquad <0.1 \qquad <0.1 \qquad <0.16 \qquad$	$0.1 \qquad <0.08 \qquad <0.08 \qquad <0.08 \qquad <0.08 \qquad <0.08 \qquad <0.1 \qquad <0.1 \qquad <0.16 \qquad <0.16 \qquad <0.16 \qquad <0.2 \qquad <0.16 \qquad <$	<0.1 <0.1 <0.16	< 0.08 < 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.1	<1	10/16/2012
5/7/2013 <1 <0.1 <0.1 <0.1 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.1 <0.1 <0.16 <0.16 <0.16 <0.2 <0.16	$0.1 \qquad <0.08 \qquad <0.08 \qquad <0.08 \qquad <0.08 \qquad <0.08 \qquad <0.1 \qquad <0.1 \qquad <0.16 \qquad <0.16 \qquad <0.16 \qquad <0.2 \qquad <0.16 \qquad <$	<0.1 <0.1 <0.16	< 0.08 < 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.1	<1	5/7/2013
9/30/2013 <1 <0.1 <0.1 <0.1 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.1 <0.1 <0.16 <0.16 <0.16 <0.2 <0.16	0.1 <0.08 <0.08 <0.08 <0.08 <0.08 <0.01 <0.1 <0.16 <0.16 <0.16 <0.2 <0.16	<0.1 <0.1 <0.16	< 0.08 < 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.1	<1	9/30/2013
$4/23/2014 \qquad <1 \qquad <0.1 \qquad <0.1 \qquad <0.1 \qquad <0.08 \qquad <0.08 \qquad <0.08 \qquad <0.08 \qquad <0.08 \qquad <0.08 \qquad <0.1 \qquad <0.1 \qquad <0.16 \qquad $		<0.1 <0.1 <0.16	< 0.08 < 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.1	<1	4/23/2014
10/8/2014 <1 <0.1 <0.1 <0.1 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.1 <0.1 <0.16 <0.16 <0.16 <0.2 <0.16		<0.1 <0.1 <0.16	< 0.08 < 0.1	< 0.08	< 0.08	< 0.08		< 0.08	< 0.1	< 0.1	< 0.1	<1	10/8/2014
4/15/2015 <1 <0.1 <0.1 <0.1 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.1 <0.1 <0.16 <0.16 <0.16 <0.2 <0.16	0.1 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.1 <0.1 <0.16 <0.16 <0.16 <0.2 <0.16	<0.1 <0.1 <0.16	< 0.08 < 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.1	<1	4/15/2015
$11/11/2015 \qquad <1 \qquad <0.1 \qquad <0.1 \qquad <0.1 \qquad <0.08 \qquad <0.08 \qquad <0.08 \qquad <0.08 \qquad <0.08 \qquad <0.08 \qquad <0.1 \qquad <0.1 \qquad <0.16 \qquad$		<0.1 <0.1 <0.16	< 0.08 < 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.1	<1	11/11/2015
4/6/2016 <1 <0.1 <0.1 <0.1 <0.08 <0.1 <0.08 <0.08 <0.08 <0.08 <0.1 <0.1 <0.16 <0.16 <0.16 <0.2 <0.16	0.1 <0.08 <0.1 <0.08 <0.08 <0.08 <0.08 <0.1 <0.1 <0.16 <0.16 <0.16 <0.2 <0.16	<0.1 <0.1 <0.16	< 0.08 < 0.1	< 0.08	< 0.08	< 0.08	< 0.1	< 0.08	< 0.1	< 0.1	< 0.1	<1	4/6/2016
10/27/2016 <1 <0.1 <0.1 <0.1 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.1 <0.1 <0.16 <0.16 <0.16 <0.2 <0.16													
4/27/2017 <1 <0.1 <0.1 <0.1 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.1 <0.1 <0.16 <0.16 <0.16 <0.2 <0.16													4/27/2017
10/26/2017 <1 <0.1 <0.1 <0.1 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.1 <0.1 <0.16 <0.16 <0.16 <0.2 <0.16													
$4/26/2018 \qquad <1 \qquad <0.2													

Table E.1. Summary of Pentachlorophenol and PAHs in groundwater, Old Midland Products Superfund Site.

									3 1 7 H I S III E										
Cleanup Lev	Date Sampled vels (µg/L)	1 (T/N Pentachlorophenol	: (To Carbazole*	ουσιου (μg/L) 240	γ(L) Acenaphthene 370	$\begin{array}{c} \text{maphthalenc} \\ \text{mg/L} \\ \text{6.2} \end{array}$	αμου Acenaphthylene (17/2 Acenaphthylene (19/2 Ace	$\begin{array}{c} D \\ D \\ D \\ D \end{array}$	(1/gμ) (1/gμ) 0081	(L/gμ). (L/gμ) Fluoranthene	180 (hg/r) Pyrene	(Lg Benzo [a] anthracene (a. 0.2)	chrysene (hg/L)	[p] Benzo [p] (pg Horauthene 0.2	(T/β Benzo [k] (T/β fluoranthene	$(\mathbf{L}_{\mathbf{g}}^{\mathbf{g}})$ Benzo [a] byrene $\mathbf{L}_{\mathbf{g}}^{\mathbf{g}}$	0.5 (T)	m Dibenzo [a,h] [7] anthracene *	6 (Z) Benzo [g,h,i] 7 perylene
MW-8D																			
ll .	7/14/1999	<10	<5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
1	10/27/1999	<10	<5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
	1/18/2000	<10	<5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
	4/19/2000	<10	<5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
	7/24/2000	<10	<5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
	1/23/2001	<10	<5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
	7/30/2001	<10	<5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
	8/27/2002	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	3/4/2003	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
ll .	8/26/2003	<10	<2	<2	3.4	<2	<2	3.1	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	2/24/2004	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
ll .	8/26/2004	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
ll .	2/22/2005	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	8/23/2005	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
ll .	2/23/2006	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
ll .	8/24/2006	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
ll .	10/10/2006	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	12/19/2006	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
ll .	3/22/2007		<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	9/26/2008	<10																	
		<2	<2	< 0.12	<1.2	< 0.04	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	<0.2	<0.2	< 0.16	< 0.16	< 0.16	< 0.24	< 0.24	< 0.24
	5/21/2009	<2	< 0.2	< 0.12	< 0.12	< 0.04	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.2	< 0.2	< 0.16	< 0.16	< 0.16	< 0.24	< 0.24	< 0.24
ll .	11/4/2009	<2	< 0.2	< 0.12	< 0.12	< 0.04	< 0.08	0.214	< 0.08	0.231	0.09	< 0.2	< 0.2	< 0.16	< 0.16	< 0.16	< 0.24	< 0.24	< 0.24
	4/29/2010	<2	< 0.2	< 0.12	< 0.12	< 0.04	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.2	< 0.2	< 0.16	< 0.16	< 0.16	< 0.24	< 0.24	< 0.24
	10/5/2010	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
ll .	4/5/2011	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	10/11/2011	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	4/11/2012	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	10/16/2012	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	5/7/2013	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
II .	9/30/2013	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
II .	4/23/2014	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	10/8/2014	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
II .	4/15/2015	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
II .	11/12/2015	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	4/6/2016	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
II .	10/27/2016	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	5.49	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	4/27/2017	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
1	10/26/2017	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	4/26/2018	<1	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2

Table E.1. Summary of Pentachlorophenol and PAHs in groundwater, Old Midland Products Superfund Site.

								opnenor an											
	Date Sampled Levels (µg/L)	1 (%) Pentachlorophenol	: (T/gm) (T/garbazole*	ου ου ου ου ου (μg/L) 240	Acenaphthene (μg/L)	Naphthalene $(\mu g/L)$ 6.2	θο (γ) Acenaphthylene (γ) Acenaphthylene	$\begin{array}{c} L_{\rm gg}(L_{\rm gg}) \\ L_{\rm gg}(L_{\rm gg}) \end{array}$	(L/gμ) (Mgμ) 0081	$\begin{array}{c} L_{\rm g} = 1.00 \\	180 (hg/L) Syrene	μg/L) 0.2 Benzo [a] anthracene	auasking (μg/L) 9.2	[p] Benzo [p] (pg/L) (p	(T/gd) (T/gd) (T/dioranthene	$(\mu g L)$ Benzo [a] byrene $(\mu g L)$	(T) (1,2,3-cd) (T) (P) (T) (D) (T) (D) (T) (T) (T) (T) (T) (T) (T) (T) (T) (T	To Dibenzo [a,h] (Tanthracene **	0 (Z) Benzo [g,h,i] O (T) perylene
MW-9S																			
	7/14/1999	<10	<5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
	10/27/1999	<10	<5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
	1/19/2000	<10	<5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
	4/19/2000	<10	<5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
	7/25/2000	<11	< 5.5	< 2.2	< 2.2	<2.2	< 2.2	<2.2	<2.2	<2.2	< 2.2	< 2.2	< 2.2	< 2.2	< 2.2	< 2.2	< 2.2	<2.2	<2.2
	1/31/2001	<10	<5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
	7/31/2001	<10	<5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
	8/27/2002	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	3/4/2003	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	8/26/2003	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	2/25/2004	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	8/26/2004	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	2/23/2005	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	8/23/2005	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	2/24/2006	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	8/24/2006	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	10/10/2006	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	12/21/2006	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	3/19/2007	<10	<2	<2	<2	<2	<2	4.1	<2	2.5	<2	<2	<2	<2	<2	<5	<2	<2	<2
	10/14/2008	<2	< 0.2	< 0.12	< 0.12	< 0.04	< 0.08	0.306	< 0.08	0.338	0.16	0.226	< 0.2	0.17	< 0.16	< 0.16	< 0.24	< 0.24	< 0.24
	5/26/2009	<2	< 0.2	< 0.12	< 0.12	< 0.04	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.2	< 0.2	< 0.16	< 0.16	< 0.16	< 0.24	< 0.24	< 0.24
	11/10/2009	<2	< 0.2	< 0.12	< 0.12	< 0.04	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.2	< 0.2	< 0.16	< 0.16	< 0.16	< 0.24	< 0.24	< 0.24
	4/28/2010	<2	< 0.2	< 0.12	< 0.12	< 0.04	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.2	< 0.2	< 0.16	< 0.16	< 0.16	< 0.24	< 0.24	< 0.24
	10/5/2010	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	4/5/2011	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	10/13/2011	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	4/12/2012	< 0.1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	10/18/2012	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	4/30/2013	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	10/3/2013	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	4/21/2014	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	10/7/2014	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	4/14/2015	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	11/13/2015	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	4/6/2016	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	10/26/2016	<1	< 0.1	< 0.1	< 0.1	0.086(B)	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	4/25/2017	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	10/24/2017	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	4/24/2018	<1	<0.2	<0.2	<0.2	<0.2	< 0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
<u> </u>	T/ 4T/ 4010	<u></u>	NO.2	NJ.2	NO.2	NO.2	NU.2	NJ.2	NJ.2	NJ.2	NO.2	NU.2	NJ.2	NU.2	NU.2	NO.2	√0. ∠	√0. ∠	NJ.2

Table E.1. Summary of Pentachlorophenol and PAHs in groundwater, Old Midland Products Superfund Site.

									a i i i i i i i										
Cleanup Lev	Date Sampled vels (µg/L)	1 (%) Pentachlorophenol	: (Tød) (Tød) (Tød)	ουοιου (μg/L) 240	Acenaphthene 370	Naphthalene $(\mu g/L)$ 6.2	0 Acenaphthylene (17)	$\begin{array}{c} \text{A70} \\ \text{470} \\ \text{470} \end{array}$	(L/gμ) (Mg/gμ)	$\begin{array}{c} L_{\rm g} = 1.00 \\	180 (hg/L) Pyrene	μg La 2.2 Benzo [a] anthracene 0.2	ouescher (μg/L) 9.2	(Pg Benzo [b] (Pg fl fl noranthene fl fl noranthene	(T/gm) Benzo [k] (T/gm) Huoranthene	$_{(\mu g)}^{(\mu g)}$ Benzo [a] byrene 0.2	(T) (1,2,3-cd) (T) (T) (T) (T) (T) (T) (T) (T) (T) (T	The Dibenzo [a,h] The Amthracene **	θ Benzo [g,h,i] 0 T perylene
MW-9D																			
II .	7/14/1999	<10	<5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
1	0/27/1999	<10	<5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
1	1/19/2000	<10	<5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
4	4/19/2000	<10	<5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
7	7/25/2000	<10	<5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
1	1/23/2001	<10	<5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
7	7/31/2001	<10	<5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
8	8/27/2002	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	3/4/2003	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
8	8/26/2003	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
2	2/25/2004	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
8	8/26/2004	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
II .	2/23/2005	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
II	8/23/2005	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
2	2/23/2006	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
II .	8/24/2006	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
II .	0/10/2006	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	2/21/2006	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
II .	3/19/2007	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
-	0/14/2008	<2	<0.2	< 0.12	< 0.12	< 0.04	< 0.08	0.126	< 0.08	0.12	< 0.08	<0.2	< 0.2	< 0.16	< 0.16	< 0.16	< 0.24	< 0.24	< 0.24
	5/22/2009	<2	<0.2	< 0.12	< 0.12	< 0.04	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	<0.2	< 0.2	< 0.16	< 0.16	< 0.16	< 0.24	< 0.24	< 0.24
_	1/10/2009	<2	<0.2	< 0.12	< 0.12	< 0.04	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	<0.2	< 0.2	< 0.16	< 0.16	< 0.16	< 0.24	< 0.24	< 0.24
II .	4/29/2010	<2	< 0.2	0.397	0.254	< 0.04	< 0.08	7.756	0.237	0.918	0.526	< 0.2	<0.2	< 0.16	< 0.16	< 0.16	< 0.24	< 0.24	< 0.24
	10/4/2010	<1	< 0.1	< 0.1	<0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	<0.2	< 0.16	< 0.16
	4/5/2011	<1	<0.1	<0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	<0.1	< 0.16	< 0.16	< 0.16	<0.2	< 0.16	< 0.16
II .	0/12/2011	<1	<0.1	<0.1	<0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	<0.1	<0.1	< 0.16	< 0.16	< 0.16	<0.2	< 0.16	< 0.16
	4/12/2012	<1	<0.1	<0.1	<0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	<0.1	<0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	0/17/2012	<1	<0.1	<0.1	<0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	<0.1	<1000	< 0.16	< 0.16	< 0.16	<0.2	< 0.16	< 0.16
II .	4/30/2013	<1	<0.1	<0.1	<0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	<0.1	<0.1	< 0.16	< 0.16	< 0.16	<0.2	< 0.16	< 0.16
II	10/1/2013	<1	<0.1	<0.1	<0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	<0.1	<0.1	< 0.16	< 0.16	< 0.16	<0.2	< 0.16	< 0.16
II .	4/22/2014	<1	<0.1	<0.1	<0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	<0.1	<0.1	< 0.16	< 0.16	<0.16	<0.2	< 0.16	< 0.16
II .	10/7/2014	<1	<0.1	<0.1	<0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	<0.1	<0.1	< 0.16	< 0.16	< 0.16	<0.2	< 0.16	< 0.16
II	4/15/2005	<1	<0.1	<0.1	<0.1	< 0.08	< 0.08	< 0.08	< 0.08	<0.08	< 0.08	<0.1	<0.1	<0.16	<0.16	<0.16	<0.2	< 0.16	<0.16
II .	1/11/2015	<1	<0.1	<0.1	<0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	<0.1	<0.1	< 0.16	< 0.16	< 0.16	<0.2	< 0.16	< 0.16
II .	4/6/2016	<1	<0.1	<0.1	<0.1	< 0.08	<0.08	< 0.08	< 0.08	<0.08	< 0.08	<0.1	<0.1	<0.16	< 0.16	<0.16	<0.2	< 0.16	<0.16
II .	0/26/2016	<1	<0.1	<0.1	<0.1	0.101(B)	< 0.08	< 0.08	< 0.08	<0.08	< 0.08	<0.1	<0.1	<0.16	< 0.16	<0.16	<0.2	< 0.16	<0.16
	4/25/2017	<1	<0.1	<0.1	<0.1	<0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	<0.1	<0.1	<0.16	< 0.16	< 0.16	<0.2	< 0.16	< 0.16
	0/24/2017	<1	<0.1	<0.1	<0.1	< 0.08	< 0.08	<0.08	<0.08	<0.08	< 0.08	<0.1	<0.1	<0.16	<0.16	< 0.16	<0.2	< 0.16	< 0.16
	4/24/2017	<1 <1	<0.1	<0.1	<0.1	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.1	<0.1	<0.16	<0.16	<0.16	<0.2	<0.16	<0.16
4	4/24/2UI8	<1	<0.2	<0.2	<0.2	<∪.∠	<∪.∠	<u.2< td=""><td><∪.∠</td><td><u.2< td=""><td><∪.∠</td><td><∪.∠</td><td><0.∠</td><td><∪.∠</td><td><0.2</td><td><∪.∠</td><td><0.∠</td><td><0.2</td><td><0.∠</td></u.2<></td></u.2<>	<∪.∠	<u.2< td=""><td><∪.∠</td><td><∪.∠</td><td><0.∠</td><td><∪.∠</td><td><0.2</td><td><∪.∠</td><td><0.∠</td><td><0.2</td><td><0.∠</td></u.2<>	<∪.∠	<∪.∠	<0.∠	<∪.∠	<0.2	<∪.∠	<0.∠	<0.2	<0.∠

Table E.1. Summary of Pentachlorophenol and PAHs in groundwater, Old Midland Products Superfund Site.

											, Old Midia								
Cleanup Lev	Date Sampled vels (μg/L)	1 (%) Pentachlorophenol	: (T/gat) (T/gat)	ου 	Lagrange (Lagrange) (Δ/2) Acenaphthene (2.7) Acena	observed by the second	(L) Acenaphthylene 940	(L) Phenanthrene Phenanthrene	(L/gμ) (Mg/gμ)	$\begin{array}{c} L_{\rm g} = 1.00 \\	180 (hg/L) Pyrene	μg La 2.2 Benzo [a] anthracene 0.2	oueschu Qr Qr Qr Qr Qr Qr Qr Qr Qr Qr Qr Qr Qr	[p] Benzo [b] (pg/L) (p	(T/β Benzo [k] (T/β fluoranthene	$_{(\mu g)}^{(\mu g)}$ Benzo [a] byrene 0.2	0.5 (T) (1,2,3-cd) (T) (D) (D) (D) (D) (D) (D) (D) (D) (D) (D	The Dibenzo [a,h] The Amthracene **	θ Benzo [g,h,i] 0 T perylene
MW-10S																			
7	7/14/1999	<10	<5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
10	0/27/1999	<10	<5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
1	1/19/2000	<10	<5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
4	4/19/2000	<10	<5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
7	7/25/2000	<11	< 5.5	< 2.2	< 2.2	<2.2	< 2.2	< 2.2	< 2.2	< 2.2	< 2.2	< 2.2	< 2.2	< 2.2	<2.2	< 2.2	< 2.2	< 2.2	<2.2
1	1/23/2001	<10	<5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
7	7/31/2001	<10	<5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
8	8/28/2002	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
3	3/4/2003	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
8	8/26/2003	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
2	2/25/2004	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
8	8/27/2004	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
2	2/23/2005	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
8	8/23/2005	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
2	2/24/2006	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
8	8/25/2006	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
10	0/10/2006	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
12	2/21/2006	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
3	3/19/2007	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
1	10/6/2008	<2	< 0.2	< 0.12	< 0.12	< 0.04	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.2	< 0.2	< 0.16	< 0.16	< 0.16	< 0.24	< 0.24	< 0.24
5	5/21/2009	<2	< 0.2	< 0.12	< 0.12	< 0.04	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.2	< 0.2	< 0.16	< 0.16	< 0.16	< 0.24	< 0.24	< 0.24
1	11/9/2009	<2	< 0.2	< 0.12	< 0.12	< 0.04	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.2	< 0.2	< 0.16	< 0.16	< 0.16	< 0.24	< 0.24	< 0.24
4	4/28/2010	<2	< 0.2	< 0.12	< 0.12	< 0.04	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.2	< 0.2	< 0.16	< 0.16	< 0.16	< 0.24	< 0.24	< 0.24
1	10/6/2010	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
4	4/5/2011	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
10	0/12/2011	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
4	4/11/2012	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
10	0/17/2012	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
5	5/5/2013	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	0.239	< 0.08	0.217	0.126	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	10/1/2013	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
4	4/22/2014	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	10/9/2014	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	4/14/2015	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
11	1/12/2015	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	4/5/2016	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	0/25/2016	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	4/25/2017	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	0/25/2017	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	4/24/2018	<1	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	<0.2	< 0.2	< 0.2	< 0.2	<0.2	<0.2
4	T/ 2-1/ 2010	<u></u>	₹0.2	\U.2	√0. 2	\0.2	\U.2	NO.2	\U.2	\U.2	\U.2	NO.2	NO.2	\U.2	\U.2	\0.2	~0. ∠	\0. ∠	NO.2

Table E.1. Summary of Pentachlorophenol and PAHs in groundwater, Old Midland Products Superfund Site.

									u PAHS III g	,									
Well ID Cleanup	Date Sampled Levels (µg/L)	1 (%) Pentachlorophenol	(πgh) (T/S Carbazole*	Janorene (µg/L) 240	A Acenaphthene (Hg/L)	Naphthalene (Hg/L)	(L) Acenaphthylene (P) Acenaphthylene	μg/L) (μg/L) 470	Anthracene (Δ/gμ)	(L)(Eluoranthene (Σ/C) (L)(Eluoranthene	180 Pyrene	(µg/L) (0.2) Benzo	ouess. Chrysene (hg/L) 9.2	(Light Benzo [b] (Light Benzo (b) (Light	(Agusta) Benzo [k] (J/gan) Benzo [k] (D.92	(µg/L) 0.2	7. The following of the control of t	(元) Dibenzo [a,h] (元) anthracene **	A Benzo [g,h,i] 70 Perylene
MW-10D																			
	7/14/1999	<10	<5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
	10/27/1999	<10	<5	<2	<2	<2	<2	2.9	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
	11/22/1999	<11	<5.5	<2.2	<2.2	<2.2	<2.2	< 2.2	<2.2	<2.2	< 2.2	< 2.2	< 2.2	<2.2	<2.2	<2.2	<2.2	<2.2	<2.2
	1/19/2000	<10	<5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
	4/19/2000	<10	<5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
	7/25/2000	<10	<5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
	1/23/2001	<10	<5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
	7/31/2001	<10	<5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
	8/28/2002	<10	<2	4	4.8	<2	<2	<2	<2	2.6	<2	<2	<2	<2	<2	<5	<2	<2	<2
	3/4/2003	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	8/26/2003	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	2/25/2004	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	8/27/2004	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	2/23/2005	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	8/23/2005	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	2/24/2006	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	8/25/2006	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	10/11/2006	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	12/21/2006	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	3/19/2007	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	10/6/2008	<2	< 0.2	< 0.12	< 0.12	< 0.04	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.2	< 0.2	< 0.16	< 0.16	< 0.16	< 0.24	< 0.24	< 0.24
	5/21/2009	<2	< 0.2	< 0.12	< 0.12	< 0.04	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.2	< 0.2	< 0.16	< 0.16	< 0.16	< 0.24	< 0.24	< 0.24
	11/9/2009	<2	< 0.2	< 0.12	< 0.12	< 0.04	< 0.08	< 0.08	< 0.08	0.238	0.146	< 0.2	< 0.02	< 0.16	0.172	< 0.16	< 0.24	< 0.24	< 0.24
	4/29/2010	<2	< 0.2	< 0.12	< 0.12	< 0.04	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.2	< 0.2	< 0.16	< 0.16	< 0.16	< 0.24	< 0.24	< 0.24
	10/6/2010	<1	< 0.1	<0.1	<0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	<0.2	< 0.16	< 0.16
	4/5/2011	<1	< 0.1	<0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	<0.2	< 0.16	<0.16
	10/12/2011	<1	< 0.1	<0.1	<0.1	<0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	<0.2	< 0.16	<0.16
	4/11/2012	<1	< 0.1	<0.1	< 0.1	<0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	<0.2	< 0.16	<0.16
	10/17/2012	<1	<0.1	<0.1	<0.1	<0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	<0.1	< 0.16	< 0.16	< 0.16	<0.2	< 0.16	< 0.16
	5/5/2013	<1	<0.1	<0.1	<0.1	<0.08	< 0.08	0.131	< 0.08	0.158	0.083	< 0.1	<0.1	< 0.16	< 0.16	< 0.16	<0.2	< 0.16	< 0.16
	10/1/2013	<1	<0.1	<0.1	<0.1	<0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	<0.1	< 0.16	< 0.16	< 0.16	<0.2	< 0.16	< 0.16
	4/22/2014 10/9/2014	<1	<0.1	<0.1	<0.1	<0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	<0.1	< 0.16	< 0.16	< 0.16	<0.2	< 0.16	< 0.16
		<1	<0.1	<0.1	<0.1	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.1	<0.1	< 0.16	< 0.16	< 0.16	<0.2	< 0.16	< 0.16
	4/15/2015	<1	<0.1	<0.1	<0.1	<0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	<0.1	< 0.16	< 0.16	< 0.16	<0.2	< 0.16	< 0.16
	11/12/2015 4/5/2016	<1	<0.1	<0.1	<0.1	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.1	<0.1	< 0.16	< 0.16	< 0.16	<0.2	< 0.16	< 0.16
	10/25/2016	<1 <1	<0.1 <0.1	<0.1	<0.1 <0.1	<0.08	<0.1	<0.08 <0.08	<0.08 <0.08	<0.08 <0.08	<0.08	<0.1 <0.1	<0.1 <0.1	< 0.16	< 0.16	< 0.16	<0.2 <0.2	<0.16 <0.16	< 0.16
	4/25/2016			<0.1	<0.1	<0.08	<0.08				<0.08			< 0.16	< 0.16	< 0.16			< 0.16
	10/25/2017	<1	<0.1	<0.1		<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.1	<0.1	< 0.16	< 0.16	< 0.16	<0.2	< 0.16	< 0.16
	4/24/2018	<1 <1	<0.1 <0.2	<0.1 <0.2	<0.1 <0.2	<0.08 <0.2	<0.08 <0.2	<0.08 <0.2	<0.08 <0.2	<0.08 <0.2	<0.08 <0.2	<0.1 <0.2	<0.1 <0.2	<0.16 <0.2	<0.16 <0.2	<0.16 <0.2	<0.2 <0.2	<0.16 <0.2	<0.16 <0.2
L	4/24/2010	<1	<0.2	<0.2	<0.∠	<0.2	<∪.∠	<0.∠	<0.∠	<0.∠	<0.∠	<0.∠	<0.2	<0.2	<0.2	<0.∠	<∪.∠	<∪.∠	<0.2

Table E.1. Summary of Pentachlorophenol and PAHs in groundwater, Old Midland Products Superfund Site.

											, ота типана								
Well ID Cleanup	Date Sampled Levels (µg/L)	1 (7) Pentachlorophenol	-: (π) Carbazole*	ouelone Ly (µg/L) 240	A Acenaphthene (hg/L)	Naphthalene (µg/L) 6.2	(T/A Acenaphthylene (T/A)	(hg/T) Phenanthrene	Anthracene (J/gµ)	(L) Fluoranthene (L) Fluoranthene	180 (µg/L) Arene	μg/L) (μg/L) 0.2	oupscue (µg/L) 9.2	(P] Benzo [b] (Hg/L) (D.2	(Hg/L) Benzo [k] (Lg/L)	(12) Benzo [a] byrene (0.2) Denzo [a] byrene	7.0 (1,2,3-cd] 7.7 (1,2,3-cd)	The Dibenzo [a,h] The Amthracene **	7. Benzo [g,h,i] 7. Perylene 7. perylene
MW-12S																			
	7/14/1999	<10	<5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
	10/27/1999	<10	<5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
	1/19/2000	<10	<5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
	4/20/2000	<10	<5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
	7/25/2000	<10	<5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
	1/24/2001	<10	<5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
	7/30/2001	<10	<5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
	8/27/2002	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	3/3/2003	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	8/26/2003	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	2/25/2004	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	8/27/2004	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	2/24/2005	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	8/25/2005	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	2/24/2006	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	8/25/2006	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	10/11/2006	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	12/21/2006	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	3/20/2007	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	10/7/2010	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	10/11/2011	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	10/17/2012	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	5/7/2013	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	10/1/2013	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	4/21/2014		ooded below	-	-			•											
	10/7/2014	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	4/13/2015		ooded below	-	•			•											
	11/10/2015	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	4/6/2016	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	10/26/2016	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	4/27/2017	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	10/24/2017	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	4/24/2018	<1	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2

Table E.1. Summary of Pentachlorophenol and PAHs in groundwater, Old Midland Products Superfund Site.

									d I / III s III s										
-	Date Sampled ævels (µg/L)	1 (2) Pentachlorophenol	-i σπ) (T/Carbazole*	enene (µg/L) 240	V _(μg/L) Acenaphthene	Naphthalene $(\mu g/L)$	0 Acenaphthylene (17) Acenaphthylene (19) Acenaphthylene	(µg/L) Wenanthrene	Anthracene (7/ga)	Elnoranthene Fluoranthene Fluoranthene	180 (J/ga) - Ayrene	(µg/L) (µg/L) 0.2	operation of the control of the cont	(Light Benzo [b] (Light Benzo [p] (Light Benzo (p) (Light	(T/gm) Benzo [k] (L) fluoranthene	(µg/L) (µg/L) 0.2	(T)	(Tanthracene *	7 Benzo [g,h,i] O T perylene
MW-16S																			
	7/14/1999	<10	<5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
	10/28/1999	<10	<5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
	1/19/2000	66.2	73.6	1860	2710	2460	20	5520	788	2390	1780	320	152	65	29	47	16.2	6.85	14
	4/20/2000	<100	< 50	<20	< 20	< 20	<20	< 20	<20	<20	<20	<20	<20	< 20	< 20	<20	< 20	< 20	<20
	7/26/2000	<11	<5.5	< 2.2	< 2.2	<2.2	< 2.2	<2.2	< 2.2	<2.2	< 2.2	< 2.2	< 2.2	<2.2	<2.2	< 2.2	< 2.2	< 2.2	<2.2
	1/24/2001	<10	<5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
	7/31/2001	<10	<5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
	8/28/2002	<10	<2	<2	<2	<2	<2	<2	<2	2.6	2.1	<2	<2	<2	<2	<5	<2	<2	<2
	3/4/2003	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	8/27/2003	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	2/26/2004	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	8/30/2004	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	2/24/2005	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	8/25/2005	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	2/24/2006	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	8/28/2006	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	10/12/2006	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	12/19/2006	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	3/22/2007	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	9/30/2008	<2	<0.2	< 0.12	< 0.12	< 0.04	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	<0.2	< 0.2	< 0.16	< 0.16	< 0.16	< 0.24	< 0.24	< 0.24
	5/19/2009	<2	<0.2	< 0.12	< 0.12	< 0.04	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.2	< 0.2	< 0.16	< 0.16	< 0.16	< 0.24	< 0.24	< 0.24
	11/2/2009	<2	<0.2	< 0.12	< 0.12	< 0.04	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	<0.2	< 0.2	< 0.16	< 0.16	< 0.16	< 0.24	< 0.24	< 0.24
	4/28/2010	<2	< 0.2	2.029	<1.714	0.049	< 0.08	6.395	< 0.981	2.471	1.215	< 0.2	< 0.2	< 0.16	< 0.16	< 0.16	< 0.24	< 0.24	< 0.24
	10/6/2010	<1	< 0.1	< 0.1	<0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	<0.1	< 0.16	< 0.16	< 0.16	<0.2	< 0.16	< 0.16
	4/6/2011	<1	< 0.1	<0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	10/16/2011	<1	< 0.1	<0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	4/16/2012	<1	< 0.1	<0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	10/21/2012	<1	< 0.1	<0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	<0.1	< 0.16	< 0.16	< 0.16	<0.2	< 0.16	< 0.16
	5/1/2013	<1	< 0.1	2.04	1.88	< 0.08	< 0.08	7.76	0.538	1.66	0.817	< 0.1	<0.1	< 0.16	< 0.16	< 0.16	<0.2	< 0.16	< 0.16
	10/1/2013	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	<0.2	< 0.16	< 0.16
	4/21/2014	<1	<0.1	<0.1	<0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	<0.1	<0.1	< 0.16	< 0.16	< 0.16	<0.2	< 0.16	< 0.16
	10/7/2014	<1	< 0.1	<0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	4/14/2015	<1	< 0.1	<0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	11/11/2015	<1	<0.1	0.164	0.238	< 0.08	< 0.08	0.188	< 0.08	< 0.08	< 0.08	<0.1	<0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	4/4/2016	<1	< 0.1	<0.1	< 0.1	0.091	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	10/26/2016	<1	<0.1	<0.1	<0.1	0.081(B)	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	<0.1	<0.1	< 0.16	< 0.16	< 0.16	<0.2	< 0.16	< 0.16
	4/25/2017	<1	<0.1	<0.1	<0.1	<0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	<0.1	<0.1	< 0.16	< 0.16	< 0.16	<0.2	< 0.16	< 0.16
	10/24/2017	<1	<0.1	<0.1	<0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	<0.1	<0.1	< 0.16	< 0.16	< 0.16	<0.2	< 0.16	< 0.16
	4/24/2018	<1	<0.1	<0.1	<0.1	<0.2	<0.2	<0.2	<0.0	<0.2	<0.0	<0.1	<0.1	<0.10	<0.10	<0.10	<0.2	<0.10	<0.10
<u> </u>	4/24/2010	<u></u>	\U. ∠	\U. ∠	\U. ∠	<0. ∠	\0. ∠	< 0.∠	\U. ∠	< 0.∠	\U. ∠	< 0.∠	\U. ∠	\0. ∠	\0. ∠	< 0.∠	<0.∠	<0. ∠	₹0.2

Table E.1. Summary of Pentachlorophenol and PAHs in groundwater, Old Midland Products Superfund Site.

Well Date ID Sampled Cleanup Levels (μg/L)	1 (T Pentachlorophenol	- '' (Τ'βπ') (Τ'β Carbazole**	eueueueueueueueueueueueueueueueueueueu	(L) Acenaphthene (A) Acenaphthene (B) (A) (B) (B) (B) (B) (B) (B) (B) (B) (B) (B	(μg/L) (μg/L) 6.2	n) Acenaphthylene (77) Acenaphthylene	(L) Dhenanthrene 440	Anthracene (A/gµ)	(Lg/L) Fluoranthene (1/200)	(µg/L)	(μg/L) 0.2	Chrysene (hg/L)	μ Benzo [b] (μ guoranthene 0.2	(μg/L) (μg/L) (μg/L) (μg/L) (μg/L)	0.2 (a] pyrene 0.2 (a) pyrene	7.0 m Indeno [1,2,3-cd] (T) pyrene	市 Dibenzo [a,h]	전 전 70 (T) perylene
MW-16D																		
10/16/2006	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
12/20/2006	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
3/21/2007	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
9/30/2008	<2	< 0.2	< 0.12	< 0.12	< 0.04	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.2	< 0.2	< 0.16	< 0.16	< 0.16	< 0.24	< 0.24	< 0.24
5/19/2009	<2	< 0.2	< 0.12	< 0.12	< 0.04	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.2	< 0.2	< 0.16	< 0.16	< 0.16	< 0.24	< 0.24	< 0.24
11/3/2009	<2	< 0.2	< 0.12	< 0.12	< 0.04	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.2	< 0.2	< 0.16	< 0.16	< 0.16	< 0.24	< 0.24	< 0.24
4/28/2010	<2	< 0.2	0.443	0.433	< 0.04	< 0.08	8.595	0.185	0.871	0.455	< 0.2	< 0.2	< 0.16	< 0.16	< 0.16	< 0.24	< 0.24	< 0.24
10/6/2010	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
4/6/2011	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
10/13/2011	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
4/16/2012	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
10/21/2012	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
5/1/2013	<1	< 0.1	5.18	5.29	< 0.08	0.092	12.7	0.75	1.72	1.17	0.185	0.172	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
10/2/2013	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
4/21/2014	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
10/7/2014	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
4/14/2015	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
11/11/2015	<1	< 0.1	< 0.1	0.111	< 0.08	< 0.08	0.098	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
4/4/2016	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
10/25/2016	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
4/25/2017	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
10/24/2017	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
4/24/2018	<1	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2

Table E.1. Summary of Pentachlorophenol and PAHs in groundwater, Old Midland Products Superfund Site.

							rophenor an											
Well Date ID Sampled Cleanup Levels (µg/I		 (T/Sπ) (T/Carbazole*	enorene (μg/L) 240	γ(L) Acenaphthene 370	$\begin{array}{c} \text{constant}\\ \text{Maphthalenc}\\ (\mu g/L)\\ 6.2 \end{array}$	(T/S Acenaphthylene (T/S Acenaphthylene	μς Δη (μς/Ση Απου Απου Απου Απου Απου Απου Απου Απου	(L/gμ) (Mg/gμ)	$(L/g\mu)$ Eluoranthene 1500	180 (Mg/L) Pyrene	(L) Benzo [a] anthracene 0.2	chrysene (hg/L)	(b) Benzo [b] (c) (d) Benzo [b] (d) (e) (d) (e) (e) (e) (e) (e) (e) (e) (e) (e) (e	(T/gm) Benzo [k] (Tluoranthene	$(\mu g)^{(a)}$ Benzo [a] byrene $(0.2)^{(a)}$	(T) (12,3-cd) (T) (T) (T) (T) (T) (T) (T) (T) (T) (T	m Dibenzo [a,h] [T] Anthracene *	A Benzo [g,h,i]
MW-17S																		
7/15/1999		<5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
10/28/199	99 <10	<5	2.05	<2	<2	<2	2.87	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
1/16/2000	0 <10	<5	6.97	<2	<2	<2	15.4	<2	<2	2.93	<2	<2	<2	<2	<2	<2	<2	<2
4/20/2000	0 <10	<5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
7/25/2000	0 <11	<5.5	< 2.2	< 2.2	<2.2	< 2.2	< 2.2	< 2.2	< 2.2	< 2.2	< 2.2	< 2.2	< 2.2	< 2.2	< 2.2	< 2.2	< 2.2	<2.2
1/24/200	1 <10	<5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
7/31/200	1 <10	<5	<2	<2	3.47	<2	2.38	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
8/28/2002	2 31	<2	3.2	<2	3.3	<2	8.2	<2	<2	2.1	<2	<2	<2	<2	<5	<2	<2	<2
3/4/2003	3 17	<2	<2	<2	<2	<2	2.4	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
8/27/2003	3 16	<2	2.3	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
2/26/2004	4 <10	<2	5.1	<2	<2	<2	7.6	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
8/30/2004	4 <10	<2	3.6	<2	<2	<2	3.7	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
2/24/2005		<2	6.2	<2	<2	<2	9.7	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
8/25/2005		<2	8	2.8	<2	<2	13	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
2/27/2006		<2	9.6	2.1	2	<2	12	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
8/29/2006		<2	9.5	2.3	2	<2	12	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
10/12/200		<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
12/18/200		<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
3/20/200		<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
9/25/2008		< 0.2	< 0.12	< 0.12	< 0.04	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	<0.2	< 0.2	< 0.16	< 0.16	< 0.16	< 0.24	< 0.24	< 0.24
5/20/2009		<0.2	0.162	<0.12	< 0.04	<0.08	<0.08	< 0.08	< 0.08	< 0.08	<0.2	<0.2	< 0.16	< 0.16	< 0.16	< 0.24	< 0.24	< 0.24
11/4/2009		<0.2	<0.102	<0.12	< 0.04	< 0.08	<0.08	<0.08	< 0.08	<0.08	<0.2	<0.2	< 0.16	< 0.16	< 0.16	< 0.24	< 0.24	<0.24
5/4/2010		<0.2	<0.12	< 0.12	< 0.04	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	<0.2	<0.2	< 0.16	< 0.16	< 0.16	< 0.24	< 0.24	<0.24
10/11/201		<0.1	0.106	<0.12	< 0.04	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	<0.1	<0.1	< 0.16	< 0.16	<0.16	<0.24	< 0.16	< 0.16
4/11/201		<0.1	<0.1	<0.1	< 0.08	< 0.08	0.162	<0.08	0.252	0.16	<0.1	<0.1	<0.16	<0.16	<0.16	<0.2	< 0.16	< 0.16
10/17/201		<0.1	0.237	<0.1	< 0.08	< 0.08	< 0.102	<0.08	< 0.08	< 0.10	<0.1	<0.1	<0.16	<0.16	<0.16	<0.2	< 0.16	< 0.16
4/12/2012		<0.1	< 0.1	<0.1	< 0.08	< 0.08	< 0.08	< 0.08	<0.08	< 0.08	<0.1	<0.1	< 0.16	< 0.16	<0.16	<0.2	< 0.16	< 0.16
10/22/201		<0.1	<0.1	<0.1	< 0.08	< 0.08	< 0.08	<0.08	<0.08	< 0.08	<0.1	<0.1	<0.16	<0.16	<0.16	<0.2	< 0.16	< 0.16
5/5/2013		<0.1	<0.1	<0.1	< 0.08	< 0.08	0.249	<0.08	0.165	< 0.08	<0.1	<0.1	< 0.16	< 0.16	<0.16	<0.2	< 0.16	< 0.16
10/2/2013		<0.1	0.235	0.15	< 0.08	< 0.08	< 0.08	<0.08	< 0.08	< 0.08	<0.1	<0.1	< 0.16		<0.16	<0.2	< 0.16	
4/22/2014		<0.1	< 0.1	< 0.13	<0.08	< 0.08	< 0.08	<0.08	<0.08	< 0.08	<0.1	<0.1	<0.16	<0.16 <0.16	<0.16	<0.2	< 0.16	<0.16 <0.16
10/7/2014		<0.1	<0.1	<0.1	<0.08	< 0.08	< 0.08	<0.08	<0.08	< 0.08	<0.1	<0.1	<0.16	<0.16	<0.16	<0.2	< 0.16	<0.16
4/14/2015		<0.1	<0.1	<0.1	<0.08	< 0.08	< 0.08	<0.08	<0.08	< 0.08	<0.1	<0.1	<0.16		<0.16	<0.2	< 0.16	<0.16
11/11/201		<0.1	<0.1 <0.1	<0.1	<0.08	<0.08	<0.08	<0.08	<0.08	< 0.08	<0.1	<0.1 <0.1	<0.16	<0.16 <0.16	<0.16	<0.2	<0.16	<0.16
4/5/2016		<0.1		<0.1														
10/25/201			<0.1		<0.08	< 0.1	< 0.08	<0.08	<0.08	< 0.08	<0.1	<0.1	< 0.16	< 0.16	< 0.16	<0.2	< 0.16	< 0.16
		<0.1	<0.1	<0.1	<0.08	< 0.08	< 0.08	< 0.08	<0.08	< 0.08	< 0.1	<0.1	< 0.16	< 0.16	< 0.16	<0.2	< 0.16	<0.16
4/27/2017		< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	<0.2	< 0.16	<0.16
10/25/201		<0.1	<0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	<0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	<0.2	< 0.16	<0.16
4/25/2018	8 <1	< 0.2	< 0.2	1.75	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2

Table E.1. Summary of Pentachlorophenol and PAHs in groundwater, Old Midland Products Superfund Site.

Well	Date	Pentachlorophenol	Carbazole*	Fluorene	Acenaphthene	Naphthalene	Acenaphthylene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Benzo [a] anthracene	Chrysene	Benzo [b]	Benzo [k] fluoranthene	Benzo [a] pyrene	Indeno [1,2,3-cd] pyrene	Dibenzo [a,h] anthracene *	Benzo [g,h,i] perylene
	Sampled	(μg/L)	$(\mu g/L)$	(μg/L)	(μg/L)	(μg/L)	(µg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(µg/L)	(μg/L)
Cleanup Leve	els (µg/L)	1		240	370	6.2	940	470	1800	1500	180	0.2	9.2	0.2	0.92	0.2	0.2		470
MW-18S																			
7.	//21/1999	<10	<5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
10	0/28/1999	<10	<5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
1,	/20/2000	<10	<5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	5.52	5.79
4,	/20/2000	<10	<5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
7.	7/26/2000	<10	<5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
	/24/2001	<10	<5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
7.	7/31/2001	<10	<5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
8,	3/28/2002	<10	<2	<2	<2	<2	<2	<2	<2	2.6	<2	<2	<2	<2	<2	<5	<2	<2	<2
3,	3/27/2003	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
8	3/27/2003	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
2.	2/26/2004	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
8	3/30/2004	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
2.	2/24/2005	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
8	3/25/2005	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
2.	2/27/2006	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
8	3/29/2006	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
10	0/16/2006	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
12	2/19/2006	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
3,	3/20/2007	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
5,	5/21/2009	<2	< 0.2	< 0.12	< 0.12	< 0.04	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.2	< 0.2	< 0.16	< 0.16	< 0.16	< 0.24	< 0.24	< 0.24
1	1/4/2009	<2	< 0.2	< 0.12	< 0.12	< 0.04	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.2	< 0.2	< 0.16	< 0.16	< 0.16	< 0.24	< 0.24	< 0.24
4,	1/28/2010	<2	< 0.2	< 0.12	< 0.12	< 0.04	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.2	< 0.2	< 0.16	< 0.16	< 0.16	< 0.24	< 0.24	< 0.24
10	0/7/2010	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
4	4/6/2011	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
10	0/13/2011	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
4,	/12/2012	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
10	0/18/2012	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
5	5/6/2013	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
10	0/1/2013	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
4,	1/22/2014	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
10	0/8/2014	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
4,	1/14/2015	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
11	1/12/2015	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
4	4/5/2016	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
10	0/25/2016	<1	< 0.1	< 0.1	< 0.1	0.115(B)	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
4,	1/26/2017	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
10	0/25/2017	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
4,	/26/2018	<1	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2

Table E.1. Summary of Pentachlorophenol and PAHs in groundwater, Old Midland Products Superfund Site.

Well ID	Date Sampled	π') (7) Pentachlorophenol	(αrbazole*	Llnorene (Τ/S/H	(T) Acenaphthene	ரே (T/Naphthalene	(T) Acenaphthylene	/γ Phenanthrene	(Τ/δπ) (T/δπ)	(T) Fluoranthene	(T/Sm)	(T) Benzo [a] anthracene	(T/an) (T/an)	Уб (T) fluoranthene	/б Т fluoranthene	(T) Benzo [a] pyrene	ள் நே Indeno [1,2,3-cd] ரே pyrene	Dibenzo [a,h] anthracene *	Benzo [g,h,i] (T perylene
-	-			(μg/L) 240	(μg/L) 370		(μg/L) 940	(μg/L) 470	(μg/L) 1800		(μg/L) 180	(μg/L) 0.2	(μg/L) 9.2		(μg/L) 0.92	(μg/L) 0.2	(μg/L) 0.2		(μg/L) 470
Cleanup Lev	veis (µg/L)	1		240	3/0	6.2	940	4/0	1800	1500	180	0.2	9.2	0.2	0.92	0.2	0.2		4/0
MW-18D																			
	7/21/1999	<10	<5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
III .	0/28/1999	<10	<5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
	1/20/2000	<10	<5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
	4/20/2000	<10	<5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
	7/26/2000	<10	<5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
III .	7/31/2001	<10	<5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
	8/28/2002	<10	<2	<2	<2	<2	<2	<2	<2	2.6	<2	<2	<2	<2	<2	<5	<2	<2	<2
	3/4/2003	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
3	8/27/2003	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
2	2/26/2004	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
8	8/30/2004	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
2	2/24/2005	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
8	8/25/2005	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
2	2/27/2006	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
8	8/29/2006	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
1	0/16/2006	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
1	2/19/2006	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
3	3/20/2007	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
1	10/1/2008	<2	< 0.2	< 0.12	< 0.12	< 0.04	< 0.08	< 0.08	< 0.8	< 0.08	< 0.08	< 0.2	< 0.2	< 0.16	< 0.16	< 0.16	< 0.24	< 0.24	< 0.24
5	5/21/2009	< 0.2	< 0.2	< 0.12	< 0.12	< 0.04	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.2	< 0.2	< 0.16	< 0.16	< 0.16	< 0.24	< 0.24	< 0.24
1	11/4/2009	<2	< 0.2	0.572	0.736	0.207	< 0.08	1.264	0.169	0.406	0.216	< 0.2	< 0.2	< 0.16	< 0.16	< 0.16	< 0.24	< 0.24	< 0.24
2	4/29/2010	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
1	10/7/2010	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	4/6/2011	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
1	0/13/2011	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
4	4/16/2012	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
1	0/21/2012	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	5/6/2013	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	0.108	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
1	10/1/2013	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
4	4/22/2014	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
1	10/8/2014	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
2	4/14/2015	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
1	1/12/2015	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	4/5/2016	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
1	0/25/2016	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
2	4/26/2017	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
1	0/25/2017	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
4	4/26/2018	<1	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2

Table E.1. Summary of Pentachlorophenol and PAHs in groundwater, Old Midland Products Superfund Site.

ī-																		
Well Date ID Sampled Cleanup Levels (µg/L)	1 (T/S Pentachlorophenol	(T/δ Carbazole*	ου ΣΕ (μg/L) 240	(μg/L) Acenaphthene	$(\mu g/L)$ Naphthalene 6.2	αμος (Agguera)	μg/L) A70	$(J_{g\mu})$ Anthracene 0081	(J/gm) Huoranthene (1500)	180 (μg/L) γγene	μg/Z (L) Benzo [a] anthracene 0.2	onescenc (μg/L) 9.2	Benzo [b] (μg/L) 0.2	Benzo [k] fluoranthene	(µg/L) Benzo [a] byrenc (ng/L)	0.5 gm Indeno [1,2,3-cd] (1,2,3-cd]	m Dibenzo [a,h] [7] anthracene *	0.45 Benzo [g,h,i] (T/perylene
MW-19S																		
7/15/1999	<10	<5	<2	<2	<2	<2	2.11	<2	2.45	<2	<2	<2	<2	<2	<2	<2	<2	<2
10/28/1999	<10	<5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
1/20/2000	<10	<5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
4/20/2000	<10	<5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
7/26/2000	<10	<5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
1/24/2001	<10	<5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
7/31/2001	<10	<5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
8/28/2002	<10	<2	4.6	4.8	<2	<2	8.4	<2	7	4.6	<2	<2	<2	<2	<5	2.8	2.6	<2
3/4/2003	<10	<5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
8/27/2003	<10	<2	2.1	<2	<2	<2	<2	<2	3.7	3.4	<2	<2	<2	<2	<5	<2	<2	<2
2/26/2004	<10	<5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
8/31/2004	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
2/25/2005	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
8/26/2005	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
2/27/2006	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
8/29/2006	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
10/16/2006	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
12/19/2006	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
3/20/2007	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
9/26/2008	<2	<0.2	< 0.12	< 0.12	< 0.04	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	<0.2	<0.2	< 0.16	< 0.16	< 0.16	< 0.24	< 0.24	<0.24
5/20/2009	<2	<0.2	0.12	0.12	<0.04	<0.08	0.732	0.107	0.498	0.328	<0.2	<0.2	< 0.16	< 0.16	< 0.16	< 0.24	<0.24	<0.24
11/3/2009	<2	<0.2	0.278	0.182	0.051	<0.08	0.732	< 0.107	0.498	< 0.08	<0.2	<0.2	<0.16		< 0.16	< 0.24	<0.24	
4/29/2010	<20	<2	28.8				1.457	2.722			<2	<2		< 0.16		<2.4		<0.24 <2.4
II				88.1	1.433	2.096			3.828	1.541			<1.6	<1.6	<1.6		<2.4	l l
10/11/2010	<1	<0.1	< 0.1	< 0.1	<0.08	<0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	<0.16	< 0.16	<0.2	< 0.16	<0.16
4/7/2011	<1	<0.1	0.197	0.179	<0.08	<0.08	0.57	0.135	0.619	0.333	0.11	<0.1	<0.16	< 0.16	< 0.16	<0.2	< 0.16	<0.16
10/16/2011	<1	<0.1	<0.1	<0.1	<0.08	<0.08	<0.08	< 0.08	<0.08	<0.08	<0.1	< 0.1	< 0.16	< 0.16	< 0.16	<0.2	< 0.16	<0.16
4/17/2012	<1	<0.1	<0.1	<0.1	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.1	<0.1	<0.16	< 0.16	< 0.16	<0.2	< 0.16	<0.16
10/22/2012	<1	<0.1	<0.1	<0.1	<0.08	<0.08	< 0.08	< 0.08	< 0.08	<0.08	< 0.1	< 0.1	< 0.16	<0.16	< 0.16	<0.2	< 0.16	<0.16
5/5/2013	<1	<0.1	<0.1	<0.1	<0.08	<0.08	0.143	<0.08	0.185	<0.08	< 0.1	< 0.1	< 0.16	< 0.16	<0.16	<0.2	< 0.16	<0.16
10/2/2013	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	<0.2	< 0.16	<0.16
4/21/2014	<1	<0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	<0.2	< 0.16	< 0.16
10/7/2014	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	<0.16
4/14/2015	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
11/11/2015	<1	< 0.1	0.204	< 0.1	< 0.08	< 0.08	0.515	0.198	0.101	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
4/5/2016	<1	< 0.1	< 0.1	< 0.1	0.091	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
10/26/2016	<1	< 0.1	< 0.1	< 0.1	0.114	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
4/26/2017	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
10/25/2017	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
4/25/2018	<1	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2

Table E.1. Summary of Pentachlorophenol and PAHs in groundwater, Old Midland Products Superfund Site.

_								rophenor and											
Cleanup Lev	Date Sampled rels (µg/L)	1 (T/) Pentachlorophenol	-i (π/6π) (π/6π) (π/6π)	ouene (µg/L) 240	V A V A V (μg/L) 370	Naphthalene (µg/L)	0 A/δπ) Acenaphthylene	(T/S Phenanthrene (T/S Phenanthrene	V Authracene 0081	(Lgu) Fluoranthene (Lgu) Fluoranthene	180 (µg/L) Pyrene	(µg/L) (µg/L) 0.2	operation of the control of the cont	[q] Benzo [p] (L) (Q) (Q) (Q) (Q) (Q) (Q) (Q) (Q) (Q) (Q	(Hg/L) Benzo [k] (Hg/L) Unoranthene	(µg/L) (µg/L) 0.2	$\begin{array}{c} \begin{array}{c} \text{m} \\ \text{fig} \\ \text{T} \end{array} \begin{array}{c} \text{monoid} \\ \text{T} \end{array}$	(Tanthracene *	7 Benzo [g,h,i] 7 perylene
MW-19D																			
7	7/15/1999	<100	< 50	258	276	<20	<20	673	213	654	414	125	110	49.2	32.3	41.9	<20	<20	<20
10	0/28/1999	<10	<5	2	5.72	<2	<2	7.4	5.4	83.5	76.4	19.1	17.3	9.88	3.32	6.53	<2	<2	<2
1	/20/2000	<10	<5	8.28	6.58	<2	<2	54.6	30.6	362	244	73.7	76.4	32.4	17.3	23.6	10	5.53	<2
4	1/20/2000	<10	<5	3.28	12.6	<2	<2	<2	<2	29	21.6	6.29	5.27	3.22	<2	2.22	<2	<2	<2
7	7/26/2000	<10	<5	3.47	12.8	<2	<2	6.19	4.03	92.5	66.7	17.3	17.4	9.35	3.43	6.17	4.76	<2	4.79
1	1/24/2001	<10	<5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
7	7/31/2001	<10	<5	30.2	39.5	<2	<2	31.3	15.5	50.1	37	12.2	12.4	6.83	5.59	4.64	<2	<2	<2
8	8/28/2002	<10	2.3	37	52	<2	<2	31	13	34	24	5.4	5.6	2.3	2.9	<5	2.1	<2	2.3
	3/4/2003	<10	<2	39	61	<2	<2	31	17	67	52	12	12	4.4	3.7	<5	<2	<2	<2
	3/27/2003	<10	<2	26	36	<2	<2	4.1	10	18	16	2.3	2.4	<2	<2	<5	<2	<2	<2
	2/26/2004	<10	<2	13	19	<2	<2	4.2	5.9	12	7.9	<2	<2	<2	<2	<5	<2	<2	<2
	3/31/2004	<10	<2	4.7	8	<2	<2	<2	4	7.1	4.5	<2	<2	<2	<2	<5	<2	<2	<2
	2/25/2005	<10	<2	15	19	<2	<2	5.7	7.2	14	9.1	<2	<2	<2	<2	<5	<2	<2	<2
	3/26/2005	<10	<2	5.2	7.1	<2	<2	2.5	3	7.3	3.7	<2	<2	<2	<2	<5	<2	<2	<2
	2/27/2006	<10	<2	15	22	<2	<2	4.2	6.2	13	7.9	<2	<2	<2	<2	<5	<2	<2	<2
	3/29/2006	<10	<2	18	24	<2	<2	4.5	8.1	18	11	<2	<2	<2	<2	<5	<2	<2	<2
	0/18/2006	<10	<2	<2	3.9	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	2/19/2006	<10	<2	<2	4.6	<2	<2	3.6	2.6	6.7	5.2	<2	<2	<2	<2	<5	<2	<2	<2
	3/20/2007		<2	<2	2.5	<2	<2	<2	<2	2.4	<2	<2	<2	<2	<2	<5	<2	<2	<2
	9/29/2008	<10																	
		<2	< 0.2	< 0.12	0.868	< 0.04	< 0.08	< 0.08	0.398	1.284	0.838	< 0.2	< 0.2	< 0.16	< 0.16	< 0.16	< 0.24	< 0.24	< 0.24
-	5/20/2009	<2	< 0.2	0.397	1.444	< 0.04	< 0.08	0.724	0.663	2.032	1.267	<0.2	0.207	< 0.16	< 0.16	< 0.16	< 0.24	< 0.24	< 0.24
	1/3/2009	<2	< 0.2	1.59	2.6	0.064	< 0.08	3.259	1.178	3.638	2.517	0.707	0.571	< 0.16	0.241	0.371	< 0.24	< 0.24	< 0.24
	5/4/2010	<2	< 0.2	0.279	1.598	0.051	0.107	0.34	0.344	0.1598	0.859	0.455	0.319	0.424	< 0.16	0.301	< 0.24	< 0.24	< 0.24
	0/11/2010	<1	< 0.1	0.24	1.01	< 0.08	< 0.08	0.396	0.419	1.64	1.13	0.209	0.256	0.369	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	4/7/2011	<1	< 0.1	0.553	1.58	< 0.08	< 0.08	0.942	0.468	2.05	1.27	0.31	0.289	0.219	< 0.16	0.174	< 0.2	< 0.16	< 0.16
	0/17/2011	<1	< 0.1	< 0.1	0.593	< 0.08	< 0.08	0.131	0.204	1.3	0.798	0.246	0.23	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	1/17/2012	<1	< 0.1	0.822	1.68	< 0.08	< 0.08	0.331	0.241	0.921	0.547	0.134	0.151	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	<0.16
	0/22/2012	<1	< 0.1	0.25	0.741	< 0.08	< 0.08	0.16	0.638	6.06	4.37	1.76	1.35	0.922	< 0.16	0.742	0.47	0.17	0.295
	5/5/2013	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	10/2/2013	<1	< 0.1	0.269	0.478	< 0.08	< 0.08	0.772(B)	0.326	1.4	0.98	0.295	0.238	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	1/22/2014	<1	0.283	5.97	5.51	0.113	0.238	10.6	4.39	25.1	14.4	4.21	3.63	1.01	< 0.16	1.63	0.471	< 0.16	0.439
	10/7/2014	<1	0.186	5.02	4.86	< 0.08	0.245	12.3	5.44	32.7	18.6	5.85	5.43	2.27	< 0.16	2.04	0.539	0.189	0.486
	1/14/2015	<1	< 0.1	1.20	1.40	< 0.08	< 0.08	0.988	0.524	1.36	0.782	0.223	0.184	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	1/13/2015	<1	< 0.1	0.309	0.549	< 0.08	< 0.08	0.951	0.359	1.40	0.961	0.253	0.314	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	4/5/2016	<1	< 0.1	0.940	1.260	< 0.08	< 0.1	1.57	0.348	0.91	0.637	< 0.1	0.164	< 0.16	< 0.16	< 0.16	< 0.2	0.158	< 0.16
10	0/26/2016	<1	< 0.1	0.954	1.10	0.129	< 0.08	2.45	0.590	2.93	2.39	0.682	0.668	< 0.16	< 0.16	0.216	< 0.2	< 0.16	< 0.16
4	1/26/2017	<1	< 0.1	2.13	2.70	< 0.08	0.09	2.85	0.810	2.25	1.56	0.644	0.630	0.264	< 0.16	0.273	< 0.2	< 0.16	< 0.16
10	0/25/2017	<1	< 0.1	0.61	0.67	< 0.08	< 0.08	2.38	0.606	3.62	2.43	0.942	0.905	0.257	0.207	0.35	< 0.2	< 0.16	< 0.16
4	1/25/2018	<1	< 0.2	0.68	0.95	< 0.2	< 0.2	0.33	< 0.2	0.76	0.38	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2

Table E.1. Summary of Pentachlorophenol and PAHs in groundwater, Old Midland Products Superfund Site.

Well	Date	Pentachlorophenol	Carbazole*	Fluorene	Acenaphthene	Naphthalene	Acenaphthylene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Benzo [a] anthracene	Chrysene	Benzo [b] fluoranthene	Benzo [k] fluoranthene	Benzo [a] pyrene	Indeno [1,2,3-cd] pyrene	Dibenzo [a,h] anthracene *	Benzo [g,h,i] ! perylene
ID	Sampled	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(µg/L)	(µg/L)	(μg/L)
Cleanup l	Levels (µg/L)	1		240	370	6.2	940	470	1800	1500	180	0.2	9.2	0.2	0.92	0.2	0.2		470
MW-20S																			
	7/15/1999	<10	<5	34.5	39.1	<2	<2	46.8	16.9	36.3	27.5	5.78	6.35	2.65	<2	2.34	<2	<2	<2
	10/28/1999	<10	<5	<2	2.89	<2	<2	<2	<2	5.11	4.66	<2	<2	<2	<2	<2	<2	<2	<2
	1/20/2000	<10	<5	3.13	4.5	<2	<2	6.87	<2	3.3	5.67	<2	<2	<2	<2	<2	<2	4.54	<2
	4/24/2000	<10	<5	<2	2.04	<2	<2	29	<2	3.56	3.1	<2	<2	<2	<2	<2	<2	<2	<2
	7/26/2000	<10	<5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
	1/25/2001	29.5	<5	13	23.1	21.7	<2	3.23	<2	<2	2.5	<2	<2	<2	<2	<2	<2	<2	<2
	7/31/2001	10.6	<5	9.28	17.8	3.73	<2	3.29	<2	3.15	<2	<2	<2	<2	<2	<2	<2	<2	<2
	8/28/2002	<10	<2	14	21	4.7	<2	6.8	4.5	14	12	3.8	3.7	2.7	2.5	<5	6.6	<2	7.5
	3/4/2003	32	3	38	61	25	2.5	14	5.2	9.8	8.3	<2	<2	<2	<2	<5	<2	<2	<2
	8/27/2003	22	<2	17	26	<2	<2	7.1	2.7	4.4	3.6	<2	<2	<2	<2	<5	<2	<2	<2
	2/27/2004	<10	<2	7.8	16	<2	<2	<2	<2	2.1	<2	<2	<2	<2	<2	<2	<2	<2	<2
	8/31/2004	95	3.6	27	45	<2	<2	15	3.4	2.9	<2	<2	<2	<2	<2	<5	<2	<2	<2
	2/25/2005	21	2.7	51	65	<2	2.2	24	8.6	9.2	5.4	<2	<2	<2	<2	<5	<2	<2	<2
	8/26/2005	22	<2	19	30	<2	<2	5	2.8	4.5	2.2	<2	<2	<2	<2	<5	<2	<2	<2
	2/27/2006	34	2.9	6.4	78	2.5	2.8	81	13	16	9.4	<2	<2	<2	<2	<5	<2	<2	<2
	8/29/2006	61	4.9	6.2	91	<2	3.6	49	8.7	10	5.2	<2	<2	<2	<2	<5	<2	<2	<2
	10/18/2006	<10	<2	<2	9.5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	12/20/2006	<10	<2	<2	3.7	<2	<2	<2	<2	3.8	3.1	<2	<2	<2	<2	<5	<2	<2	<2
	3/21/2007	<10	<2	<2	7.7	<2	<2	5.9	<2		4.1	<2	<2	<2	<2	<5	<2	<2	<2
	5/18/2009		<0.2	6.168				3.9 16		6.6			1.144		0.226		<0.24		
		<2			8.31	0.046	0.251		2.98	8.585	5.361	1.167		< 0.16		0.281		< 0.24	< 0.24
	11/3/2009	<2	<0.2	1.878	2.517	< 0.04	< 0.08	4.138	< 0.08	2.094	1.451	0.533	0.364	< 0.16	< 0.16	0.364	< 0.24	< 0.24	<0.24
	4/28/2010	<20	<2	22.5	23.6	0.413	1.045	51.1	7.678	25.1	14.4	3.865	2.998	3.929	1.6	1.927	2.4	<2.4	<2.4
	10/6/2010	<1	< 0.1	0.697	1.3	< 0.08	< 0.08	1.68	0.5	1.72	1.06	0.306	0.249	< 0.16	< 0.16	0.231	<0.2	< 0.16	< 0.16
	4/6/2011	<1	< 0.1	<0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	<0.2	< 0.16	< 0.16
	10/16/2011	<1	< 0.1	0.351	0.74	< 0.08	< 0.08	1.23	0.263	1.19	0.768	0.191	0.173	< 0.16	< 0.16	< 0.16	<0.2	< 0.16	<0.16
	4/16/2012	<1	< 0.1	0.753	1.32	< 0.08	< 0.08	1.84	0.333	1.77	1.14	0.363	0.336	< 0.16	< 0.16	< 0.16	<0.2	< 0.16	<0.16
	10/22/2012	<1	< 0.1	0.561	0.837	< 0.08	< 0.08	1.92	0.422	2.43	1.52	0.604	0.507	0.3	< 0.16	0.222	< 0.2	< 0.16	< 0.16
	5/2/2013	<1	0.384	17.8	20.6	0.115	0.564	41.7	5.92	26.7	15.4	4.48	4.01	0.908	< 0.16	0.586	0.283	< 0.16	0.277
	10/2/2013	<1	< 0.1	1.69	2.47	< 0.08	0.114	1.83(B)	0.397	1.58	1.23	0.558	0.507	0.182	< 0.16	0.217	< 0.2	< 0.16	< 0.16
	4/22/2014	<1	< 0.1	< 0.1	1.75	< 0.08	0.103	< 0.08	1.19	< 0.08	< 0.08	1.1	1	0.294	< 0.16	0.299	< 0.2	< 0.16	< 0.16
	10/8/2014	<1	< 0.1	2.15	2.08	< 0.08	0.182	5.34	1.13	4.49	3.26	1.57	1.51	1.05	< 0.16	0.828	0.285	< 0.16	0.281
	4/14/2015	<1	< 0.1	1.72	2.67	< 0.08	0.123	1.85	0.492	1.03	0.587	0.2	0.186	< 0.16	< 0.16	< 0.16	<2.0	< 0.16	< 0.16
	11/13/2015	<1	< 0.1	1.31	1.77	< 0.08	0.086	2.5	0.693	2.08	1.61	0.489	0.507	< 0.16	0.237	0.246	<2.0	< 0.16	< 0.16
	4/5/2016	<1	< 0.1	1.31	2.5	< 0.08	0.112	1.49	0.332	0.476	0.284	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	10/26/2016	<1	< 0.1	1.11	1.83	0.163(B)	< 0.08	0.922	0.271	0.474	0.342	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	4/25/2017	<1	0.104	1.42	1.87	< 0.08	0.1	1.78	0.326	1.1	0.782	0.301	0.282	0.265	< 0.16	0.202	< 0.2	< 0.16	< 0.16
	10/24/2017	<1	< 0.1	< 0.1	4.56	< 0.08	0.178	< 0.08	1.48	< 0.08	< 0.08	1.05	0.959	0.298	< 0.16	0.405	< 0.2	< 0.16	< 0.16
	4/24/2018	<1	< 0.2	0.79	0.91	< 0.2	< 0.2	0.87	< 0.2	0.42	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2

Table E.1. Summary of Pentachlorophenol and PAHs in groundwater, Old Midland Products Superfund Site.

Well ID	Date Sampled	βπ (T) Pentachlorophenol	(T/Carbazole*	Llnorene (Τ/S/H	Баду (Д. Acenaphthene	(T) Naphthalene	λα (V) Acenaphthylene	(T) Phenanthrene	(T/Anthracene	(T/S) Fluoranthene	(T/Sm)	(T) Benzo [a] anthracene	(T/an) (T/an)	Уб (T) fluoranthene	/б Т fluoranthene	(T) Benzo [a] pyrene	ndeno [1,2,3-cd] T pyrene	of Dibenzo [a,h] (7) anthracene *	க் Benzo [g,h,i] (7 perylene
	Levels (µg/L)	1	(Fg/ 2-)	240	370	6.2	940	470	1800	1500	180	0.2	9.2	0.2	0.92	0.2	0.2	(Fg/2)	470
_	Devels (µg/L)	1		240	370	0.2	740	470	1000	1500	100	0.2	7.2	0.2	0.72	0.2	0.2		470
MW-20D																			.
	7/21/1999	<10	<5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
	10/28/1999	<10	<5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
	10/28/1999	<10	<5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
	4/24/2000	<10	<5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
	7/26/2000	<11	<5.5	<2.2	<2.2	<2.2	<2.2	<2.2	<2.2	<2.2	<2.2	<2.2	<2.2	<2.2	<2.2	<2.2	<2.2	<2.2	<2.2
	1/25/2001	<10	<5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
	7/31/2001	<10	<5	<2	<2	<2	<2	2.31	<2	4.47	29.3	<2	<2	<2	<2	<2	<2	<2	<2
	8/28/2002	<10	<2	2.7	3.9	<2	<2	5.8	<2	4.4	3.1	<2	2.5	<2	<2	<5	<2	2.5	<2
	3/4/2003	<10	<5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	8/27/2003	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	2/27/2004	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	8/31/2004	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	2/25/2005	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	8/26/2005	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	2/27/2006	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	8/29/2006	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	10/18/2006	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	12/19/2006	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	3/21/2007	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	5/18/2009	<2	<0.2	< 0.12	< 0.12	< 0.04	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.2	< 0.2	< 0.16	< 0.16	< 0.16	< 0.24	< 0.24	< 0.24
	11/3/2009	<2	< 0.2	< 0.12	< 0.12	< 0.04	< 0.08	< 0.08	< 0.08	0.162	< 0.08	< 0.2	< 0.2	< 0.16	< 0.16	< 0.16	< 0.24	< 0.24	< 0.24
	4/28/2010	<2	< 0.2	1.335	1.239	0.048	< 0.08	3.934	0.665	1.421	0.793	< 0.2	< 0.2	< 0.16	< 0.16	< 0.16	< 0.24	< 0.24	< 0.24
	10/6/2010	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	<0.2	< 0.16	< 0.16
	4/6/2011	<1	< 0.1	1.03	1.66	< 0.08	< 0.08	1.81	0.344	0.65	0.472	<0.1	<0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	10/16/2011	<1	<0.1	<0.1	<0.1	< 0.08	< 0.08	0.116	< 0.08	0.133	< 0.08	<0.1	<0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	4/17/2012	<1	<0.1	<0.1	<0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	<0.1	<0.1	< 0.16	< 0.16	< 0.16	<0.2	< 0.16	<0.16
	10/21/2012	<1	<0.1	<0.1	<0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	<0.1	<0.1	< 0.16	< 0.16	< 0.16	<0.2	< 0.16	<0.16
	5/2/2013	<1	<0.1	<0.1	<0.1	< 0.08	< 0.08	<0.08	< 0.08	< 0.08	< 0.08	<0.1	<0.1	< 0.16	< 0.16	< 0.16	<0.2	< 0.16	< 0.16
	10/2/2013	<1	<0.1	<0.1	<0.1	< 0.08	< 0.08	0.091(B)	< 0.08	< 0.08	< 0.08	<0.1	<0.1	< 0.16	< 0.16	< 0.16	<0.2	< 0.16	<0.16
	4/21/2014	<1	<0.1	<0.1	<0.1	< 0.08	< 0.08	<0.091(B)	< 0.08	< 0.08	< 0.08	<0.1	<0.1	< 0.16	< 0.16	< 0.16	<0.2	< 0.16	<0.16
	10/7/2014	<1	<0.1	<0.1	<0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	<0.1	<0.1	< 0.16	< 0.16	< 0.16	<0.2	< 0.16	<0.16
	4/14/2015	<1	<0.1	<0.1	<0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	<0.1	<0.1	< 0.16	< 0.16	< 0.16	<0.2	< 0.16	<0.16
	11/11/2015	<1	<0.1	<0.1	<0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	<0.1	<0.1	< 0.16	< 0.16	< 0.16	<0.2	< 0.16	<0.16
	4/4/2016							< 0.08	<0.08								<0.2		
		<1	<0.1	<0.1	<0.1	< 0.08	< 0.1			< 0.08	< 0.08	<0.1	<0.1	< 0.16	< 0.16	< 0.16		< 0.16	<0.16
	10/25/2016	<1	< 0.1	<0.1	<0.1	0.110	< 0.08	<0.08	<0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	<0.16
	4/25/2017	<1	< 0.1	<0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	<0.2	< 0.16	<0.16
	10/24/2017	<1	<0.1	<0.1	<0.1	< 0.08	< 0.08	< 0.08	<0.08	< 0.08	< 0.08	<0.1	<0.1	<0.16	<0.16	<0.16	<0.2	<0.16	<0.16
	4/24/2018	<1	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2

Table E.1. Summary of Pentachlorophenol and PAHs in groundwater, Old Midland Products Superfund Site.

Well ID S Cleanup Leve	Date Sampled els (µg/L)	1 (T Pentachlorophenol	- ('Τ'Sπ') ('Tarbazole*	euo. (µg/L) 240	μg/L) 370	(L) Naphthalene (P) (A) (P) (B) (B) (B) (B) (B) (B) (B) (B) (B) (B	(L) Acenaphthylene (P) 400	(L) Phenanthrene (A/D) A70	(L/Qu) (M/Qu) 0081	(L) Fluoranthene (T/San)	(hg/L) Nyrene	(Δ/Z Benzo [a] anthracene 0.2	Chrysene (mg/L)	gμ Benzo [b] μοταπτhene 0.2	(T/gu) (A/gu) (A/gu) (A/gu) (Benzo [k]	(L) Benzo [a] pyrene 0.2	70 m Indeno [1,2,3-cd] 7 T pyrene	π Dibenzo [a,h] [¬ anthracene *	han Benzo [g,h,i] (T) perylene
MW-21S																			
10	0/11/2006	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
12	2/20/2006	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
3/	/20/2007	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
10	0/15/2008	<2	< 0.2	< 0.12	< 0.12	< 0.04	< 0.08	0.16	< 0.08	0.162	< 0.08	< 0.2	< 0.2	< 0.16	< 0.16	< 0.16	< 0.24	< 0.24	< 0.24
5/	5/22/2009	<2	< 0.2	< 0.12	< 0.12	< 0.04	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.2	< 0.2	< 0.16	< 0.16	< 0.16	< 0.24	< 0.24	< 0.24
1	1/9/2009	<2	< 0.2	< 0.12	< 0.12	< 0.04	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.2	< 0.2	< 0.16	< 0.16	< 0.16	< 0.24	< 0.24	< 0.24
4/	/29/2010	<2	< 0.2	< 0.12	< 0.12	< 0.04	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.2	< 0.2	< 0.16	< 0.16	< 0.16	< 0.24	< 0.24	< 0.24
10	0/4/2010	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
4	4/5/2011	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
10	0/12/2011	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
4/	/11/2012	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
10	0/18/2012	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
4/	/30/2013	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
10	0/1/2013	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
4/	/22/2014	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
10	0/8/2014	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
4/	/15/2015	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
11	1/11/2015	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
4	4/6/2016	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
10	0/26/2016	<1	< 0.1	< 0.1	< 0.1	0.155(B)	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
4/	/25/2017	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
10	0/23/2017	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
4/	/23/2018	<1	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2

Table E.1. Summary of Pentachlorophenol and PAHs in groundwater, Old Midland Products Superfund Site.

			2							
Dhen anthrene (μg/L) (μg/L) (μg/L) (μg/L) (470 (1800) (764 (1800) (1800	Hnoranthene (μg/L)	(J80) Pyrene	(T) (BB) (BB) (BB) (BB) (BB) (BB) (BB) (Chrysene (mg/L) 9.2	β Benzo [b] (πg/L) 0.2	(R) Benzo [k] (A/gu) fluoranthene	(L) Benzo [a] byrene (0.2)	7.0 m Indeno [1,2,3-cd] Tpyrene	் Dibenzo [a,h] (ர anthracene *	70 Benzo [g,h,i] 71 perylene
<2 <2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
<2 <2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
<2 <2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
0.12 < 0.08	0.12	< 0.08	< 0.2	< 0.2	< 0.16	< 0.16	< 0.16	< 0.24	< 0.24	< 0.24
< 0.08	< 0.08	< 0.08	< 0.2	< 0.2	< 0.16	< 0.16	< 0.16	< 0.24	< 0.24	< 0.24
< 0.08	< 0.08	< 0.08	< 0.2	< 0.2	< 0.16	< 0.16	< 0.16	< 0.24	< 0.24	< 0.24
< 0.08	< 0.08	< 0.08	< 0.2	< 0.2	< 0.16	< 0.16	< 0.16	< 0.24	< 0.24	< 0.24
< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
< 0.08 < 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
< 0.08 < 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
< 0.08 < 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
< 0.08 < 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
< 0.2 < 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
	(µg/L) (µg/L) 470 1800 <2	(µg/L) (µg/L) (µg/L) 470 1800 1500 <2	(µg/L) (µg/L) (µg/L) (µg/L) 470 1800 1500 180 2 1800 1500 180 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0.08	(µg/L) (µg/L)	(µg/L) (µg/L)	(µg/L) (µg/L)	(µg/L) (µg/L)	The part of the	The part of the	The part of the

Table E.1. Summary of Pentachlorophenol and PAHs in groundwater, Old Midland Products Superfund Site.

		Pentachlorophenol	Carbazole*	rene	enaphthene	Naphthalene	enaphthylene	Phenanthrene	Anthracene	Fluoranthene	ne	o [a] anthracene	Chrysene	Benzo [b] fluoranthene	Benzo [k] fluoranthene	o [a] pyrene	no [1,2,3-cd] ne	enzo [a,h] hracene *	o [g,h,i] lene
Well	Date	Pent	Cart	Fluorene	Асеп	Napl	Acen	Pher	Anth	Fluo	Pyrene	Benz	Chry	Benzo fluorai	Benzo fluorai	Benzo	Indeno pyrene	Dibe	Benzo [g, perylene
ID	Sampled	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$
Cleanup Le	evels (μg/L)	1		240	370	6.2	940	470	1800	1500	180	0.2	9.2	0.2	0.92	0.2	0.2		470
MW-22S																			
	10/19/2006	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	12/19/2006	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	3/22/2007	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	9/28/2008	<2	< 0.2	< 0.12	< 0.12	< 0.04	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.2	< 0.2	< 0.16	< 0.16	< 0.16	< 0.24	< 0.24	< 0.24
	5/19/2009	<2	< 0.2	< 0.12	< 0.12	< 0.04	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.2	< 0.2	< 0.16	< 0.16	< 0.16	< 0.24	< 0.24	< 0.24
	11/3/2009	<2	< 0.2	< 0.12	< 0.12	< 0.04	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.2	< 0.2	< 0.16	< 0.16	< 0.16	< 0.24	< 0.24	< 0.24
	4/29/2010	<20	< 0.2	< 0.12	0.132	< 0.04	< 0.08	0.081	< 0.08	< 0.08	< 0.08	< 0.2	< 0.2	< 0.16	< 0.16	< 0.16	< 0.24	< 0.24	< 0.24
	10/5/2010	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	4/7/2011	<1	< 0.1	0.113	0.115	< 0.08	< 0.08	0.374	0.082	0.434	0.197	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	10/16/2011	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	4/16/2012	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	10/21/2012	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	5/1/2013	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	10/1/2013	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	4/23/2014	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	10/7/2014	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	4/15/2015	<1	< 0.1	< 0.1	0.122	< 0.08	< 0.08	0.090	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	11/13/2015	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	4/6/2016	<1	< 0.1	< 0.1	< 0.1	0.104	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	10/28/2016	<1	< 0.1	< 0.1	< 0.1	0.255	< 0.08	0.104	< 0.08	0.125	0.136	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	4/25/2017	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	10/24/2017	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	4/23/2018	<1	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2

Table E.1. Summary of Pentachlorophenol and PAHs in groundwater, Old Midland Products Superfund Site.

Well ID Cleanup I	Date Sampled Levels (µg/L)	1 (g) Pentachlorophenol	π) (Tarbazole*	eueueueueueueueueueueueueueueueueueueu	Acenaphthene (Pg/L) 370	μος (L) Naphthalene 6.2	(L) Acenaphthylene	(L) Dhenanthrene (A/D) 470	(A/Sm) Anthracene	(T/Sm) Fluoranthene	(T) Pyrene (180	π) (πg/L) (πg/L) (πg/L)	Chrysene (πg/Γ)	αμβευχο [b] (π) Benzo [b] 0.2	(T/ga) (T/ga) (T/ga) (T) (T) (T) (T) (T) (T) (T) (T) (T) (T	(T) Benzo [a] pyrene	7. The pyrene [1,2,3-cd]	The Dibenzo [a,h] The Anthracene *	70 Benzo [g,h,i]
MW-22D																			
	10/19/2006	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	12/19/2006	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	3/22/2007	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	9/26/2008	<2	< 0.2	0.176	1.864	< 0.04	< 0.08	< 0.08	< 0.08	0.106	< 0.08	< 0.2	< 0.2	< 0.16	< 0.16	< 0.16	< 0.24	< 0.24	< 0.24
	5/19/2009	<2	< 0.2	< 0.12	1.284	< 0.04	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.2	< 0.2	< 0.16	< 0.16	< 0.16	< 0.24	< 0.24	< 0.24
	11/3/2009	<2	< 0.2	0.385	2.43	< 0.04	< 0.08	0.41	0.152	0.352	0.195	< 0.2	< 0.2	< 0.16	< 0.16	< 0.16	< 0.24	< 0.24	< 0.24
	4/29/2010	<10	< 0.2	0.632	1.124	< 0.2	< 0.08	2.512	0.368	1.24	0.694	< 0.2	< 0.2	< 0.16	< 0.16	< 0.16	< 0.24	< 0.24	< 0.24
	10/5/2010	<1	< 0.1	< 0.1	0.194	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	4/7/2011	<1	< 0.1	< 0.1	0.492	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	10/16/2011	<1	< 0.1	< 0.1	0.117	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	4/16/2012	<1	< 0.1	< 0.1	0.471	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	10/21/2012	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	5/1/2013	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	10/1/2013	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	4/23/2014	<1	< 0.1	< 0.1	0.209	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	10/7/2014	<1	< 0.1	< 0.1	0.286	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	4/16/2015	<1	< 0.1	< 0.1	0.314	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	11/13/2015	<1	< 0.1	< 0.1	<.01	< 0.08	< 0.08	0.086	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	4/6/2016	<1	< 0.1	< 0.1	< 0.1	0.146	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	10/28/2016	<1	< 0.1	< 0.1	< 0.1	0.129	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	4/25/2017	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	10/24/2017	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	4/24/2018	<1	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2

Table E.1. Summary of Pentachlorophenol and PAHs in groundwater, Old Midland Products Superfund Site.

Well ID Cleanup I	Date Sampled .evels (µg/L)	π') (7) Pentachlorophenol	ள் 7 Carbazole*	eme (µg/L) 240	(L/gm) (D/gm) 370	(μg/L) (μg/L) 6.2	(L) Acenaphthylene (A) Acenaphthylene	(T/gm) (A/gm) 470	(L/Sah) (M/Sah) 0081	(L)	(hg/L) 180	(T) (T) (Benzo [a] anthracene	(µg/L) 9.2	Benzo [b] (μg/L) 0.2	(f) Benzo [k] (f) Benzo [k] (h) Thoranthene	(ng/L) (2) (ng/L	7. The second of	m Dibenzo [a,h] T anthracene *	o D Benzo [g,h,i]
MW-23																			
	10/18/2006	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	12/19/2006	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	3/22/2007	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	9/25/2008	<2	< 0.2	< 0.12	< 0.12	< 0.04	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.2	< 0.2	< 0.16	< 0.16	< 0.16	< 0.24	< 0.24	< 0.24
	5/19/2009	<2	< 0.2	< 0.12	< 0.12	< 0.04	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.2	< 0.2	< 0.16	< 0.16	< 0.16	< 0.24	< 0.24	< 0.24
	11/4/2009	<2	< 0.2	< 0.12	< 0.12	< 0.04	< 0.08	< 0.08	< 0.08	0.138	< 0.08	< 0.2	< 0.2	< 0.16	0.16	< 0.16	< 0.24	< 0.24	< 0.24
	4/29/2010	<2	< 0.2	< 0.12	< 0.12	< 0.04	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.2	< 0.2	< 0.16	< 0.16	< 0.16	< 0.24	< 0.24	< 0.24
	10/11/2010	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	4/6/2011	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	10/13/2011	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	4/10/2012	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	10/17/2012	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	5/1/2013	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	10/1/2013	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	4/23/2014	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	10/8/2014	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	4/15/2015	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	11/12/2015	<1	< 0.1	0.101	0.126	< 0.08	< 0.08	0.155	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	4/5/2016	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	10/25/2016	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	4/24/2017	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	10/23/2017	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	4/23/2018	<1	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2

Table E.1. Summary of Pentachlorophenol and PAHs in groundwater, Old Midland Products Superfund Site.

										,round water									
Well ID	Date Sampled	π') (7) Pentachlorophenol	(Tarbazole*	(μg/L)	Дд Асепарhthene	(T) Naphthalene	Establisher (T) Acenaphthylene	β Phenanthrene (T	(T/Anthracene	(Thoranthene) (Σ	Mg/L)	H) Benzo [a] anthracene	(Trysene	க் Benzo [b] Tfluoranthene	β Benzo [k] (T fluoranthene	(JZ) Benzo [a] pyrene	ndeno [1,2,3-cd] T pyrene	En Dibenzo [a,h] T anthracene **	க் Benzo [g,h,i] (7 perylene
	-		(μg/L)																
_	Levels (µg/L)	1		240	370	6.2	940	470	1800	1500	180	0.2	9.2	0.2	0.92	0.2	0.2		470
RW-1																			
	7/19/1999	7990	3020	24000	35700	24200	885000	77500	14900	41400	22100	7340	6460	1240	2290	3180	<400	<400	<400
	10/29/1999	24000	13600	127000	206000	164000	<4000	436000	70500	137000	123000	28800	24800	<4000	11000	12900	n/a	<4000	8760
	1/25/2000	<200000	13400	143000	207000	185000	<40000	413000	60400	179000	129000	29600	25600	<40000	37600	37300	<40000	<40000	<40000
	4/25/2000	3690	3960	32400	45400	37500	861	92600	13800	48700	22200	6560	6360	994	2020	2700	1070	850	989
	7/27/2000	14500	7460	82400	79700	78100	2020	151000	37300	81700	79900	16400	14300	2140	3530	6030	4700	3810	4310
	1/31/2001	3910	61.7	226	413	810	9.88	419	75.2	106	12.5	23.1	23.2	5.54	6.93	8.61	<2	<2	<2
	7/30/2001	2280	283	1230	1780	1850	422	3420	596	1530	1080	265	245	53.3	82.2	130	23.3	< 20	<20
	8/28/2002	2100	170	170	340	1500	< 20	270	44	67	48	< 20	< 20	< 20	< 50	< 20	< 20	< 20	<20
	3/5/2003	1300	110	530	780	960	14	1200	190	560	470	85	76	27	26	30	<10	<10	<10
	8/27/2003	1400	160	550	990	2000	< 20	1300	210	550	430	88	90	40	< 50	28	<20	<20	<20
	2/25/2004	1200	<200	5900	8300	6700	<200	18000	2800	8200	5300	1300	1200	490	< 500	400	<200	<200	<200
	8/24/2004	<20000	12000	110000	150000	130000	<4000	300000	51000	150000	100000	25000	23000	9900	<10000	8200	<4000	<4000	<4000
	2/21/2005	<5000	2200	27000	36000	28000	<1000	72000	12000	34000	23000	5700	5400	<1000	<3000	1900	<1000	<1000	<1000
	8/22/2005	300	68	730	1100	52	<40	2000	340	1000	660	180	200	92	<100	90	56	52	82
	2/21/2006	760	320	1200	1800	2100	<100	3200	550	1500	890	230	220	<100	<300	120	<100	<100	<100
	8/21/2006	<2000	1500	17000	22000	17000	<400	46000	7800	23000	16000	3900	3500	1400	1200	1200	530	<400	<400
	9/27/2006			23		17000							2					<2	
	12/19/2006	<10	<2	23 11	54 26		<2 <2	27	5.1	20	13 4	2.1		<2	<2	<5	<2 <2		<2
		<10	<2		26	16 70		11	2.1	8		<2	<2	<2	<2	<5		<2	<2
	3/21/2007	<10	7.8	38	81	78	<2	40	38	14	9.4	2.1	2.1	<2	<2	<5	<2	<2	<2
	10/8/2008	<2	< 0.2	< 0.12	3.44	< 0.04	0.108	< 0.08	0.164	1.864	2.88	< 0.2	< 0.2	< 0.16	< 0.16	0.404	0.258	<24	0.304
	5/22/2009	<2	7.788	61.6	150	1.212	0.955	52	4.884	1.03	5.158	0.351	0.362	< 0.16	< 0.16	0.167	< 0.24	<24	< 0.24
	11/5/2009	<200	92	174	299	698	<8	299	37	170	128	34.7	27.8	<16	24.3	25.7	<24	<24	<24
	4/29/2010	<20	14.4	93.5	187	7.86	1.183	52.1	5.949	31.1	15.2	3.083	2.87	5.314	<1.6	6.032	<2.4	<2.4	<2.4
	10/12/2010	<10	12.5	61.9	127	1.89	< 0.8	17	2.86	<0.8	7.2	<1	<1	1.73	<1.6	1.72	<2	<1.6	<1.6
	4/7/2011	<10	17	94.1	200	9.29	3.15	46	10.6	24.8	10.8	1.46	1.11	1.77	<1.6	<1.6	<2	<1.6	<1.6
	10/13/2011	<10	12	78.5	147	2.72	1.08	10.7	7.31	19.3	10	<1	<1	<1.6	<1.6	<1.6	<2	<1.6	<1.6
	4/19/2012	<10	11.3	86.3	192	3.98	0.866	59	2.71	12	6.32	<1	<1	<1.6	<1.6	<1.6	<2	<1.6	<1.6
	10/23/2012	<10	18.6	83.7	166	4.63	1.22	16.3	6.39	16.4	9.04	1.21	<1	<1.6	<1.6	<1.6	<2	<1.6	<1.6
	5/7/2013	<10	21.1	61.7	131	4.4	2.12	52.3	5.77	12.9	7.28	<1	<1	<1.6	<1.6	<1.6	<2	<1.6	<1.6
	10/2/2013	<10	14.6	48.1	94.7	6.58	1.85	23.8(B)	7.19	19.4	11.5	1.69	1.2	<1.6	<1.6	<1.6	<2	<1.6	<1.6
	4/23/2014	<10	26.4	70.5	161	10.4	1.36	76	6.32	16	8.35	1.2	1.03	<1.6	<1.6	<1.6	<2	<1.6	<1.6
	10/8/2014	<10	12.8	37.7	80.7	3.48	1.12	14	4.06	10.2	5.95	<1	<1	<1.6	<1.6	<1.6	<2	<1.6	<1.6
	4/15/2015	<10	22.8	81.4	178	27.6	0.864	73.5	4.31	16.4	8.23	<1	<1	<1.6	<1.6	<1.6	<2	<1.6	<1.6
	11/12/2015	<10	11.6	51.0	107	5.05	1.77	25.0	7.40	15.7	9.14	<1	1.65	<1.6	<1.6	<1.6	<2	<1.6	<1.6
	4/6/2016	<1	11.5	70.5	145	4.9	1.71	83.3	8.39	20.7	14.2	2.48	2.37	<1.6	<1.6	<1.6	<2	<1.6	<1.6
	10/27/2016	<1	4.22	62.4	120	5.66	1.47	26.6(B)	5.72	25.3	13.5	2.72	2.72	<1.6	<1.6	<1.6	<2	<1.6	<1.6
	4/27/2017	<10	15.1	54.3	120	1.74	1.7	46.3	5.95	12.6	7.58	<1	<1	<1.6	<1.6	<1.6	<2	<1.6	<1.6
	10/26/2017	<10	23.6	61.5	122	5.78	1.69	39.1	7.83	22.4	11.2	1.39	1.3	<1.6	<1.6	<1.6	<2	<1.6	<1.6
	4/25/2018	<10	15.6	103.0	184	2.47	<2	81.4	5.39	24.7	25.1	5.5	4.94	<2	2.61	2.34	<2	<2	<2
<u> </u>	20, 2010																		

Table E.1. Summary of Pentachlorophenol and PAHs in groundwater, Old Midland Products Superfund Site.

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	*
The Sampled (lgg/L)	470 <400 <400 6.17 10.8 <40000 <4000 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <10 <10 <10 <10
RW-2 7/19/1999 9390 2970 19500 26000 19600 731 78100 12200 2760 18600 6540 5790 2780 1120 2010 834 10/29/1999 <10 <5 119 238 4.88 3.59 335 62.3 206 128 53.6 53.4 38.6 14.5 28.3 12.5 1/25/2000 <200000 <100000 11900 16900 130000 <40000 341000 48100 143000 102000 24800 19900 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000 <40000	<400 <400 6.17 10.8 <40000 <40000 <2 <2 <2 <2 5.62 <2 <2 <2 <2 <2 <2 <10 <10 <10 <10 <10
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6.17 10.8 <40000 <40000 <2 <2 <2 <2 5.62 <2 <2 <2 <2 <2 <2 <10 <10 <10 <10
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6.17 10.8 <40000 <40000 <2 <2 <2 <2 5.62 <2 <2 <2 <2 <2 <2 <10 <10 <10 <10
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6.17 10.8 <40000 <40000 <2 <2 <2 <2 5.62 <2 <2 <2 <2 <2 <2 <10 <10 <10 <10
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<0000 <40000 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	<2 <2 <2 <5.62 <2 <2 <2 <2 <2 <2 <2 <10 <10 <10 <10 <10
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<2 5.62 <2 <2 <2 <2 <2 <2 <10 <10 <10 <10
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<2 <2 <2 <2 <2 <2 <10 <10 <10 <10
7/30/2001 132 <5 127 272 5.38 3.17 137 14.9 34.4 21.7 2.96 2.62 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <20 <10 <10 <10 <10
8/28/2002 130 82 140 360 440 5.6 240 23 27 13 <2	<2 <20 <10 <10 <10 <10
3/5/2003	<10 <10 <10 <10
8/27/2003 76 140 280 530 920 <10 650 90 240 170 34 34 12 15 <30 <10 2/25/2004 78 75 <2 270 390 5.5 <2 28 66 42 9.2 8.8 3.6 2.6 <5 <2 8/24/2004 110 120 130 290 880 <20 170 <20 37 22 <20 <20 <20 <20 <20 <50 <50 <20	<10 <10
2/25/2004 78 75 <2 270 390 5.5 <2 28 66 42 9.2 8.8 3.6 2.6 <5 <2 8/24/2004 110 120 130 290 880 <20 170 <20 37 22 <20 <20 <20 <20 <50 <50 <20	
8/24/2004 110 120 130 290 880 <20 170 <20 37 22 <20 <20 <20 <20 <50 <20	
	<20 <20
2/21/2005 <100 160 350 650 1300 <20 700 99 260 180 41 39 <20 <20 <50 <20	<20 <20
8/22/2005 <50 130 130 290 570 <10 160 22 33 19 <10 <10 <10 <10 <30 <10	<10 <10
2/21/2006 <50 130 140 360 750 <10 160 19 24 13 <10 <10 <10 <10 <30 <10	<10 <10
8/21/2006 <200 70 170 330 580 <40 330 41 110 78 <40 <40 <40 <40 <40 <40 <40 <	<40 <40
9/27/2006 <50 11 98 180 65 <10 140 20 61 40 <10 <10 <10 <10 <30 <10	<10 <10
12/21/2006 <10 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	<2 <2
3/21/2007 <10 8.9 64 140 <2 2.2 61 12 31 22 4.4 4 <2 2.2 <5 <2	<2 <2
10/10/2008 <2 <0.12 0.166 <0.04 <0.8 0.658 0.208 1.294 0.892 0.628 0.294 0.34 0.238 0.51 <0.24	<0.24 <0.24
11/5/2009 <20 32.7 12 26 <0.4 0.85 14 6.18 80 42.6 12.4 9.73 <1.6 4.8 5.7 <2.4	2.7 2.9
4/29/2010 <20 <2 20.6 29 5.758 1.22 62.8 10 90.6 56.1 13.5 11.9 15 <1.6 18 3.468	<2.4 3.34
10/12/2010 <10 5.27 33.1 68.3 1.52 <0.8 3.92 3.87 103 75.7 18.5 12.4 16.4 <1.6 15.8 <2	<1.6 1.75
47/2011 <1 <0.1 <0.1 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 <0.	<0.16 <0.16
10/18/2011 <1 3.59 28.9 59.2 3.4 0.825 6.57 3.38 13.2 6.12 0.477 0.378 0.369 <0.16 0.248 0.229	<0.16 <0.16
4/19/2012 <10 <1 <1 1.66 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <1 <1 <1.6 <1.6 <1.6 <2	<1.6 <1.6
10/23/2012 <10 <1 2.29 8.38 <0.8 <0.8 <0.8 <0.8 <2.26 1.28 <1 <1 <1.6 <1.6 <1.6 <2	<1.6 <1.6
577/2013 <10 <1 12.6 25.6 1.41 <0.8 9.29 1.5 3.23 1.8 <1 <1 <1.6 <1.6 <1.6 <2	<1.6 <1.6
	<0.178 <0.178
4/21/2014 Flooded below grade surface completion, therefore well was not sampled.	
10/8/2014 <1 1.06 10.3 20.6 0.201 0.397 3.78 2.08 13.9 7.69 2.09 1.46 0.819 <0.16 0.555 0.262	< 0.16 0.241
4/13/2015 Flooded below grade surface completion, therefore well was not sampled.	
11/13/2015 <1 0.165 1.15 3.31 <0.1 0.119 <0.08 0.128 0.124 0.483 <0.1 0.178 0.209 <0.16 0.215 <0.2	< 0.16 0.241
4/5/2016 Flooded below grade surface completion, therefore well was not sampled.	0.271
10/27/2016 <1 0.67 7.31 15.8 NR <0.08 0.110(B) 1.06 NR NR 0.307 0.287 <0.16 <0.16 <0.16 <0.2	<0.16 <0.16
4/24/2017 Flooded below grade surface completion, therefore well was not sampled.	
10/26/2017 <1 0.493 1.09 2.39 <0.08 <0.08 0.205 0.17 1.11 0.378 0.106 0.102 <0.16 <0.16 <0.16 <0.2	<0.16 <0.16
4/23/2018 Flooded below grade surface completion, therefore well was not sampled.	

Table E.1. Summary of Pentachlorophenol and PAHs in groundwater, Old Midland Products Superfund Site.

Well ID Cleanup	Date Sampled Levels (µg/L)	(T) Pentachlorophenol	(π) Carbazole*	ones (µg/L) 240	A Acenaphthene (L/g/h)	Naphthalene Ng/L)	(T/A Acenaphthylene (T/A)	(Topical Phenanthrene Phenanthrene	(L)(Sqq) Anthracene	Llnoranthene (L/g/L) 1500	180 (J/Bd) yrene	(µg/L) (µg/L) 0.2	ouesschu Chrysene (mg/L) 9.2	Benzo [b] (µg/L) 0.2	(L) Benzo [k] Benzo [k] (L)	Benzo [a] byrene (πg/L) 0.2	7.0 (T) pyrene	前 bibenzo [a,h] 「才anthracene **	A Benzo [g,h,i] 710 perylene
RW-3																			
	7/19/1999	6210	2090	11800	16400	14700	<400	29100	6970	18600	12600	4000	3120	1450	601	1100	<400	<400	<400
	10/29/1999	<10	11.7	42.6	94.9	3.15	<2	92.6	18.9	66.5	33.5	12	11.6	8.29	2.76	6.38	<2	<2	<2
	1/25/2000	<10000	1110	12000	18000	15600	<2000	36600	5250	15800	11400	2410	2350	1930	<2000	2070	<2000	<2000	<2000
	4/25/2000	<100	< 50	250	308	35.8	<20	656	134	370	170	74.5	78.6	38.2	< 20	33	54.4	<20	63.9
	7/27/2000	<10	<5	89.2	81.4	2.8	<2	377	67.5	135	198	42.7	37.7	17.8	6.23	13.2	8.22	5.16	7.37
	1/31/2001	20.3	<5	17.7	48.3	8.73	<2	13.1	3.42	3.89	5.65	<2	<2	<2	<2	<2	<2	<2	<2
	7/30/2001	<10	<5	20	52.5	7.94	<2	2.32	3.04	13	7.28	<2	<2	<2	<2	<2	<2	<2	<2
	8/28/2002	<10	10	42	65	24	<2	98	16	28	13	<2	<2	<20	<20	< 50	<2	<2	<20
	3/5/2003	20	<2	5.8	14	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	8/27/2003	<10	28	59	120	100	2.7	84	15	30	15	<2	<2	<2	<2	<5	<2	<2	<2
	2/25/2004	<10	11	28	70	53	2.9	31	5	15	7.5	<2	<2	<2	<2	<5	<2	<2	<2
	8/24/2004	<10	22	52	110	10	<2	46	7.2	18	9.1	<2	<2	<2	<2	<5	<2	<2	<2
	2/21/2005	<10	4.2	16	46	19	<2	6	2.1	6.8	4	<2	<2	<2	<2	<5	<2	<2	<2
	8/22/2005	<10	13	17	61	<2	<2	<2	<2	10	5.6	<2	<2	<2	<2	<5	<2	<2	<2
	2/21/2006	<10	21	46	93	7.6	<2	31	7.3	18	8.8	<2	<2	<2	<2	<5	<2	<2	<2
	8/21/2006	<10	9.9	23	56	7.3	<2	15	3.1	8.8	4.8	<2	<2	<2	<2	<5	<2	<2	<2
	10/1/2006	<10	<2	11	20	<2	<2	6	<2	8.3	4.9	<2	<2	<2	<2	<5	<2	<2	<2
	12/21/2006	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	3/21/2007	<10	<2	<2	2.8	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	10/9/2008	<2	< 0.2	< 0.12	< 0.12	< 0.04	< 0.08	0.138	< 0.08	0.1	< 0.08	< 0.2	<2	< 0.16	< 0.16	< 0.16	< 0.24	< 0.24	< 0.24
	11/10/2009	<2	< 0.2	< 0.12	0.38	< 0.04	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.2	< 0.2	< 0.16	< 0.16	< 0.16	< 0.24	< 0.24	< 0.24
	10/11/2010	<1	< 0.1	0.953	4.81	< 0.08	< 0.08	< 0.08	0.208	0.713	0.371	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	4/13/2011	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	10/18/2011	<1	< 0.1	3.06	13.9	< 0.08	0.144	< 0.08	< 0.08	< 0.08	< 0.08	<0.1	<0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	<0.16
	5/8/2013	<1	0.135	1.32	< 0.1	< 0.08	< 0.08	< 0.08	0.127	0.194	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	<0.16
	10/3/2013	<1	< 0.1	0.161	1.23	< 0.08	< 0.08	< 0.08	< 0.08	0.096(B)	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	4/21/2014		ooded below	_	•			•	0.150	0.522	0.245	-0.1	.0.1	.0.16	.0.16	-0.16	-0.2	-0.16	.0.16
	10/7/2014	<1	< 0.1	<0.1	2.82	< 0.08	< 0.08	< 0.08	0.158	0.523	0.245	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	4/13/2015		ooded below	~	•			•	0.007	0.000	0.122	-0.1	.0.1	.0.17	.0.17	.0.1.6	.0.0	.0.17	.0.1.6
	11/13/2015	<1	< 0.1	<0.1	1.67	<0.08	< 0.08	0.237 (B)	0.097	0.283	0.133	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	4/5/2016		ooded below	_	•			•	0.120	0.261	0.164	-0.1	.0.1	.0.16	.0.16	-0.16	-0.2	-0.16	.0.16
	10/27/2016 4/24/2017	<10	13.6	<0.1	1.48	<0.08	< 0.08	<0.08	0.128	0.261	0.164	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
			ooded below <0.1	grade surfa	ce completi 2.1	on, therefor <0.08	e well was i	not sampled. <0.08	0.202	0.962	0.521	< 0.1	< 0.1	<0.16	<0.16	< 0.16	< 0.2	<0.16	<0.16
	10/25/2017	<1							0.303	0.962	0.521	<0.1	<0.1	< 0.16	< 0.16	<0.10	<0.2	< 0.16	< 0.16
	4/23/2018	Flo	ooded below	grade surfa	ce completi	on, therefor	e well was i	not sampled.											

Table E.1. Summary of Pentachlorophenol and PAHs in groundwater, Old Midland Products Superfund Site.

												<u>ə</u>							
Well ID Cleanun	Date Sampled Levels (ug/L)	α γ Pentachlorophenol	π) (T/Carbazole*	(µg/L)	(L) Acenaphthene (A/E)	ναρμτηαίευε (L) Naphthalene 6.2	(L) Acenaphthylene	(μg/L) (μg/L) 470	(μς/L) 0081	(T/Sπ) (T/Sπ) (T/Sπ)	(T/Sth) Nyrene	π) (πg/L) (γ) Benzo [a] anthracen	cpr. Chrysene (πg/Γ)	β Benzo [b] (7) Thuoranthene	(T/gh) Benzo [k] (1/gh) Thoranthene	π) (πg/L) 0.2	7.0 m Indeno [1,2,3-cd] 7.0 m Indeno [1,2,3-cd]	π Dibenzo [a,h] (7/a anthracene **	o H Benzo [g,h,i]
RW-4	Ecreis (µg/E)			240	570	0.2	240	470	1000	1200	100	0.2	7.2	0.2	0.72	0.2	0.2		470
KW-4	7/19/1999 10/29/1999 1/25/2000 4/25/2000	4190 <1000 <1000 <10	1430 622 <500 <5	8870 6440 476 22.7	12900 10500 528 66.8	12700 7260 <200 <2	<400 <200 <200 2.5	21600 22000 1780 24.1	4640 3460 393 8.18	13800 6930 1610 51.5	7140 7510 1150 28	2020 1650 308 14.9	1880 1270 302 15.1	835 706 246 8.41	<400 361 <200 4.07	706 481 240 7.96	<400 <200 <200 7.73	<400 <200 <200 <2	<400 <200 <200 8.16
	7/27/2000 1/31/2001	<100 <100	<50 10.8	<20 43.8	48.9 113	<20 <2	<20 2.63	90 53.6	<20 11.1	216 13.6	243 20.9	64.8 3.28	64.8 3.16	38.6 <2	<20 <2	29.7 <2	50 <2	<20 <2	46.8 <2
	7/30/2001 8/28/2002	<10.9 <10	<5450 <2	99.8 19	190 53	<2.18 4.2	5.33	109 10	22.4 2.8	50.3 14	31.7 9.9	5.33 <2	5.46	2.77 <20	<2.18 <20	<2.18 <50	<2.18 <2	<2.18	<2.18 <20
	3/5/2003 8/27/2003	<10 <10	<2 2.4	28 25	120 71	2 4.6	4.2	<2 18	3.1 7.1	17 27	8.3 25	2.5 6.3	2.6	<2 3.8	<2 3.4	<5 <5	<2 <2	<2 <2	<2 <2
	2/25/2004	<10	<2	8.8	32	<2	<2	<2	<2	4.6	2.7	<2	<2	<2	<2	<5	<2	<2	<2
	8/24/2004 2/21/2005	<10 <10	<20 <2	<20 21	<20 53	<20 <2	<20 3.2	<20 85	<20 21	<20 100	<20 71	<20 22	<20 21	<20 10	<20 9.2	<50 9.2	<20 3.2	<20 <2	<20 2.9
	8/22/2005 2/21/2006	<10 <10	<2 <2	<2 <2	<2 <2	<2 <2	<2 <2	<2 <2	<2 <2	3.5 4.2	<2 <2	<2 <2	<2 <2	<2 <2	<2 <2	<5 <5	<2 <2	<2 <2	<2 <2
	8/21/2006 10/1/2006	<10 <10	<2 <2	<2 <2	<2 <2	<2 <2	<2 <2	<2 <2	<2 <2	<2 <2	<2 <2	<2 <2	<2 <2	<2 <2	<2 <2	<5 <5	<2 <2	<2 <2	<2 <2
	12/21/2006 3/21/2007	<10 <10	<2 <2	<2 <2	<2 <2	<2 <2	<2 <2	<2 2.1	<2 <2	<2 <2	<2 <2	<2 <2	<2 <2	<2 <2	<2 <2	<5 <5	<2 <2	<2 <2	<2 <2
	10/9/2008 10/11/2010	<2 <1	<0.2 2.05	0.604	2.392 8.22	< 0.04	0.272	0.108	0.126	0.662	0.248	<0.2 <0.1	< 0.2	< 0.16	< 0.16	< 0.16	< 0.24	< 0.24	< 0.24
	10/18/2011	2.8	< 0.1	1.52 0.323	1.95	<0.08 0.09	0.158 <0.08	<0.08 0.115	0.166 0.12	0.204 <0.08	0.101 <0.08	< 0.1	<0.1 <0.1	0.456 <0.16	<0.16 <0.16	0.196 <0.16	<0.2 <0.2	<0.16 <0.16	0.243 <0.16
	10/2/2013 4/21/2014	<1 F	0.247 Flooded below	0.253 grade surfa	1.02 ce completio	<0.08 on, therefore	<0.08 e well was r	<0.08 not sampled.	< 0.08	<0.08	<0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	10/7/2014 4/13/2015 11/13/2015 4/5/2016	F	<0.1 Flooded below Flooded below Flooded below	grade surfa	ce completion	on, therefor	e well was r	not sampled.	< 0.08	<0.08	<0.08	<0.1	<0.1	<0.16	<0.16	<0.16	<0.2	<0.16	<0.16
	10/27/2016 4/24/2017	<1	<0.1 Flooded below	< 0.1	0.23 ce completio	0.085 on, therefore	<0.08 e well was r	< 0.08	< 0.08	< 0.08	< 0.08	<0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	10/25/2017 4/23/2018	<1 F	<0.1 Flooded below	0.124 grade surfa	0.22 ce completio	<0.08 on, therefore	<0.08 e well was r	<0.08 not sampled.	< 0.08	0.121	<0.08	<0.1	<0.1	< 0.16	<0.16	<0.16	<0.2	<0.16	< 0.16

Table E.1. Summary of Pentachlorophenol and PAHs in groundwater, Old Midland Products Superfund Site.

Mell Date Acena Acena Benzo Treba anthri anthri Inden Zon Dibenzo anthri anthri anthri Anthri Acena anthri Ac												ne							
7/21/1999 <10 <5 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	ID Sampled	μg/L)	(µg/L)	(μg/L)	$(\mu g/L)$	$(\mu g/L)$	(μg/L)	(µg/L)	(µg/L)	$(\mu g/L)$	$(\mu g/L)$	οzuag (μg/L)	$(\mu g/L)$	(µg/L)	$(\mu g/L)$	(μg/L)	β Indeno [1 (T) pyrene	βπ) Dibenzo (T/anthrace	α Benzo [g,h,i] 7 perylene
10/29/1999 < 100	RW-5																		
1/25/2000	7/21/1999	<10	<5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
4/25/2000 <10	10/29/1999	<100	< 50	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	<20	< 20	< 20	< 20	<20	<20	< 20	<20
7/27/2000	1/25/2000	<10	<5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
7/30/2001 <10	4/25/2000	<10	<5	<2	3	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
8/28/2002 <10 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	7/27/2000	<10	<5	<2	4.11	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
3/5/2003 <10 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	7/30/2001	<10	<5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
8/27/2003 <10 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	8/28/2002	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
2/25/2004 <10 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	3/5/2003	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
8/24/2004 <10 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	8/27/2003	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
2/21/2005 <10 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	2/25/2004	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	8/24/2004	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
8/22/2005 <10 <2 2.3 5.6 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	2/21/2005	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	8/22/2005	<10	<2	2.3	5.6	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
2/21/2006 <10 <2 2.6 3.8 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	2/21/2006	<10	<2	2.6	3.8	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
8/21/2006 <10 <2 17 32 2.8 <2 12 2.8 2.8 <2 <2 <2 <2 <2 <5 <2 <2	8/21/2006	<10	<2	17	32	2.8	<2	12	2.8	2.8	<2	<2	<2	<2	<2	<5	<2	<2	<2
10/3/2006 <10 <2 2.9 4.2 <2 <2 2.5 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	10/3/2006	<10	<2	2.9	4.2	<2	<2	2.5	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
12/20/2006 <10 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	12/20/2006	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
3/20/2007 <10 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	3/20/2007	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
10/11/2010 <1 <1 1.22 8.58 <0.08 0.103 <0.08 0.399 0.67 0.34 <0.1 <0.1 <0.16 <0.16 <0.16 <0.16 <0.2 <0.16	10/11/2010	<1	<1	1.22	8.58	< 0.08	0.103	< 0.08	0.399	0.67	0.34	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
10/17/2011 <1 <0.1 0.174 0.413 <0.08 <0.08 0.084 <0.08 0.417 0.279 <0.1 <0.1 <0.16 <0.16 <0.16 <0.16 <0.2 <0.16	10/17/2011	<1	< 0.1	0.174	0.413	< 0.08	< 0.08	0.084	< 0.08	0.417	0.279	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
10/3/2013 <1 <0.1 <0.1 0.133 <0.08 <0.08 <0.08 0.093 0.21 0.106 <0.1 <0.1 <0.16 <0.16 <0.16 <0.16 <0.2 <0.16	10/3/2013	<1	< 0.1	< 0.1	0.133	< 0.08	< 0.08	< 0.08	0.093	0.21	0.106	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
4/21/2014 Flooded below grade surface completion, therefore well was not sampled.	4/21/2014	F	looded below	grade surfa	ce completi	on, therefor	e well was r	not sampled.											
10/7/2014 <1 <0.1 <0.1 <0.1 2.4 <0.08 <0.08 <0.08 0.085 0.251 0.165 <0.1 <0.1 <0.16 <0.16 <0.16 <0.16 <0.16	10/7/2014	<1	< 0.1	< 0.1	2.4	< 0.08	< 0.08	< 0.08	0.085	0.251	0.165	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
4/13/2015 Flooded below grade surface completion, therefore well was not sampled.	4/13/2015	F	looded below	grade surfa	ce completi	on, therefor	e well was r	not sampled.											
11/13/2015 Flooded below grade surface completion, therefore well was not sampled.	11/13/2015	F	looded below	grade surfa	ce completi	on, therefor	e well was r	not sampled.											
4/5/2016 Flooded below grade surface completion, therefore well was not sampled.	4/5/2016	F	looded below	grade surfa	ce completi	on, therefor	e well was r	not sampled.											
10/27/2016 <1 <0.1 <0.1 0.45 0.107 <0.08 0.089(B) <0.08 0.096 <0.08 <0.1 <0.1 <0.16 <0.16 <0.16 <0.16 <0.16	10/27/2016	<1	< 0.1	< 0.1	0.45	0.107	< 0.08	0.089(B)	< 0.08	0.096	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
4/24/2017 Flooded below grade surface completion, therefore well was not sampled.	4/24/2017	F	looded below	grade surfa	ce completi	on, therefor	e well was r	not sampled.											
10/25/2017 <1 <0.1 <0.1 <0.1 <0.08 <0.08 0.131 <0.08 0.131 <0.08 <0.1 <0.1 <0.16 <0.16 <0.16 <0.16 <0.2 <0.16	10/25/2017	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	0.131	< 0.08	0.131	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
4/23/2018 Flooded below grade surface completion, therefore well was not sampled.	4/23/2018	F	looded below	grade surfa	ce completi	on, therefor	e well was r	not sampled.											

Table E.1. Summary of Pentachlorophenol and PAHs in groundwater, Old Midland Products Superfund Site.

									1 7 11 13 III g										
-	Date Sampled Levels (µg/L)	1 (T/S Pentachlorophenol	: (T) Carbazole*	JE Jenotene (µg/L) 240	Acenaphthene (hg/L)	Naphthalene (µg/L)	076 (T/Sacanaphthylene	(πg/T) Phenanthrene	Δ/gμ) Anthracene 0081	Elnoranthene (J/gµ)	081 (J/gh) Pyrene	(Hg/L) (Benzo [a] anthracene (D.2)	ouask.uc Cprl/cpu/L) 9.2	[p] Benzo [p] (µg/L) (0.2	(L) Benzo [k] (L) Benzo [k] (L) Quotanthene	(L) Benzo [a] byrene 0.2	7.0 (a) Indeno [1,2,3-cd] (a) Pyrene	The Dibenzo [a,h] The Dibenzo [a,h] The Dibenzo [a,h] The Dibenzo [a,h]	7 Benzo [g,h,i] 0 T perylene
RW-6																			
	7/21/1999	<10	<5	8.38	<2	4.75	18.3	3.9	<2	7.72	6.5	2.21	<2	<2	<2	<2	<2	<2	<2
	10/29/1999	<10	<5	20.8	41.2	14.2	<2	9.78	5.3	21.9	15.1	5.84	5.51	4.78	<2	3.4	<2	<2	<2
	1/25/2000	<10	<5	16.2	31.2	6.88	<2	4.31	2.47	7.07	3.93	2.01	<2	3.15	<2	2.94	2.81	<2	<2
	4/25/2000	<10	<5	30.4	56.1	19.2	3.09	21.6	4.15	3.74	3.23	<2	<2	<2	<2	<2	<2	<2	<2
	7/27/2000	<10	<5	21.7	30.9	10.8	<2	14.7	<2	2.18	3.75	<2	<2	<2	<2	<2	<2	<2	<2
	1/31/2001	<10	<5	12.6	18.2	3.11	<2	13.2	3.08	3.59	4.75	<2	<2	<2	<2	<2	<2	<2	<2
	7/30/2001	<10	<5	6.36	9.92	<2	<2	3.39	<2	2.96	<2	<2	<2	<2	<2	<2	<2	<2	<2
	8/28/2002	<10	<2	3.4	4.2	<2	<2	5.1	<2	2.3	<2	<2	<2	<2	<2	<5	<2	<2	<2
	3/5/2003	<10	<2	4.8	8.2	<2	<2	3.4	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	8/27/2003	<10	<2	4	5.5	<2	<2	5	<2	2.1	<2	<2	<2	<2	<2	<5	<2	<2	<2
	2/25/2004	<10	<2	3.1	4.5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	8/24/2004	<10	<2	3.2	4	<2	<2	2.4	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	2/21/2005	<10	<2	2.9	3.7	<2	<2	3.2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	8/22/2005	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	2/21/2006	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	8/21/2006	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	10/3/2006	<10	<2	<2	2.5	<2	<2	<2	<2	3	2.7	<2	<2	<2	<2	<5	<2	<2	<2
	12/20/2006	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	3/21/2007	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	10/10/2008	<2	< 0.2	< 0.12	< 0.12	< 0.04	< 0.08	0.88	< 0.08	0.092	< 0.8	<2	< 0.2	< 0.16	<1.6	< 0.16	< 0.24	< 0.24	<2.4
	5/22/2009	<2	< 0.2	1.167	6.127	0.494	0.197	< 0.08	< 0.08	0.207	0.1	0.2	< 0.2	< 0.16	< 0.16	< 0.16	< 0.24	< 0.24	< 0.24
	11/5/2009	<2	0.69	0.49	6.34	0.152	0.42	< 0.08	0.23	1.64	1.06	0.41	< 0.2	1.06	0.29	0.38	0.887	< 0.24	0.66
	5/4/2010	<2	< 0.2	< 0.12	< 0.12	< 0.04	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.2	< 0.2	< 0.16	< 0.16	< 0.16	< 0.24	< 0.24	< 0.24
	10/11/2010	<1	< 0.1	0.569	5.96	< 0.08	0.216	< 0.08	0.156	0.743	0.305	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	4/7/2011	<1	< 0.1	0.4	3.96	< 0.08	0.153	< 0.08	0.124	0.905	0.382	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	10/17/2011	<1	< 0.1	< 0.1	0.39	< 0.08	< 0.08	< 0.08	< 0.08	0.549	0.461	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	4/17/2012	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	0.94	0.464	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	10/22/2012	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	1.29	0.539	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	5/8/2013	<1	2.88	1.48	7.58	0.166	0.158	0.118	0.088	0.136	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	10/2/2013	<1	< 0.1	1.69	2.5	< 0.08	0.15	0.196(B)	0.203	0.66	0.392	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	4/22/2014	<1	0.278	0.445	1.61	0.118	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	10/7/2014	<1	<0.1	< 0.1	0.357	< 0.08	< 0.08	< 0.08	< 0.08	0.885	0.372	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	4/13/2015		looded below																
	11/13/2015	<1	0.196	1.96	0.241	< 0.08	< 0.08	0.322 (B)	0.486	1.89	0.936	< 0.1	0.168	0.180	< 0.16	0.254	< 0.2	< 0.16	0.300
	4/6/2016	<1	< 0.1	< 0.1	0.606	< 0.08	< 0.1	<0.08	< 0.08	0.137	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	10/27/2016	<1	<0.1	0.444	1.26	< 0.08	0.085	< 0.08	< 0.08	0.715	0.293	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	4/24/2017		looded below																
	10/26/2017	<1	<0.1	< 0.1	<0.1	< 0.08	< 0.08	<0.08	< 0.08	1.01	0.454	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	4/25/2018	<1	<0.1	<0.1	<0.1	<0.00	<0.2	<0.2	<0.2	<0.2	<0.2	<0.1	<0.1	<0.10	<0.10	<0.10	<0.2	<0.10	<0.10
<u> </u>	7/23/2010	\1	NO.2	₹0.2	NO.2	V0.2	V0.2	NO.2	V0.2	V0.2	VO.2	NO.2	NO.2	NO.2	10.2	\0.2	10.2	\0.2	NO.2

Table E.1. Summary of Pentachlorophenol and PAHs in groundwater, Old Midland Products Superfund Site.

								rophenor and											
	Date Sampled Levels (µg/L)	1 (T/) Pentachlorophenol	π) Te Carbazole*	ene (μg/L) 240	γ Acenaphthene (Lg/L) Acenaphthene 370	$\begin{array}{c} \text{maphthalene} \\ \text{mg/L} \\ 6.2 \end{array}$	α Acenaphthylene (1840)	(Lggu) Dhenanthrene (470 Phenanthrene	(Δ/gμ) (Δ/gμ)	(L)/gμ (L) Elnoranthene	180 (hg/L) Pyrene	(L) Benzo [a] anthracene (a.c.)	operation of the character of the charac	[q] Benzo [h] (h2	(T) Benzo [k] (T) fluoranthene	(\mathbf{p}, \mathbf{p}) Benzo [a] byrene (\mathbf{p}, \mathbf{p})	(T) (1,2,3-cd) (T) (T) (T) (T) (T) (T) (T) (T) (T) (T	The Dibenzo [a,h] The Dibenzo [a,h] The Dibenzo [a,h] The Dibenzo [a,h]	π Benzo [g,h,i] 0 T perylene
RW-7																			
	7/21/1999 10/29/1999 1/25/2000 4/25/2000	<20000 <20000 <2000 <100	<10000 <10000 289 <50	45700 72200 9170 663	60400 97800 10900 819	20300 23200 1800 224	<4000 <4000 <400	143000 238000 24700	25900 44900 5170 373	87300 67300 13100 790	43100 86500 9190	11500 17900 2460 200	9800 17400 2280 181	5450 <4000 1400	<4000 <4000 478	4300 <4000 1070	<4000 <4000 673 70.2	<4000 <4000 <400 <20	<4000 <4000 <400
	7/27/2000	<100 <100	<50 <50	<20	5 9.8	<20	14.6 <20	2230 <20	<20	<20	444 <20	<20	<20	83.8 <20	38.3 <20	64.6 <20	<20	<20 <20	72.5 <20
	1/31/2000	100	<5 <5	72	39.8 154	35.8	5.53	50.6	13.6	15.4	18.5	<20	<20	<20	<20	<20	<20	<20	<20
	7/30/2001	<10.7	<5.35	56.5	134	<2.14	4.58	54.4	10.1	31.4	20.7	3.54	3.36	<2.14	<2.14	<2.14	<2.14	<2.14	<2.14
	8/28/2002	<20	11	140	220	<4	6.8	290	62	180	140	33	3.30 34	15	12	13	6.9	<4	7.8
	3/5/2003	<10	4.3	32	82	14	<2	30	5.2	13	9.2	<2	<2	<2	<2	<5	<2	<2	<2
	8/27/2003	<10	<2	15	59	<2	2.1	<2	2	10	7.3	<2	<2	<2	<2	<5	<2	<2	<2
	2/25/2004	<10	6	22	72	4.9	2.5	20	4.8	<2	12	3.3	3.3	<2	<2	<5	<2	<2	<2
	8/24/2004	<2000	<400	5300	6600	1500	<400	14000	2700	7900	5600	1500	1400	580	590	<1000	<400	<400	<400
	2/21/2005	<10	6.8	33	83	3.6	2.2	17	4.1	7.2	4.4	<2	<2	<2	<2	<5	<2	<2	<2
	8/22/2005	<10	11	28	73	<2	<2	12	4.4	7.5	4.4	<2	<2	<2	<2	<5	<2	<2	<2
	2/21/2006	<100	<2	23	47	<2	<2	23	5.1	11	5.2	<2	<2	<2	<2	<5	<2	<2	<2
	8/21/2006	<10	<2	22	56	<2	<2	19	7.3	45	25	3.9	3.8	<2	<2	<5	<2	<2	<2
	10/5/2006	<100	<20	130	240	< 20	<20	150	23	49	29	<20	<20	<20	<20	< 50	< 20	< 20	<20
	12/20/2006	<10	51	36	74	3.3	<2	24	5	6.7	4	<2	<2	<2	<2	<5	<2	<2	<2
	3/22/2007	<10	<2	3.7	16	<2	<2	<2	<2	3.9	3.1	<2	<2	<2	<2	<5	<2	<2	<2
	10/8/2008	<2	< 0.2	< 0.12	0.776	< 0.04	< 0.08	< 0.08	< 0.08	0.242	0.09	< 0.2	< 0.2	0.168	< 0.16	0.202	< 0.24	< 0.24	< 0.24
	5/22/2009	<2	1.63	47	118	16.5	2.262	75.91	4.075	2.927	13.61	< 0.2	< 0.2	< 0.16	< 0.16	< 0.18	< 0.24	< 0.24	< 0.24
	11/5/2009	<2	0.89	1.774	6.8	0.061	0.197	0.308	0.191	0.795	0.289	<2000	< 0.2	0.168	0.168	0.272	< 0.24	< 0.24	0.321
	4/29/2010	<2	< 0.2	< 0.12	< 0.12	< 0.04	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.2	< 0.2	< 0.16	< 0.16	< 0.16	< 0.24	< 0.24	< 0.24
	10/11/2010	<1	8.18	35.7	93.2	0.826	1.41	1.05	3.71	8.17	4.74	0.982	0.837	1.48	< 0.16	0.748	0.297	< 0.16	0.37
	4/7/2011	<1	0.719	5.92	17.9	0.196	0.436	0.289	0.532	2.8	1.08	0.262	0.235	0.267	< 0.16	0.184	< 0.2	< 0.16	< 0.16
	10/17/2011	<1	1.22	8.89	24.3	< 0.08	0.568	< 0.08	0.782	1.52	1.55	0.292	0.289	0.234	< 0.16	0.226	<0.2	< 0.16	<0.16
	4/17/2012	<1	1.39	10.7	37.9	1.76	0.555	0.123	0.484	0.39	0.153	<0.1	<0.1	< 0.16	< 0.16	< 0.16	<0.2	< 0.16	<0.16
	10/22/2012	<1	1.31	3.31	21.5	<0.08	0.579	< 0.08	0.34	0.508	0.172	<0.1	<0.1	0.203	< 0.16	< 0.16	<0.2	< 0.16	< 0.16
	5/8/2013 10/2/2013	<1	0.512	2.37	8.9	<0.08	0.286	0.248	0.269	0.303	0.126	<0.1	<0.1	< 0.16	< 0.16	< 0.16	<0.2	< 0.16	< 0.16
	4/23/2014	<1 <1	0.67 1	3.68 4.89	8.66 47.2	<0.08 0.215	0.245 0.533	0.168(B) 0.305	0.36 0.519	0.423 0.411	0.231 0.244	<0.1 <0.1	<0.1 <0.1	<0.16 <0.16	<0.16 <0.16	<0.16 <0.16	<0.2 <0.2	<0.16 <0.16	<0.16 <0.16
	10/7/2014	<1	< 0.1	0.639	6.84	< 0.08	0.333	< 0.08	< 0.08	0.411	< 0.08	<0.1	<0.1	< 0.16	<0.16	<0.16	<0.2	< 0.16	<0.16
	4/13/2015		ooded below						\0.00	0.003	\0.00	√ 0.1	√ 0.1	<0.10	\0.10	√ 0.10	<0.∠	<0.10	<0.10
	11/13/2015	<1	< 0.1	<0.1	<0.1	<0.08	< 0.08	<0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	4/5/2016		ooded below						νο.σσ	νο.σσ	νο.σσ	VO.1	VO.1	10.10	.0.10	.0.10	10.2	NO.10	VO.10
	10/28/2016	<1	0.734	5.52	22.2	< 0.08	0.504	0.259(B)	0.116	1.13	0.631	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	4/24/2017		ooded below						0.110		0.001			.0.10					
	10/26/2017	<10	3.48	34	71	1.11	1.18	(B) 4.26	3.98	5.7	2.72	<1	<1	<1.6	<1.6	<1.6	<2	<1.6	<1.6
	4/25/2018	<10	<2	4.24	45.5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
L	., 25, 2515					-													

Table E.1. Summary of Pentachlorophenol and PAHs in groundwater, Old Midland Products Superfund Site.

												4)							
Well	Date	Pentachlorophenol	Carbazole*	Fluorene	Acenaphthene	Naphthalene	Acenaphthylene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Benzo [a] anthracene	Chrysene	Benzo [b] fluoranthene	Benzo [k] fluoranthene	Benzo [a] pyrene	Indeno [1,2,3-cd] pyrene	Dibenzo [a,h] anthracene *	Benzo [g,h,i] perylene
ID	Sampled	(µg/L)	(µg/L)	(µg/L)	$(\mu g/L)$	$(\mu g/L)$	(µg/L)	(µg/L)	(µg/L)	(µg/L)	$(\mu g/L)$	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
Cleanup	Levels (µg/L)	1		240	370	6.2	940	470	1800	1500	180	0.2	9.2	0.2	0.92	0.2	0.2		470
RW-8																			
	7/21/1999	<20000	<10000	123000	172000	89600	<4000	365000	64000	173000	150000	25500	24000	13400	5310	7750	<4000	<4000	<4000
	10/29/1999	<200000	<100000	522000	787000	385000	<40000	1760000	324000	524000	579000	125000	127000	<40000	<40000	<40000	<40000	<40000	<40000
	1/25/2000	<200000	28400	499000	662000	327000	<40000	1400000	247000	649000	459000	109000	106000	73500	22000	62200	<40000	<40000	<40000
	4/25/2000	<10000	<5000	5250	7250	3820	<2000	15400	2890	7610	4520	<2000	<2000	<2000	<2000	<2000	<2000	<2000	<2000
	7/27/2000	159	146	1440	1330	1020	<2	2700	822	1300	1510	345	304	118	43.4	92	31.2	11.9	27.1
	1/31/2001	172	<50	282	442	210	<20	712	138	288	280	55.2	53.6	22.1	<20	<20	<20	<20	<20
	7/30/2001	76.9	6.23	48	121	10.5	2.64	23.6	6.56	11.9	7.69	<2.28	<2.28	<2.28	<2.28	<2.28	<2.28	<2.28	<2.28
	8/28/2002	<10	23	74	160	23	<2	84	15	26	17	<2	<2	<2	<2	<5	<2	<2	<2
	3/5/2003	<10	6.3	97	220	44	2.9	110	15	40	29	5.5	5.2	<2	<2	<5	<2	<2	<2
	8/27/2003	<10	27	77	160	17	3.2	65	11	22	13	<2	<2	<2	<2	<5	<2	<2	<2
	2/25/2004	<10	20	56	150	15	2.5	49	150	24	14	3.2	3.2	<2	<2	<5	<2	<2	<2
	8/24/2004	<20	36	190	330	230	6.2	220	34	46	28	5.3	4.8	<4	<4	<10	<4	<4	<4
	2/21/2005	<10	21	53	140	10	<2	34	9	12	7.3	<2	<2	<2	<2	<5	<2	<2	<2
	8/22/2005	<50	54	250	440	220	<10	470	88	190	120	32	36	12	11	<30	<10	<10	<10
	2/21/2006	<10	8.5	43	120	11	3.2	27	4.4	150	7.1	<2	<2	<2	<2	<5	<2	<2	<2
	8/21/2006	<10	6.2	33	98	6.9	<2	10	4.2	9.8	5.4	<2	<2	<2	<2	<5	<2	<2	<2
	10/5/2006	<10	12	35	88	12	<2	25	5.7	12	7.3	<2	<2	<2	<2	<5	<2	<2	<2
	12/20/2006	<10	4.6	20	55	8	<2	13	3.6	9	5.9	<2	<2	<2	<2	<5	<2	<2	<2
	3/22/2007	<10	5	25	53	7.2	<2	23	4.4	6.9	5.7	<2	<2	<2	<2	<5	<2	<2	<2
	10/8/2008	<2	<0.2	2.42	2.69	0.062	0.136	< 0.08	< 0.08	1.314	0.21	0.218	0.406	0.696	0.374	0.532	< 0.24	< 0.24	0.3
	11/5/2009	3.14	2.87	8.85	21.5	3.385	0.130	8.731	1.703	9.88	5.037	1.542	1.055	2.182	0.841	1.141	0.676	0.305	0.582
	4/29/2010	<20	<2	21.3	111	0.925	2.535	1.359	2.963	16.9	9.36	2.854	2.511	5.195	<1.6	1.96	2.4	<2.4	<2.4
	10/12/2010	<10	36.8	62.4	<2	39.6	2.333	36	8.97	20.9	13.1	1.78	1.39	2.1	<1.6	2.11	2.4 <2	<1.6	<1.6
	4/7/2011	<10	12.9	27.3	84.5	4.1	1.42	9.34	5.2	23.4	14.6	3.4	2.73	2.72	<1.6	2.11	<2	<1.6	<1.6
	10/18/2011	<10	6980	25.7	75.2	5.62	0.876	10.2	4.01	10.6	6.14	3.4 <1	2.73 <1	<1.6	<1.6	<1.6	<2	<1.6	<1.6
	4/17/2012	<10	<1	<1 <1	12	< 0.8	<0.8	<0.8	< 0.8	< 0.8	<0.14	<1	<1	<1.6	<1.6	<1.6	<2	<1.6	<1.6
	10/23/2012	<10	16.7	33.4	105	<0.8 9.14	<0.8 1.4	5.78	3.72	6.26	3.84	<1	<1	<1.6	<1.6	<1.6	<2	<1.6	<1.6
	5/8/2013	<10	0.418	2.34	9.84	< 0.08	0.244	0.258	0.318	0.276	0.125	<0.1	<0.1	< 0.16	< 0.16	<0.16	<0.2	<0.16	< 0.16
	10/2/2013	<1	9.78	11.1	23.9	<0.08 11.4	0.244	0.238 4.14(B)	1.45	2.4	1.3	0.146	0.153	< 0.16	< 0.16	< 0.16	<0.2	< 0.16	<0.16
	4/23/2014	<1	12.9	9.02	45.2	8.39	0.647	4.14(B) 2.75	0.684	1.08	0.572	< 0.146	< 0.1	< 0.16	< 0.16	< 0.16	<0.2	< 0.16	<0.16
	10/8/2014	<1 <1	6.62	5.97	45.2 33.9	0.739	0.52	0.520	0.684	0.709	0.572	<0.1 <0.1	<0.1	< 0.16	< 0.16	<0.16	<0.2	<0.16	< 0.16
	4/13/2015								0.402	0.709	0.232	<0.1	<0.1	<0.10	<0.10	<0.10	<0.2	<0.10	<0.10
	4/13/2015 11/13/2015	<1	ooded below 9.90	grade surra 12.7	ce compieti 44.4	on, therefore 22.2	0.812	-	1.80	2.27	1.31	< 0.1	0.186	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	4/5/2016							6.20	1.80	2.21	1.51	<0.1	0.180	<0.10	<0.10	<0.10	<0.2	<0.10	<0.10
	10/28/2016		ooded below	_	•				1.00	1 20	۰۵ ۵۵	-1	-1	-1.6	-1.6	-1.6	-2	-1.6	-1.6
	4/24/2016	<10	< 0.1	13.9	57.8	2.16	< 0.8	1.38(B)	1.08	1.38	< 0.08	<1	<1	<1.6	<1.6	<1.6	<2	<1.6	<1.6
			ooded below 77.5	grade surfa 494	ce completi	on, therefore 382		-	207	666	422	122	115	21.0	19.4	40.6	<20	-16	-16
	10/26/2017	<100					9.7	1340	207	666	433	122	115	21.9	19.4	40.0	<20	<16	<16
	4/23/2018	FIG	ooded below	grade surfa	ce completi	on, therefore	e wen was r	iot sampied.											

Table E.1. Summary of Pentachlorophenol and PAHs in groundwater, Old Midland Products Superfund Site.

Well ID Cleanup I	Date Sampled Levels (µg/L)	1 (π/G) Pentachlorophenol	- (η/Sαrbazole*	enough (µg/L) 240	(L)(Squ) (A)(Squ) (A)(Squ)	Naphthalene (µg/L) (6.2	(L/Quant) (A/Quant) (A/Qua	(L) Phenanthrene (470)	Anthracene (T/Sd)	(T) Fluoranthene	180 (T/Sm)	(L) Benzo [a] anthracene 0.2	Chrysene (hg/L)	μος [b] (πον βαμος [c] (πον βαμος [(fluoranthene (k) (h) (h) (h) (h) (h) (h) (h) (h) (h) (h	(L) Benzo [a] pyrene 0.2	75 (1,2,3-cd)	m Dibenzo [a,h] [7] anthracene *	oca Benzo [g,h,i] OC T perylene
Barnes																			
	1/25/2000	<10	<5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
	1/25/2001	<10	<5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
	7/31/2001	<10	<5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
	8/27/2002	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	3/3/2003	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	8/27/2003	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	2/25/2004	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	8/24/2004	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	2/23/2006	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	8/28/2006	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	12/18/2006	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	3/22/2007	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	5/21/2009	<2	< 0.2	< 0.12	< 0.12	< 0.04	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.2	< 0.2	< 0.16	< 0.16	< 0.16	< 0.24	< 0.24	< 0.24
	10/12/2010	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	4/13/2011	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	10/17/2011	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	10/18/2012	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	10/3/2013	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	4/22/2014	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	10/6/2014	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	4/15/2015	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	11/10/2015	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	4/5/2016	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	10/25/2016	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16

Table E.1. Summary of Pentachlorophenol and PAHs in groundwater, Old Midland Products Superfund Site.

_																			
Well ID Cleanup	Date Sampled Levels (µg/L)	$\overset{(n)}{(1)} Pentachlorophenol$	π) (T/Carbazole*	enene (µg/L) 240	(L) Acenaphthene (A) Acenaphthene	Naphthalenc (Hg/L)	Acenaphthylene (7/P)	(L) Phenanthrence (470)	(L/San) (D/San) 0081	(T/S) Fluoranthene	(hg/L) Pyrene	μς/ Benzo [a] anthracene 0.2	oueschild (µg/L) 9.2	Benzo [b] (mg/L) 0.2	(Toronauthene (T	μς Benzo [a] byrene 0.2	(77 and 172,3-cd) (77) (97) (12,3-cd)	் Dibenzo [a,h] ரே anthracene *	A Benzo [g,h,i]
Neeley																			
	1/25/2000	<10	<5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
	1/25/2001	<10	<5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
	7/31/2001	<10	<5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
	8/27/2002	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	3/3/2003	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	8/27/2003	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	2/25/2004	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	8/24/2004	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	2/22/2005	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	8/23/2005	<10	<2	<2	<2	<2	2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	2/23/2006	<10	<2	<2	<2	<2	2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	8/28/2006	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	10/9/2006	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	12/18/2006	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	3/22/2007	<10	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
	10/22/2008	<2	< 0.2	< 0.12	< 0.12	< 0.04	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.2	< 0.2	0.168	< 0.16	< 0.16	< 0.24	< 0.24	< 0.24
	5/21/2009	<2	< 0.2	< 0.12	< 0.12	< 0.04	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.2	< 0.2	< 0.16	< 0.16	< 0.16	< 0.24	< 0.24	< 0.24
	5/4/2010	<2	< 0.2	< 0.12	< 0.12	< 0.04	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.2	< 0.2	< 0.16	< 0.16	< 0.16	< 0.24	< 0.24	< 0.24
	4/13/2011	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	4/12/2012	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	10/18/2012	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	5/2/2013	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	<16000	< 0.16
	10/3/2013	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	4/22/2014	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	10/6/2014	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	4/15/2015	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	11/10/2015	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	4/5/2016	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	10/25/2016	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	4/27/2017	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	10/25/2017	<1	< 0.1	< 0.1	< 0.1	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.1	< 0.1	< 0.16	< 0.16	< 0.16	< 0.2	< 0.16	< 0.16
	4/26/2018	<1	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2

Table E.1. Summary of Pentachlorophenol and PAHs in groundwater, Old Midland Products Superfund Site.

Well ID Cleanup I	Date Sampled ævels (µg/L)	$\begin{matrix} \overset{(n)}{\text{T}} \\ \text{T} \end{matrix} \text{Pentachlorophenol}$	-i σπ) (T/Carbazole*	ena- lig/L) (µg/L) 240	(L) A cenaphthene (J/B/M)	ναρητησίευς (μg/L) 6.2	(L) Acenaphthylene (1966)	(J/Bd) (Phenanthrene (A70	(LZ/gm) (A/gm) (MR) (MR) (MR) (MR) (MR) (MR) (MR) (MR	(T/Sm) Fluoranthene	(NZ/F) Pyrene	(T) Benzo [a] anthracene (T) Benzo [a] anthracene	ourysene (µg/L) 9.2	Benzo [b] (Hancanthene 0.2	(Then the sense of	$_{(\mu Q)}^{(pq)}$ Benzo [a] bàrene 0.2	7.0 m Indeno [1,2,3-cd] (7 pyrene	The Dibenzo [a,h] The Dibenzo [a,h] The Dibenzo [a,h]	77 Benzo [g,h,i] OT perylene
P-2D	9/23/2008	n/a	n/a	< 0.12	< 0.12	< 0.04	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.2	< 0.2	< 0.16	< 0.16	< 0.16	< 0.24	< 0.24	< 0.24
P-2S	9/23/2008	n/a	n/a	<0.12	<0.12	< 0.04	<0.08	< 0.08	< 0.08	< 0.08	< 0.08	<0.2	<0.2	< 0.16	< 0.16	< 0.16	<0.24	< 0.24	<0.24
P-3D	9/24/2008	n/a	n/a	< 0.12	< 0.12	< 0.04	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.2	< 0.2	< 0.16	< 0.16	< 0.16	< 0.24	< 0.24	< 0.24
P-3S	9/24/2008	n/a	n/a	< 0.12	<0.12	< 0.04	< 0.08	< 0.08	< 0.08	<0.08	<0.08	<0.2	<0.2	< 0.16	< 0.16	< 0.16	<0.24	<0.24	<0.24
P-4D	10/13/2008	n/a	n/a	<0.12	<0.12	< 0.04	<0.08	0.458	<0.08	0.258	0.118	<0.2	<0.2	< 0.16	< 0.16	< 0.16	< 0.24	< 0.24	<0.24
P-4S	10/13/2008	n/a	n/a	< 0.12	<0.12	< 0.04	<0.08	0.568	< 0.08	0.394	0.194	<0.2	<0.2	< 0.16	< 0.16	< 0.16	<0.24	< 0.24	<0.24
P-5D	10/16/2008	n/a	n/a	<0.12	<0.12	< 0.04	<0.08	<0.08	<0.08	0.096	<0.08	<0.2	<0.2	< 0.16	< 0.16	< 0.16	<0.24	< 0.24	<0.24
P-5S	10/16/2008 4/29/2010 4/16/2015	n/a n/a <1	n/a n/a n/a	<0.12 <0.12 <0.12	<0.12 <0.12 <0.12	<0.04 <0.04 <0.04	<0.08 <0.08 <0.08	0.102 <0.08 <0.08	<0.08 <0.08 <0.08	0.12 <0.08 <0.08	<0.08 <0.08 <0.08	<0.2 <0.2 <0.2	<0.2 <0.2 <0.2	<0.16 <0.16 <0.16	<0.16 <0.16 <0.16	<0.16 <0.16 <0.16	<0.24 <0.24 <0.24	<0.24 <0.24 <0.24	<0.24 <0.24 <0.24
P-6D	10/14/2008	n/a	n/a	<0.12	<0.12	< 0.04	<0.08	0.236	< 0.08	0.18	0.092	<0.2	<0.2	< 0.16	< 0.16	< 0.16	<2.4	< 0.24	<0.24
P-7S	10/17/2008	n/a	n/a	<0.12	<0.12	< 0.04	<0.08	0.082	<0.08	0.096	<0.08	<0.2	<0.2	< 0.16	< 0.16	< 0.16	<0.24	< 0.24	<0.24
P-8S	10/17/2008	n/a	n/a	<0.12	<0.12	< 0.04	<0.08	<0.08	<0.08	<0.08	<0.08	<0.2	<0.2	< 0.16	< 0.16	< 0.16	< 0.24	< 0.24	< 0.24

Table E.2. Summary of MNA Constituents, Old Midland Products Superfund Site.

			en Reduction Potential	dved Oxygen (DO)	Nitrate-Nitrite as N	Total Manganese	lved Manganese	Total Iron	Dissolved Iron	Determined Ferrous (Fe2+)	Ferric Iron (Fe3+)	ą.	ride	Alkalinity [as CaCO3]	Total Organic Carbon	2-Chlorophenol	2,6-Dichlorophenol	2,4-Dichlorophenol	ane	ne	ae
Well	Sampling	Hd	Oxygen (ORP)	Dissolved	Nitra	Total	Dissolved	Total	Disso	Field Iron (Ferri	Sulfate	Chloride	Total	Total	2-Ch	2,6-D	2,4-D	Methane	Ethane	Ethene
ID	Date	(SU)	(mVs)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	(mg/L)	(mg/L)	(mg/L)
MW-1S																					
	7/21/1999	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	10/26/1999	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	1/18/2000	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	4/19/2000	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	7/24/2000	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	1/23/2001	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	7/30/2001	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	8/26/2002 3/27/2003	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1 1.2	n/a	n/a	n/a	n/a	n/a	n/a
	8/26/2003	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	1.3 <1	n/a	n/a	n/a	n/a	n/a	n/a
	2/24/2004	n/a	n/a	n/a	n/a n/a	n/a	n/a	n/a	n/a	n/a	n/a n/a	n/a	n/a	n/a n/a	<1	n/a	n/a n/a	n/a	n/a	n/a	n/a
	8/24/2004	n/a n/a	n/a n/a	n/a n/a	n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a	n/a n/a	n/a n/a	n/a	<1	n/a n/a	n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a
	2/21/2005	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	5.2	n/a	n/a	n/a	n/a	n/a	n/a
	8/22/2005	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	2/21/2006	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	8/22/2006	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	9/27/2006	5.4	221	1.0	0.34	n/a	n/a	1.4	n/a	n/a	n/a	2.2	32	23	<1	n/a	n/a	n/a	< 0.1	< 0.02	< 0.01
	12/18/2006	5.2	239	7.4	0.37	n/a	n/a	0.061	n/a	n/a	n/a	1.7	35	19	<1	n/a	n/a	n/a	< 0.1	< 0.02	< 0.01
	3/20/2007	5.6	192	0.8	0.24	n/a	n/a	0.2	n/a	n/a	n/a	1.4	39	17	<1	n/a	n/a	n/a	< 0.01	< 0.02	< 0.02
	10/1/2008	5.6	157	0.5	0.27	n/a	n/a	< 0.02	n/a	n/a	n/a	1.6	38	20	2.45	n/a	n/a	n/a	n/a	n/a	n/a
	5/18/2009	5.5	93	0.8	0.27	n/a	n/a	0.035	n/a	n/a	n/a	1.65	40	22.4	0.435	n/a	n/a	n/a	n/a	n/a	n/a
	11/4/2009	5.5	192	0.0	0.316	n/a	n/a	< 0.02	n/a	n/a	n/a	1.56	39	28.9	0.373	n/a	n/a	n/a	n/a	n/a	n/a
	4/29/2010	6.1	225	0.0	0.258	n/a	n/a	0.0369	n/a	n/a	n/a	1.58	40.1	49	< 0.2	n/a	n/a	n/a	n/a	n/a	n/a
	10/5/2010	6.0	257	0.3	0.097	n/a	n/a	0.0508	n/a	n/a	n/a	1.63	40.2	28.1	0.275	n/a	n/a	n/a	n/a	n/a	n/a
	4/4/2011	5.4	230	1.3	0.389	n/a	n/a	0.0618	n/a	n/a	n/a	1.79	39.8	21.5	< 0.2	n/a	n/a	n/a	n/a	n/a	n/a
	10/11/2011	5.8	178	0.0	0.292	n/a	n/a	n/a	n/a	n/a	n/a	1.86	42.1	30.1	< 0.2	n/a	n/a	n/a	n/a	n/a	n/a
	4/10/2012	5.6	286	0.1	0.28	n/a	n/a	n/a	n/a	n/a	n/a	1.57	40.4	21.8	0.26	n/a	n/a	n/a	n/a	n/a	n/a
	10/16/2012	5.1	201	0.4	1.15	n/a	n/a	n/a	n/a	n/a	n/a	2.05	30.2	13.9	0.541	n/a	n/a	n/a	n/a	n/a	n/a
	5/2/2013	5.8	235	0.6	0.473	n/a	n/a	n/a	n/a	n/a	n/a	1.5	37	19.2	0.223	n/a	n/a	n/a	n/a	n/a	n/a
	10/2/2013	5.4	218	0.5	0.521	n/a	n/a	n/a	n/a	n/a	n/a	2.03	32.7	21	0.233(B)	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	4/21/2014	5.3	201	4.2	0.282	0.0095	n/a	0.02	n/a	<0.5	n/a	1.39	39.9	21	0.295	< 0.2	<0.2	< 0.2	n/a	n/a	n/a
	10/7/2014	5.2	237	0.5	0.358	0.065	n/a	0.030	n/a	<0.5	n/a	1.76	35.6	20.3	0.298	< 0.2	<0.2	< 0.2	n/a	n/a	n/a
	4/14/2015	5.4	266	1.4	0.318	0.0115	n/a	< 0.020	n/a	< 0.5	n/a	1.61	41.2	20.8	0.223	<0.2	<0.2	<0.2	n/a	n/a	n/a
	11/13/2015	6.1	76	2.2	0.317	0.128	n/a	< 0.020	n/a	< 0.5	n/a	1.59	41.8	17.2	<1	<0.2	<0.2	<0.2	n/a	n/a	n/a
	4/6/2016	5.8	200	5.5	0.239(B)	0.00842	n/a	0.0243	n/a	< 0.5	n/a	1.39	43.8(B)	21.1	<1	<0.2	<0.2	<0.2	n/a	n/a	n/a
	10/27/2016 4/24/2017	5.5	215 224	1.1	0.236(B)	0.154 2.29	n/a	<0.2	n/a	<0.5	n/a	1.52	44.1	19.4 21.2	<1	<0.2	<0.2	0.292	n/a	n/a	n/a
	4/24/2017 10/24/2017	5.6	8	0.8 1.0	0.208 0.183	< 0.1	n/a	1.1 <0.5	n/a	<0.5	n/a	1.37 2.02	44.7	21.2	<1 <1	<0.2	<0.2 <0.2	<0.2 <0.2	n/a	n/a	n/a
		5.5					n/a		n/a	<0.5	n/a		41.4			<0.2			n/a	n/a	n/a
	4/25/2018	5.5	181	2.3	0.238	n/a	n/a	0.0229	n/a	< 0.5	n/a	1.77	43.4	21.2	<1	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a

Table E.2. Summary of MNA Constituents, Old Midland Products Superfund Site.

Well	Sampling	нd	Oxygen Reduction Potential (ORP)	Dissolved Oxygen (DO)	Nitrate-Nitrite as N	Total Manganese	Dissolved Manganese	Total Iron	Dissolved Iron	Field Determined Ferrous Iron (Fe2+)	Ferric Iron (Fe3+)	Sulfate	Chloride	Total Alkalinity [as CaCO3]	Total Organic Carbon	2-Chlorophenol	2,6-Dichlorophenol	2,4-Dichlorophenol	Methane	Ethane	Ethene
ID	Date	(SU)	(III V S)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(µg/L)	(μg/L)	(μg/L)	(mg/L)	(mg/L)	(mg/L)
MW-1D																					
	7/21/1999	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	10/26/1999	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	1/18/2000	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	4/19/2000	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	7/24/2000	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	1/23/2001	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	7/30/2001	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	8/26/2002 3/3/2003	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	3/3/2003 8/26/2003	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	<1 1.6	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a
	2/24/2004	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	8/25/2004	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	2/21/2005	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	8/22/2005	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	2.3	n/a	n/a	n/a	n/a	n/a	n/a
	2/21/2006	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	2	n/a	n/a	n/a	n/a	n/a	n/a
	8/22/2006	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	5.3	n/a	n/a	n/a	n/a	n/a	n/a
	9/27/2006	6.7	-101	0.5	< 0.05	n/a	n/a	1.6	n/a	n/a	n/a	< 0.2	6.7	160	<1	n/a	n/a	n/a	0.33	< 0.02	< 0.01
	12/19/2006	6.6	-140	1.5	< 0.05	n/a	n/a	1.9	n/a	n/a	n/a	n/a	5.6	170	1	n/a	n/a	n/a	0.21	< 0.02	< 0.01
	3/20/2007	6.9	-89.1	0.4	< 0.05	n/a	n/a	1.6	n/a	n/a	n/a	0.49	6.1	170	<1	n/a	n/a	n/a	0.67	< 0.02	< 0.02
	9/30/2008	6.7	-104	0.1	< 0.01	n/a	n/a	1.5	n/a	n/a	n/a	0.48	5.8	177	0.339	n/a	n/a	n/a	n/a	n/a	n/a
	5/18/2009	6.8	84.4	0.3	0.024	n/a	n/a	0.901	n/a	n/a	n/a	0.55	6.55	173	0.339	n/a	n/a	n/a	n/a	n/a	n/a
	11/5/2009	7.2	-92.0	0.0	< 0.01	n/a	n/a	1.42	n/a	n/a	n/a	0.11	5.91	178	< 0.2	n/a	n/a	n/a	n/a	n/a	n/a
	4/28/2010	1.0	254	5.3	0.031	n/a	n/a	0.804	n/a	n/a	n/a	0.4	5.77	62	< 0.2	n/a	n/a	n/a	n/a	n/a	n/a
	10/5/2010	7.2	-108	0.0	< 0.01	n/a	n/a	1.81	n/a	n/a	n/a	0.24	5.95	180	0.236	n/a	n/a	n/a	n/a	n/a	n/a
	4/4/2011	6.6	76.0	7.3	0.098	n/a	n/a	0.452	n/a	n/a	n/a	0.54	6.28	196	< 0.2	n/a	n/a	n/a	n/a	n/a	n/a
	10/11/2011	7.2	-111	0.0	< 0.03	n/a	n/a	n/a	n/a	n/a	n/a	0.41	6.42	180	< 0.2	n/a	n/a	n/a	n/a	n/a	n/a
	4/10/2012	7.1	14.0	1.1	0.036	n/a	n/a	n/a	n/a	n/a	n/a	0.36	6.11	180	< 0.2	n/a	n/a	n/a	n/a	n/a	n/a
	10/16/2012	7.0	-88.0	0.0	< 0.03	n/a	n/a	n/a	n/a	n/a	n/a	0.33	7.23	166	< 0.2	n/a	n/a	n/a	n/a	n/a	n/a
	5/2/2013	7.4	132	0.0	0.103	n/a	n/a	n/a	n/a	n/a	n/a	0.45	6.8	173	1.07	n/a	n/a	n/a	n/a	n/a	n/a
	9/30/2013	7.2	-108	2.0	< 0.15	n/a	n/a	n/a	n/a	n/a	n/a	0.23(B)	7.28	175	0.255(B)	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	4/21/2014	6.9	145	3.5	0.114	0.0568	n/a	0.275	n/a	< 0.5	n/a	0.36	7.47	170	0.272	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	10/7/2014	6.8	-57.5	0.3	0.034	0.264	n/a	1.54	n/a	1.5	0.0	0.45	6.98	175	< 0.2	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	4/14/2015	6.7	33.4	1.1	0.048	0.155	n/a	0.509	n/a	< 0.5	n/a	0.68	6.42	172	0.326	<0.2	< 0.2	< 0.2	n/a	n/a	n/a
	11/13/2015	7.5	42.4	1.1	<0.03	0.272	n/a	1.76	n/a	1.5	0.3	0.78	6.90	171	<1	<0.2	< 0.2	< 0.2	n/a	n/a	n/a
	4/6/2016	7.4	131.0	6.6	0.108(B)	0.0182	n/a	0.148	n/a	< 0.5	n/a	0.8	6.72(B)	172	<1	<0.2	<0.2	< 0.2	n/a	n/a	n/a
	10/27/2016	7.1	-95	0.9	< 0.03	0.292	n/a	1.07	n/a	1	0.1	1.33	7.20	167	<1	<0.2	<0.2	0.379	n/a	n/a	n/a
	4/24/2017	7.2	66	2.1	0.093	0.046	n/a	0.365	n/a	< 0.5	n/a	0.98	6.60	179	1.8	<0.2	<0.2	0.317	n/a	n/a	n/a
	10/24/2017	7.0 7.0	-26	0.9	< 0.05	0.293	n/a	0.952	n/a	1	n/a	1.53	6.63	162	<1	<0.2	<0.2	0.279	n/a	n/a	n/a
<u></u>	4/25/2018	7.0	40	2.7	0.106	n/a	n/a	0.205	n/a	<0.5	n/a	1.25	6.38	173	<1	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a

Table E.2. Summary of MNA Constituents, Old Midland Products Superfund Site.

Well ID	Sampling Date	Hd (SU)	 m Oxygen Reduction Potential s (ORP) 	bissolved Oxygen (DO)	(T) Nitrate-Nitrite as N	(T/ Total Manganese	m reg Dissolved Manganese	(mg/L)	(mg/L)	B Field Determined Ferrous	of Tric Iron (Fe3+)	Sulfate (mg/L)	Chloride (mg/L)	(Total Alkalinity [as CaCO3]	m Total Organic Carbon	m de 2-Chlorophenol (⊤)	ng 2,6-Dichlorophenol	m 2,4-Dichlorophenol	Methane (mg/L)	Ethan Ethan (L/gm)	Ethene (mg/L)
MW-3S																					
	7/15/1999	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	19.9	n/a	n/a	n/a	n/a	n/a	n/a
	10/26/1999	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	820	n/a	n/a	n/a	n/a	n/a	n/a
	1/20/2000	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	24.3	n/a	n/a	n/a	n/a	n/a	n/a
	4/24/2000	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	24.4	n/a	n/a	n/a	n/a	n/a	n/a
	7/26/2000	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	1/25/2001	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	28.4	n/a	n/a	n/a	n/a	n/a	n/a
	7/30/2001	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	8/26/2002	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	15	n/a	n/a	n/a	n/a	n/a	n/a
	3/4/2003	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	5.7	n/a	n/a	n/a	n/a	n/a	n/a
	8/26/2003	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	4.8	n/a	n/a	n/a	n/a	n/a	n/a
	2/24/2004	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	9.6	n/a	n/a	n/a	n/a	n/a	n/a
	8/25/2004	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	7.4	n/a	n/a	n/a	n/a	n/a	n/a
	2/22/2005 8/23/2005	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	12	n/a	n/a	n/a	n/a	n/a	n/a
		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	10	n/a	n/a	n/a	n/a	n/a	n/a
	2/21/2006 8/22/2006	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	27 17	n/a	n/a	n/a	n/a	n/a	n/a
	10/9/2006	n/a	n/a -51.2	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a 120	n/a	n/a		n/a	n/a	n/a	n/a	n/a	n/a
	12/21/2006	5.9 5.8	-31.2 14.0	2.1 0.1	<0.05 <0.05	n/a n/a	n/a n/a	3.1 2.2	n/a n/a	n/a n/a	n/a n/a	130	130 130	160 140	5.8 4.2	n/a n/a	n/a n/a	n/a n/a	<0.1 <0.1	<0.02 <0.02	<0.01 <0.01
	3/21/2007	5.8 6.0	-99.5	0.1				3.1				250	300	200	5.9				1.5	<0.02	<0.01
	5/20/2009	5.8	-99.3 -194	0.6	<0.05 <0.01	n/a n/a	n/a	4.14	n/a n/a	n/a	n/a	517	434	225	3.86	n/a	n/a	n/a n/a			
	11/4/2009	5.9	-72.0	0.0	< 0.01	n/a n/a	n/a n/a	3.01	n/a	n/a n/a	n/a n/a	462	393	233	4.8	n/a n/a	n/a n/a	n/a	n/a n/a	n/a n/a	n/a n/a
	4/29/2010	6.2	-92.0	0.0	< 0.01	n/a	n/a	4.2	n/a	n/a	n/a	26	41.1	1260	5.43	n/a	n/a	n/a	n/a	n/a	n/a
	10/11/2010	6.1	8.0	0.0	0.011	n/a	n/a	2.62	n/a		n/a	450	368	240	4.32		n/a	n/a		n/a	
	4/13/2011	5.4	-4.0	0.4	< 0.011	n/a	n/a	2.78	n/a n/a	n/a n/a	n/a	396	336	256	5.35	n/a n/a	n/a	n/a	n/a n/a	n/a	n/a n/a
	10/18/2011	6.2	-43.0	0.4	< 0.03	n/a n/a	n/a	2.76 n/a	n/a	n/a	n/a	386	322	261	5.32	n/a	n/a	n/a	n/a	n/a	n/a
	4/19/2012	6.0	-45.0 -45.0	0.0	< 0.03	n/a	n/a	n/a	n/a	n/a	n/a	572	375	276	5.23	n/a	n/a	n/a	n/a	n/a	n/a
	10/23/2012	6.1	-43.0 -64.0	0.0	< 0.03	n/a	n/a	n/a	n/a	n/a	n/a	420	311	276	5.23	n/a	n/a	n/a	n/a	n/a	n/a
	5/6/2013	6.8	-35.0	3.1	0.307	n/a	n/a	n/a n/a	n/a n/a	n/a	n/a	22.7	53.9	83.2	7.41	n/a	n/a	n/a	n/a	n/a	n/a
	10/3/2013	5.9	3.0	0.2	< 0.03	n/a n/a	n/a	n/a	n/a	n/a	n/a	620(B)	365	279	6.72(B)	<2	<2	<2	n/a	n/a	n/a
	4/23/2014	6.0	-7.8	0.6	< 0.03	19.7	n/a	3.94	n/a	< 0.5	n/a	843	424	292	7.51	<2	<2	<2	n/a	n/a	n/a
	10/8/2014	5.9	11.0	0.0	< 0.03	22.3	n/a	4.1	n/a	2	2.1	872	417	288	7.92	<2	<2	<2	n/a	n/a	n/a
	4/15/2015	6.0	-33.0	1.0	< 0.05	21.2	n/a	4.79	n/a	1.5	3.29	1040	474	315	13.6	<2	<2	<2	n/a	n/a	n/a
	11/13/2015	5.9	49.7	1.1	<.3	22.1	n/a	4.54	n/a	1.5	3.04	781	425	309	9.52	<2	<2	<2	n/a	n/a	n/a
	4/5/2016	6.2	-36.0	1.9	< 0.15	16.2	n/a	3.69	n/a	2.5	1.19	1080	471	123	2.29	<2	<2	<2	n/a	n/a	n/a
	10/26/2016	5.8	-116	0.8	< 0.15	16.5	n/a	5.87	n/a	4.5	1.37	951	474	<6	9.95	<2	<2	<2	n/a	n/a	n/a
	4/27/2017	6.0	-11.0	1.7	<0.15	25.0	n/a	5.89	n/a	2.5	3.39	1140	490	154	9.77	< 0.2	<0.2	< 0.2	n/a	n/a	n/a
	10/26/2017	6.0	3.2	1.1	< 0.25	22.8	n/a	6.25	n/a	1.0	5.25	920	455	69.5	10.5	<2	<2	<2	n/a	n/a	n/a
	4/26/2018	6.2	-176	1.0	< 0.05	n/a	n/a	5.80	n/a	2.0	3.8	854	435	510	8.73	<2	<2	<2	n/a	n/a	n/a

Table E.2. Summary of MNA Constituents, Old Midland Products Superfund Site.

Well ID	Sampling Date	Hd (SU)	Oxygen Reduction Potential (SA) (ORP)	(DO) Dissolved Oxygen (DO)	(Mg/L) Nitrate-Nitrite as N	(T) Total Manganese	(mg/L) Dissolved Manganese	(mg/L)	(mg/L)	Field Determined Ferrous	(T) Ferric Iron (Fe3+)	Sulfate (mg/L)	Chloride	(Total Alkalinity [as CaCO3]	(T) Total Organic Carbon	南 (丙) 2-Chlorophenol	(T ^G π) 2,6-Dichlorophenol	க் 7 2,4-Dichlorophenol	Methane (mg/L)	Ethane (L/gm)	Ethene (mg/L)
MW-3D																					
11111 525	7/15/1999	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	10/26/1999	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	13.8	n/a	n/a	n/a	n/a	n/a	n/a
	1/20/2000	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	24	n/a	n/a	n/a	n/a	n/a	n/a
	4/24/2000	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	7/26/2000	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	1/25/2001	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	7/30/2001	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	8/27/2002	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	6.3	n/a	n/a	n/a	n/a	n/a	n/a
	3/27/2003	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	6	n/a	n/a	n/a	n/a	n/a	n/a
	8/26/2003	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	3.5	n/a	n/a	n/a	n/a	n/a	n/a
	2/24/2004	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	2.9	n/a	n/a	n/a	n/a	n/a	n/a
	8/25/2004	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	2.1	n/a	n/a	n/a	n/a	n/a	n/a
	2/22/2005	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	6	n/a	n/a	n/a	n/a	n/a	n/a
	8/23/2005	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	1.9	n/a	n/a	n/a	n/a	n/a	n/a
	2/21/2006	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	3	n/a	n/a	n/a	n/a	n/a	n/a
	8/22/2006	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	6	n/a	n/a	n/a	n/a	n/a	n/a
	10/9/2006	6.4	52.4	9.9	< 0.05	n/a	n/a	5.5	n/a	n/a	n/a	< 0.2	98	190	2.6	n/a	n/a	n/a	1.2	< 0.02	< 0.01
	12/21/2006	6.5	-48.1	1.7	< 0.05	n/a	n/a	4.7	n/a	n/a	n/a	0.34	64	140	3.7	n/a	n/a	n/a	< 0.1	< 0.02	< 0.01
	3/21/2007	6.9	-102	0.4	n/a	n/a	n/a	4.7	n/a	n/a	n/a	0.31	71	210	3.7	n/a	n/a	n/a	5.1	< 0.02	< 0.02
	5/20/2009	6.7	-150	0.4	0.031	n/a	n/a	5.01	n/a	n/a	n/a	0.38	95.5	167	1.32	n/a	n/a	n/a	n/a	n/a	n/a
	11/4/2009	6.6	-50.0	0.0	< 0.01	n/a	n/a	4.68	n/a	n/a	n/a	0.12	101	171	1.43	n/a	n/a	n/a	n/a	n/a	n/a
	5/4/2010	6.8	-109	0.0	< 0.01	n/a	n/a	5.76	n/a	n/a	n/a	0.29	101	174	3.29	n/a	n/a	n/a	n/a	n/a	n/a
	10/12/2010	6.8	-102	0.0	0.03	n/a	n/a	4.99	n/a	n/a	n/a	0	107	144	1.67	n/a	n/a	n/a	n/a	n/a	n/a
	4/13/2011	5.9	-97.0	0.3	< 0.3	n/a	n/a	5.05	n/a	n/a	n/a	0.23	107	162	3.26	n/a	n/a	n/a	n/a	n/a	n/a
	10/18/2011	6.8	-93.0	0.0	< 0.03	n/a	n/a	n/a	n/a	n/a	n/a	0.41	114	169	1.3	n/a	n/a	n/a	n/a	n/a	n/a
	4/19/2012	6.8	-80.0	0.0	< 0.03	n/a	n/a	n/a	n/a	n/a	n/a	0.25	113	187	2.41	n/a	n/a	n/a	n/a	n/a	n/a
	10/23/2012	6.8	-100	0.0	< 0.03	n/a	n/a	n/a	n/a	n/a	n/a	0.24	114	161	1.5	n/a	n/a	n/a	n/a	n/a	n/a
	5/6/2013	7.1	-101	1.3	< 0.3	n/a	n/a	n/a	n/a	n/a	n/a	<0.02	110	190	2.96	n/a	n/a	n/a	n/a	n/a	n/a
	10/3/2013	6.6	-70.0	0.3	< 0.15	n/a	n/a	n/a	n/a	n/a	n/a	<0.2(B)	113	164	0.935(B)	<2	<2	<2	n/a	n/a	n/a
	4/23/2014	6.8	-61.7	0.3	< 0.15	0.652	n/a	5.53	n/a	2.5	3.03	0.23	114	174	2.2	<2	<2	<2	n/a	n/a	n/a
	10/8/2014	6.6	-44.0	0.3	< 0.3	0.688	n/a	5.32	n/a	1.5	3.82	< 0.2	109	169	1.09	<2	<2	<2	n/a	n/a	n/a
	4/15/2105	6.7	-41.0	0.7	< 0.15	0.561	n/a	4.80	n/a	1.0	3.8	2.04	106	151	3.97	<2	<2	<2	n/a	n/a	n/a
	11/13/2015	6.6	191	0.3	< 0.3	0.51	n/a	5.16	n/a	4.5	0.66	< 0.5	105	160	1.96	<2	<2	<2	n/a	n/a	n/a
	4/5/2016	7.0	-92.0	1.4	< 0.15	0.562	n/a	7.49	n/a	2	5.49	<2.5	109	356 57.2	<1	<2	<2	<2	n/a	n/a	n/a
	10/26/2016 4/27/2017	6.4	-74.0 -77.4	0.4	< 0.15	0.671	n/a	5.38	n/a	2.0	3.38	<0.5	110 109	57.2	2	<2	<2	<2	n/a	n/a	n/a
	10/26/2017	6.7	-77.4 -71.4	0.3	<0.5 <0.25	0.666	n/a	5.44	n/a	3.0	2.44 3.89	<0.5		<60 174	2.41 2.05	<0.2	<0.2 <2	<0.2 <2	n/a	n/a	n/a
	4/26/2017	6.7 6.8	-71.4 -174	0.3	<0.25	0.644	n/a	5.39 5.23	n/a	1.5 1.5	3.89	<1 <0.5	106 108	174	2.05	<2 <2	<2 <2	<2	n/a	n/a	n/a
L	4/20/2018	0.8	-1/4	0.4	<0.03	n/a	n/a	3.23	n/a	1.3	3.13	<0.5	108	100	2.44	<.2	<.2	<.2	n/a	n/a	n/a

Table E.2. Summary of MNA Constituents, Old Midland Products Superfund Site.

Well	Sampling	Hd (SU)	B Oxygen Reduction Potential	mi Of Dissolved Oxygen (DO)	by Nitrate-Nitrite as N	(M/T) Total Manganese	(Mg) Dissolved Manganese	(mg/L)	(mg/L)	Field Determined Ferrous	Man Ferric Iron (Fe3+)	Sulfate (mg/L)	Chloride (mg/L)	Total Alkalinity [as CaCO3]	Mary Total Organic Carbon	γ 2-Chlorophenol	та Ту 2,6-Dichlorophenol	राष्ट्री 2,4-Dichlorophenol	(T/Sum)	Ethane (T/Sm)	Ethene (mg/L)
ID	Date	(50)	(111 + 13)	(Hig/L)	(Hig/L)	(mg/L)	(IIIg/L)	(Hig/L)	(IIIg/L)	(IIIg/L)	(IIIg/L)	(IIIg/L)	(IIIg/L)	(IIIg/L)	(IIIg/L)	(µg/L)	(μg/12)	(μg/12)	(Hig/L)	(Hg/L)	(Hg/L)
MW-5S	= 4.44000			,	,		,	,	,	,	,		,						,		
	7/14/1999	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	10/26/1999	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	1/18/2000	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	4/19/2000	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	7/24/2000 1/23/2001	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	7/31/2001	n/a n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10 <10	n/a	n/a	n/a	n/a	n/a	n/a
	8/27/2002	n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	<10	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a
	3/4/2003	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	8/26/2003	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	2/24/2004	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	8/26/2004	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	2/22/2005	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	4.1	n/a	n/a	n/a	n/a	n/a	n/a
	8/22/2005	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	2/27/2006	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	8/24/2006	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	4	n/a	n/a	n/a	n/a	n/a	n/a
	10/5/2006	6.3	104	0.7	< 0.05	n/a	n/a	0.32	n/a	n/a	n/a	29	45	180	<1	n/a	n/a	n/a	< 0.1	< 0.02	< 0.01
	12/20/2006	6.4	291	0.2	0.24	n/a	n/a	3	n/a	n/a	n/a	22	49	170	<1	n/a	n/a	n/a	< 0.1	< 0.02	< 0.01
	3/20/2007	6.5	166	0.4	< 0.05	n/a	n/a	0.087	n/a	n/a	n/a	26	47	190	1.1	n/a	n/a	n/a	< 0.01	< 0.02	< 0.02
	9/25/2008	6.3	160	0.2	< 0.01	n/a	n/a	< 0.02	n/a	n/a	n/a	28.6	39.4	195	< 0.2	n/a	n/a	n/a	n/a	n/a	n/a
	5/26/2009	6.8	-90.1	0.6	0.054	n/a	n/a	0.216	n/a	n/a	n/a	0.82	98	189	0.839	n/a	n/a	n/a	n/a	n/a	n/a
	11/10/2009	6.4	126	0.0	< 0.01	n/a	n/a	0.0233	n/a	n/a	n/a	26.2	38.6	197	< 0.2	n/a	n/a	n/a	n/a	n/a	n/a
	4/28/2010	4.1	303	0.0	< 0.01	n/a	n/a	< 0.02	n/a	n/a	n/a	31.2	41	175	< 0.2	n/a	n/a	n/a	n/a	n/a	n/a
	10/7/2010	6.8	145	0.0	< 0.01	n/a	n/a	0.0292	n/a	n/a	n/a	30.8	41.2	198	< 0.2	n/a	n/a	n/a	n/a	n/a	n/a
	4/6/2011	6.5	106	1.3	< 0.03	n/a	n/a	0.028	n/a	n/a	n/a	26.1	37.6	196	< 0.2	n/a	n/a	n/a	n/a	n/a	n/a
	10/11/2011	6.5	133	0.1	< 0.03	n/a	n/a	n/a	n/a	n/a	n/a	31.1	41.8	204	< 0.2	n/a	n/a	n/a	n/a	n/a	n/a
	4/10/2012	6.6	220	0.0	< 0.03	n/a	n/a	n/a	n/a	n/a	n/a	27.6	34.8	197	< 0.2	n/a	n/a	n/a	n/a	n/a	n/a
	10/16/2012	6.5	82.0	0.0	< 0.03	n/a	n/a	n/a	n/a	n/a	n/a	29.9	37.6	203	< 0.2	n/a	n/a	n/a	n/a	n/a	n/a
	4/30/2013	7.1	77.0	4.9	< 0.03	n/a	n/a	n/a	n/a	n/a	n/a	26.8	23.8	189	< 0.2	n/a	n/a	n/a	n/a	n/a	n/a
	10/1/2013	6.5	101	0.5	< 0.03	n/a	n/a	n/a	n/a	n/a	n/a	30.3	37.4	203	<0.2	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	4/23/2014	6.3	149	0.6	< 0.03	0.0245	n/a	< 0.020	n/a	<0.5	n/a	26.5	28.7	187	<0.2	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	10/9/2014	6.4	158	0.4	< 0.03	0.398	n/a	< 0.020	n/a	< 0.5	n/a	28.9	33.9	197	<0.2	<0.2	<0.2	<0.2	n/a	n/a	n/a
	4/16/2015	6.5	101	1.0	0.359	0.756	n/a	< 0.020	n/a	< 0.5	n/a	25.7	27.6	191	0.339	<0.2	<0.2	<0.2	n/a	n/a	n/a
	11/11/2015	6.5	92.1	0.5	< 0.03	0.028	n/a	<0.020	n/a	<0.5	n/a	28	31.6	200	<1	<0.2	<0.2	<0.2	n/a	n/a	n/a
	4/4/2016 10/27/2016	6.6	-75.8 232	0.3 0.6	<0.03 <0.03	0.585	n/a 0.298	<0.020	n/a <0.2	<0.5 <0.5	n/a	26.5 30.9	28.7 39.8	195 188	<1	<0.2	<0.2	<0.2 <0.2	n/a	n/a	n/a
	4/27/2016	6.5 6.5	134	0.6	<0.03	n/a 0.233		n/a <0.5		<0.5 <0.5	n/a	25.2	39.8	188 196	<1 <1	<0.2 <0.2	<0.2 <0.2	<0.2	n/a	n/a	n/a
	10/24/2017	6.6	109	0.2	< 0.05	0.233	n/a	<0.5	n/a n/a	<0.5	n/a n/a	32.6	42.8	196	<1	<0.2	<0.2	<0.2	n/a n/a	n/a	n/a
		6.5	109	0.4	<0.05		n/a					32.6 29			<1 <1	<0.2	<0.2	<0.2		n/a	n/a
<u> </u>	4/25/2018	0.3	102	0.5	<0.05	n/a	n/a	0.00931	n/a	<0.5	n/a	29	35.1	184	<1	<0.2	<0.2	<0.2	n/a	n/a	n/a

Table E.2. Summary of MNA Constituents, Old Midland Products Superfund Site.

Well	Sampling	Hd (SU)	Oxygen Reduction Potential (ORP)	md Agen (DO)	Mg/W Nitrate-Nitrite as N	Manganese (7/7)	ED Dissolved Manganese	Total Iron	(mg/L) Dissolved Iron	Field Determined Ferrous	Man Ferric Iron (Fe3+)	Sulfate (T/Sm)	Chloride (mg/r)	m (7/a Total Alkalinity [as CaCO3]	Man Total Organic Carbon	π 7 2-Chlorophenol	off T 2,6-Dichlorophenol	77 2,4-Dichlorophenol	(T/Sum)	(Thane	Ethene (mg/L)
ID	Date	(50)	(111 7 5)	(IIIg/L)	(IIIg/L)	(IIIg/L)	(Hig/L)	(IIIg/L)	(Hig/L)	(IIIg/L)	(IIIg/L)	(Hig/L)	(Hg/L)	(Hig/L)	(IIIg/L)	(µg/L)	(μg/L)	(µg/L)	(Hig/L)	(IIIg/L)	(IIIg/L)
MW-8S	= 4.44000					,	,	,	,	,	,	,		,		,		,		,	,
	7/14/1999	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	10/27/1999	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	1/18/2000	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	4/19/2000	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	7/24/2000 1/23/2001	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10 <10	n/a	n/a	n/a	n/a	n/a	n/a
	7/30/2001	n/a n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	8/27/2002	n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	1.2	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a
	3/4/2003	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	8/26/2003	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	2/24/2004	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	8/26/2004	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	1	n/a	n/a	n/a	n/a	n/a	n/a
	2/22/2005	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	3.7	n/a	n/a	n/a	n/a	n/a	n/a
	8/23/2005	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	2/23/2006	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	8/24/2006	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	5	n/a	n/a	n/a	n/a	n/a	n/a
	10/9/2006	5.6	168	4.0	0.52	n/a	n/a	0.96	n/a	n/a	n/a	62	93	46	1.4	n/a	n/a	n/a	< 0.1	< 0.02	< 0.01
	12/19/2006	5.8	193	1.1	0.31	n/a	n/a	0.22	n/a	n/a	n/a	n/a	88	51	<1	n/a	n/a	n/a	< 0.1	< 0.02	< 0.01
	3/22/2007	5.8	163	0.7	0.11	n/a	n/a	0.37	n/a	n/a	n/a	110	90	73	<1	n/a	n/a	n/a	< 0.01	< 0.02	< 0.02
	10/17/2008	5.5	55.8	0.2	0.374	n/a	n/a	< 0.02	n/a	n/a	n/a	91.6	107	51.6	0.425	n/a	n/a	n/a	n/a	n/a	n/a
	5/20/2009	5.7	24.6	0.2	0.425	n/a	n/a	0.417	n/a	n/a	n/a	121	149	55.9	0.736	n/a	n/a	n/a	n/a	n/a	n/a
	11/3/2009	5.7	139	0.0	0.552	n/a	n/a	0.0621	n/a	n/a	n/a	171	181	52.6	0.475	n/a	n/a	n/a	n/a	n/a	n/a
	4/28/2010	4.5	282	0.0	0.397	n/a	n/a	0.558	n/a	n/a	n/a	168	152	275	< 0.2	n/a	n/a	n/a	n/a	n/a	n/a
	10/5/2010	5.9	132	0.1	0.312	n/a	n/a	0.204	n/a	n/a	n/a	169	156	46.8	0.423	n/a	n/a	n/a	n/a	n/a	n/a
	4/5/2011	5.1	159	0.8	0.396	n/a	n/a	0.228	n/a	n/a	n/a	208	161	57.9	0.503	n/a	n/a	n/a	n/a	n/a	n/a
	10/11/2011	5.8	174	0.0	0.379	n/a	n/a	n/a	n/a	n/a	n/a	188	138	50	< 0.2	n/a	n/a	n/a	n/a	n/a	n/a
	4/11/2012	5.8	233	0.0	0.374	n/a	n/a	n/a	n/a	n/a	n/a	226	125	55.2	0.379	n/a	n/a	n/a	n/a	n/a	n/a
	10/16/2012	5.6	165	0.0	0.312	n/a	n/a	n/a	n/a	n/a	n/a	218	126	44.1	0.491	n/a	n/a	n/a	n/a	n/a	n/a
	5/7/2013	6.2	165	0.0	0.423	n/a	n/a	n/a	n/a	n/a	n/a	243	108	64.8	0.656	n/a	n/a	n/a	n/a	n/a	n/a
	9/30/2013	5.6	172	0.6	0.369	n/a	n/a	n/a	n/a	n/a	n/a	197(B)	113	51.2	0.694(B)	<0.2	<0.2	< 0.2	n/a	n/a	n/a
	4/23/2014	5.8	155	0.6	0.277	0.040	n/a	0.362	n/a	<0.5	n/a	249	97.8	69.9	0.64	< 0.2	<0.2	< 0.2	n/a	n/a	n/a
	10/8/2014	5.7	207	0.5	0.315	0.062	n/a	0.096	n/a	< 0.5	n/a	230	105	55.1	0.333	<0.2	<0.2	<0.2	n/a	n/a	n/a
	4/15/2015	5.6	226	0.4	0.358	0.057	n/a	0.598	n/a	< 0.5	n/a	276	107	64.2	0.764	<0.2	<0.2	<0.2	n/a	n/a	n/a
	11/11/2015	5.5	110	0.4	0.256	0.615	n/a	0.626	n/a	<0.5	n/a	278	105	67.9	<1	<0.2	<0.2	<0.2	n/a	n/a	n/a
	4/6/2016 10/27/2016	5.8	-60.3 217	0.7 0.8	0.145	0.0459 0.062	n/a	0.181 0.39	n/a	<0.5 <0.5	n/a	273 250	93.4 96.4	83.9 104	<1 <1	<0.2 <0.2	<0.2 <0.2	<0.2 <0.2	n/a	n/a	n/a
	4/27/2016	5.8 5.7	44.0	1.0	0.111(B) 0.167	< 0.1	n/a	< 0.5	n/a	<0.5 <0.5	n/a	280	96.4 86.5	65	<1 <1	<0.2	<0.2	<0.2	n/a	n/a	n/a
	10/26/2017	5.7 5.7	-11.5	0.3	0.167	<0.1	n/a	<0.5 <0.5	n/a	<0.5 <0.5	n/a	280 176	86.5 81.8	44.3	<1 <1	<0.2	<0.2	<0.2	n/a	n/a	n/a
		5.7	-11.5 -171				n/a		n/a		n/a			57.1		<0.2	<0.2	<0.2	n/a	n/a	n/a
<u> </u>	4/26/2018	٥.0	-1/1	0.7	0.198	n/a	n/a	0.0634	n/a	<0.5	n/a	261	74.6	3/.1	1.16	<0.2	<0.2	<0.2	n/a	n/a	n/a

Table E.2. Summary of MNA Constituents, Old Midland Products Superfund Site.

Well	Sampling	Нd	Oxygen Reduction Potential (ORP)	Dissolved Oxygen (DO)	Nitrate-Nitrite as N	Total Manganese	Dissolved Manganese	Total Iron	Dissolved Iron	Field Determined Ferrous Iron (Fe2+)	Ferric Iron (Fe3+)	Sulfate	Chloride	Total Alkalinity [as CaCO3]	Total Organic Carbon	2-Chlorophenol	2,6-Dichlorophenol	2,4-Dichlorophenol	Methane	Ethane	Ethene
ID	Date	(SU)	(mVs)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(µg/L)	(μg/L)	(μg/L)	(mg/L)	(mg/L)	(mg/L)
MW-8D																					
	7/14/1999	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	10/27/1999	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	1/18/2000	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	4/19/2000	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	7/24/2000	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	1/23/2001	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	7/30/2001	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	8/27/2002 3/4/2003	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	8/26/2003	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a	n/a n/a	<1 <1	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a
	2/24/2004	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	8/26/2004	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	2/22/2005	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	8/23/2005	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	2/23/2006	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	8/24/2006	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	1.8	n/a	n/a	n/a	n/a	n/a	n/a
	10/10/2006	6.9	-98.1	0.9	< 0.05	n/a	n/a	1.2	n/a	n/a	n/a	5.6	13	170	<1	n/a	n/a	n/a	0.12	< 0.02	< 0.01
	12/19/2006	7.0	-44.9	2.3	< 0.05	n/a	n/a	1.4	n/a	n/a	n/a	n/a	16	170	<1	n/a	n/a	n/a	< 0.1	< 0.02	< 0.01
	3/22/2007	7.1	-74.6	1.5	< 0.05	n/a	n/a	0.95	n/a	n/a	n/a	8.3	14	170	<1	n/a	n/a	n/a	0.028	< 0.02	< 0.02
	9/26/2008	7.0	-174	0.1	< 0.01	n/a	n/a	0.834	n/a	n/a	n/a	4.42	9.42	188	0.223	n/a	n/a	n/a	n/a	n/a	n/a
	5/21/2009	7.5	-150	0.5	0.028	n/a	n/a	1.69	n/a	n/a	n/a	19.2	11.9	n/a	0.347	n/a	n/a	n/a	n/a	n/a	n/a
	11/4/2009	7.1	-112	0.0	< 0.01	n/a	n/a	0.988	n/a	n/a	n/a	7.75	9.78	199	0.471	n/a	n/a	n/a	n/a	n/a	n/a
	4/29/2010	3.0	138	0.0	< 0.01	n/a	n/a	0.754	n/a	n/a	n/a	4.51	10.9	104	< 0.0002	n/a	n/a	n/a	n/a	n/a	n/a
	10/5/2010	7.6	-113	0.0	< 0.01	n/a	n/a	1.07	n/a	n/a	n/a	7.53	13.3	189	0.359	n/a	n/a	n/a	n/a	n/a	n/a
	4/5/2011	6.9	-45.0	1.5	< 0.03	n/a	n/a	0.496	n/a	n/a	n/a	6.74	12.7	201	< 0.2	n/a	n/a	n/a	n/a	n/a	n/a
	10/11/2011	7.7	-122	0.0	0.069	n/a	n/a	n/a	n/a	n/a	n/a	9.68	13.3	203	< 0.2	n/a	n/a	n/a	n/a	n/a	n/a
	4/11/2012	7.3	-23.0	0.8	0.056	n/a	n/a	n/a	n/a	n/a	n/a	7.91	11.2	193	< 0.2	n/a	n/a	n/a	n/a	n/a	n/a
	10/16/2012	7.4	-110	0.0	< 0.03	n/a	n/a	n/a	n/a	n/a	n/a	9.53	12.4	199	0.258	n/a	n/a	n/a	n/a	n/a	n/a
	5/7/2013	7.8	20.0	2.0	0.041	n/a	n/a	n/a	n/a	n/a	n/a	12.7	10.9	195	0.304	n/a	n/a	n/a	n/a	n/a	n/a
	9/30/2013	7.4	-96.0	0.7	< 0.03	n/a	n/a	n/a	n/a	n/a	n/a	12.7(B)	13.6	202	0.613(B)	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	4/23/2014	7.4	117	2.9	0.119	0.036	n/a	0.135	n/a	< 0.5	n/a	15.9	13.4	197	0.36	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	10/8/2014	7.7	-120	0.3	< 0.03	0.381	n/a	1.01	n/a	0.5	0.510	13.4	12.6	204	0.232	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	4/15/2015	7.5	-57.0	0.9	< 0.03	0.379	n/a	0.824	n/a	0.5	0.324	11.3	13.6	208	0.966	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	11/12/2015	8.2	228	0.5	<0.03	0.278	n/a	0.779	n/a	0.5	0.279	7.65	15.1	215	<1	<0.2	< 0.2	<0.2	n/a	n/a	n/a
	4/6/2016	7.5	-38	2.5	0.201(B)	0.144	n/a	0.487	n/a	< 0.5	n/a	17.7	16.2(B)	186	<1	<0.2	< 0.2	<0.2	n/a	n/a	n/a
	10/27/2016	7.5	-120	1.5	< 0.03	0.314	n/a	1.33	n/a	1.5	-0.17	15.1	18.2	206	<1	< 0.2	<0.2	0.397	n/a	n/a	n/a
	4/27/2017	7.7	-114	1.3	0.193	< 0.1	n/a	< 0.5	n/a	0.5	n/a	20.1	17.8	208	<1	< 0.2	<0.2	<0.2	n/a	n/a	n/a
	10/26/2017	7.5	-49	1.0	< 0.05	0.37	n/a	1.44	n/a	1.5	n/a	23.2	20.2	181	<1	< 0.2	< 0.2	0.25	n/a	n/a	n/a
	4/26/2018	7.5	66	1.8	0.139	n/a	n/a	0.362	n/a	< 0.5	n/a	24.4	20.1	186	<1	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a

Table E.2. Summary of MNA Constituents, Old Midland Products Superfund Site.

Well	Sampling	Hd (SU)	Oxygen Reduction Potential (ORP)	mi Or Dissolved Oxygen (DO)	(mg/Z) (of traite-Nitrite as N	(Manganese Total Manganese	M Dissolved Manganese	(mg/L)	(mg/L)	Field Determined Ferrous	Marric Iron (Fe3+)	Sulfate (T/Sm)	Chloride (mg/r)	m (7/a Total Alkalinity [as CaCO3]	Man Total Organic Carbon	π 7 2-Chlorophenol	от (Т (Т) 2,6-Dichlorophenol	77 2,4-Dichlorophenol	(T/Sum)	(Thane	Ethene (mg/L)
ID	Date	(30)	(111 v 3)	(mg/L)	(IIIg/L)	(mg/L)	(IIIg/L)	(IIIg/L)	(mg/L)	(IIIg/L)	(IIIg/L)	(IIIg/L)	(Hig/L)	(IIIg/L)	(mg/L)	(µg/L)	(μg/L)	(μg/L)	(IIIg/L)	(mg/L)	(IIIg/L)
MW-9S	= 4.44000			,			,	,			,	,		,		,		,		,	,
	7/14/1999	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	10/27/1999	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	1/19/2000	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	4/19/2000 7/25/2000	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	1/31/2001 7/31/2001	n/a n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a n/a	n/a	n/a	n/a	n/a	n/a	n/a <10	n/a	n/a	n/a	n/a	n/a	n/a
	8/27/2002	n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	2	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a
	3/4/2003	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	1.2	n/a	n/a	n/a	n/a	n/a	n/a
	8/26/2003	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	2/25/2004	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	11	n/a	n/a	n/a	n/a	n/a	n/a
	8/26/2004	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	3.8	n/a	n/a	n/a	n/a	n/a	n/a
	2/23/2005	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	13	n/a	n/a	n/a	n/a	n/a	n/a
	8/23/2005	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	5.6	n/a	n/a	n/a	n/a	n/a	n/a
	2/24/2006	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	2.7	n/a	n/a	n/a	n/a	n/a	n/a
	8/24/2006	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	21	n/a	n/a	n/a	n/a	n/a	n/a
	10/10/2006	5.9	21.9	2.8	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	12/21/2006	5.9	268	1.3	< 0.05	n/a	n/a	17	n/a	n/a	n/a	96	110	82	1.5	n/a	n/a	n/a	< 0.1	< 0.02	< 0.01
	3/19/2007	6.2	115	0.5	< 0.05	n/a	n/a	1.6	n/a	n/a	n/a	100	150	160	1.5	n/a	n/a	n/a	< 0.01	< 0.02	< 0.02
	10/14/2008	6.4	-90.4	1.7	0.037	n/a	n/a	41.5	n/a	n/a	n/a	70.2	73	150	6.27	n/a	n/a	n/a	n/a	n/a	n/a
	5/26/2009	6.6	-180	0.4	< 0.01	n/a	n/a	< 0.02	n/a	n/a	n/a	30.5	40.2	200	< 0.0002	n/a	n/a	n/a	n/a	n/a	n/a
	11/10/2009	6.4	50.0	0.0	0.053	n/a	n/a	9.19	n/a	n/a	n/a	46.7	48.7	171	<4	n/a	n/a	n/a	n/a	n/a	n/a
	4/28/2010	6.3	-61.0	0.0	0.044	n/a	n/a	8.3	n/a	n/a	n/a	63.8	131	249	0.919	n/a	n/a	n/a	n/a	n/a	n/a
	10/5/2010	6.5	17.0	9.3	0.071	n/a	n/a	10.7	n/a	n/a	n/a	n/a	166	133	0.444	n/a	n/a	n/a	n/a	n/a	n/a
	4/5/2011	5.4	78.0	1.6	0.038	n/a	n/a	8.12	n/a	n/a	n/a	78.7	101	140	1.6	n/a	n/a	n/a	n/a	n/a	n/a
	10/13/2011	6.3	50.0	0.6	< 0.03	n/a	n/a	n/a	n/a	n/a	n/a	76.3	125	112	1.01	n/a	n/a	n/a	n/a	n/a	n/a
	4/12/2012	6.5	29.0	0.0	< 0.03	n/a	n/a	n/a	n/a	n/a	n/a	89	166	251	0.868	n/a	n/a	n/a	n/a	n/a	n/a
	10/18/2012	6.2	11.0	0.3	< 0.03	n/a	n/a	n/a	n/a	n/a	n/a	91.3	156	140	< 0.2	n/a	n/a	n/a	n/a	n/a	n/a
	4/30/2013	6.9	111	0.0	< 0.03	n/a	n/a	n/a	n/a	n/a	n/a	111	200	270	1.05	n/a	n/a	n/a	n/a	n/a	n/a
	10/3/2013	6.0	30.0	0.4	< 0.03	n/a	n/a	n/a	n/a	n/a	n/a	99.4(B)	155	136	0.546(B)	<0.2	< 0.2	< 0.2	n/a	n/a	n/a
	4/21/2014	6.3	156	1.0	< 0.15	1.69	n/a	1.21	n/a	<0.5	n/a	116	194	231	0.437	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	10/7/2014	5.8	92.2	0.9	< 0.03	2.27	n/a	8.8	n/a	2.5	n/a	107	146	135	0.213	<0.2	<0.2	<0.2	n/a	n/a	n/a
	4/14/2015	6.2	126	0.5	< 0.03	0.568	n/a	0.642	n/a	< 0.5	n/a	112	167	242	0.563	<0.2	<0.2	<0.2	n/a	n/a	n/a
	11/13/2015	5.4	94	2.4	0.117	1.17	n/a	4.30	n/a	1.5	n/a	116	144	162	<1	<0.2	<0.2	<0.2	n/a	n/a	n/a
	4/6/2016 10/26/2016	6.2	-40 53	2.0 1.7	<0.03 0.071	2.15	1.44 2.89	0.72	0.0503 10.40	<0.5 3	n/a	124 106	166 138	178 182	<1 1.12	<0.2 <0.2	<0.2 <0.2	0.209 <0.2	n/a	n/a	n/a
	4/25/2016	6.0 6.0	53 169	1.7	< 0.071	n/a 1.73		n/a 0.791		<0.5	n/a	112	138 144	182 144	1.12	<0.2	<0.2	<0.2	n/a	n/a	n/a
	10/24/2017	5.8	2	1.3	<0.05	1.73	n/a	3.480	n/a	<0.5 2.5	n/a 1.0	107	127	123	<1.24	<0.2	<0.2	<0.2	n/a	n/a	n/a
		6.2		2.2			n/a		n/a 0.129	<0.5		107		123	<1 <1	<0.2	<0.2	<0.2	n/a	n/a	n/a
<u> </u>	4/24/2018	0.2	106	2.2	< 0.05	n/a	n/a	n/a	0.129	<0.5	n/a	109	146	154	<1	<0.2	<0.2	<0.2	n/a	n/a	n/a

Table E.2. Summary of MNA Constituents, Old Midland Products Superfund Site.

Well ID	Sampling Date	Hd (SU)	Oxygen Reduction Potential (SA) (ORP)	(mg/D) (T) Dissolved Oxygen (DO)	(mg/L) (mg/L)	(T) Total Manganese	(m) Dissolved Manganese	(mg/L)	(mg/L)	or Green Betermined Ferrous (Tron (Fe2+)	(T) Ferric Iron (Fe3+)	Sulfate (mg/L)	Chloride	(Trotal Alkalinity [as CaCO3]	(T) Total Organic Carbon	oπ) (Tag 2-Chiorophenol	(Ta. 2,6-Dichlorophenol	(Tage 2,4 Dichlorophenol	Methane (mg/L)	Ethane (mg/L)	Ethene (mg/L)
MW-9D											n/a										
, 22	7/14/1999	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	10/27/1999	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	1/19/2000	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	4/19/2000	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	7/25/2000	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	1/23/2001	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	7/31/2001	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	8/27/2002	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	3/4/2003	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	8/26/2003	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	2/25/2004	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	8/26/2004	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	2/23/2005	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	4	n/a	n/a	n/a	n/a	n/a	n/a
	8/23/2005	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	2/23/2006	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	8/24/2006	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	10/10/2006	6.1	39.3	1.1	< 0.05	n/a	n/a	2.1	n/a	n/a	n/a	57	120	140	<1	n/a	n/a	n/a	< 0.1	< 0.02	< 0.01
	12/21/2006	6.2	350	0.4	< 0.05	n/a	n/a	3.2	n/a	n/a	n/a	42	120	160	<1	n/a	n/a	n/a	< 0.1	< 0.02	< 0.01
	3/19/2007	6.4	35.1	0.5	< 0.05	n/a	n/a	2.5	n/a	n/a	n/a	20	110	170	<1	n/a	n/a	n/a	0.17	< 0.02	< 0.02
	10/14/2008	6.4	-99.3	0.1	0.038	n/a	n/a	2.26	n/a	n/a	n/a	1.07	93.8	181	0.214	n/a	n/a	n/a	n/a	n/a	n/a
	5/22/2009	6.5	-153	1.5	0.01	n/a	n/a	3.26	n/a	n/a	n/a	0.43	103	185	< 0.2	n/a	n/a	n/a	n/a	n/a	n/a
	11/10/2009	6.8	-48.0	4.8	< 0.01	n/a	n/a	4.65	n/a	n/a	n/a	0.19	108	186	< 0.2	n/a	n/a	n/a	n/a	n/a	n/a
	4/29/2010	6.3	-23.0	0.0	< 0.01	n/a	n/a	3.08	n/a	n/a	n/a	0.31	104	189	< 0.2	n/a	n/a	n/a	n/a	n/a	n/a
	10/4/2010	6.7	-37.0	0.0	< 0.01	n/a	n/a	2.79	n/a	n/a	n/a	< 0.2	105	184	< 0.2	n/a	n/a	n/a	n/a	n/a	n/a
	4/5/2011	5.7	-21.0	0.6	< 0.03	n/a	n/a	1.54	n/a	n/a	n/a	0.44	102	201	< 0.2	n/a	n/a	n/a	n/a	n/a	n/a
	10/12/2011	6.7	-27.0	0.0	< 0.03	n/a	n/a	n/a	n/a	n/a	n/a	0.3	108	186	< 0.2	n/a	n/a	n/a	n/a	n/a	n/a
	4/12/2012	6.7	-22.0	0.0	< 0.03	n/a	n/a	n/a	n/a	n/a	n/a	0.26	106	196	< 0.2	n/a	n/a	n/a	n/a	n/a	n/a
	10/17/2012	6.7	-31.0	0.0	< 0.03	n/a	n/a	n/a	n/a	n/a	n/a	0.22	106	188	< 0.2	n/a	n/a	n/a	n/a	n/a	n/a
	4/30/2013	6.9	-94.0	0.0	< 0.03	n/a	n/a	n/a	n/a	n/a	n/a	<0.2	103	256	2.13	n/a	n/a	n/a	n/a	n/a	n/a
	10/1/2013	6.5	-39.0	0.2	<0.03	n/a	n/a	n/a	n/a	n/a	n/a	<0.2	110	183	<0.2	<0.2	<0.2	<0.2	n/a	n/a	n/a
	4/22/2014	6.4	90.4	0.6	< 0.03	0.447	n/a	4.0	n/a	3.0	1.0	<0.2	112	182	<0.2	<0.2	<0.2	<0.2	n/a	n/a	n/a
	10/7/2014 4/15/2015	6.5	-29.1 -23.6	0.4	<0.03	0.45 0.782	n/a	3.0	n/a	2.0 2.0	1.0	0.22 0.55	108 107	186	<0.2 0.532	<0.2	<0.2	<0.2	n/a	n/a	n/a
	4/15/2015 11/11/2015	6.5 6.5	-23.6 -20.2	0.5	<0.03	0.782	n/a	6.04 2.82	n/a	3.0	4.0 -0.2	<0.55	107	161 179		<0.2 <0.2	<0.2 <0.2	<0.2 <0.2	n/a	n/a	n/a
	4/6/2016	6.5	-20.2 -105.4	0.5	<0.03 0.031	0.423	n/a n/a	0.97	n/a	NR		<0.5 0.56	111	179	<1 <1	<0.2	<0.2	<0.2	n/a	n/a	n/a
	10/26/2016	6.6	-105.4	0.5	0.031	0.346	n/a n/a	3.420	n/a n/a	3.5	n/a -0.1	< 0.5	112	181	<1 <1	<0.2	<0.2	<0.2	n/a n/a	n/a n/a	n/a n/a
	4/25/2017	6.7	-22.0	0.8	< 0.05	0.412	n/a	2.570	n/a	1.5	1.1	<0.5	115	186	<1	<0.2	<0.2	<0.2	n/a	n/a	n/a
	10/24/2017	6.6	-5.4	0.8	< 0.05	0.412	n/a	3.020	n/a	2.5	0.5	<0.5	110	183	<1	<0.2	<0.2	<0.2	n/a	n/a	n/a
	4/24/2017	6.6	-3.4 -14.5	1.1	< 0.05	n/a	n/a	2.480	n/a	1.5	1.0	2.4	139	183	<1	<0.2	<0.2	<0.2	n/a	n/a	n/a

Table E.2. Summary of MNA Constituents, Old Midland Products Superfund Site.

Well	Sampling	нd	Oxygen Reduction Potential (ORP)	Dissolved Oxygen (DO)	Nitrate-Nitrite as N	Total Manganese	Dissolved Manganese	Total Iron	Dissolved Iron	Field Determined Ferrous Iron (Fe2+)	Ferric Iron (Fe3+)	Sulfate	Chloride	Total Alkalinity [as CaCO3]	Total Organic Carbon	2-Chlorophenol	2,6-Dichlorophenol	2,4-Dichlorophenol	Methane	Ethane	Ethene
ID	Date	(SU)	(IIIVS)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(μg/L)	(μg/L)	(μg/L)	(mg/L)	(mg/L)	(mg/L)
MW-10S																					
	7/14/1999	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	10/27/1999	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	1/19/2000	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	4/19/2000	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	7/25/2000 1/23/2001	n/a	n/a	n/a n/a	n/a	n/a n/a	n/a	n/a	n/a n/a	n/a	n/a	n/a	n/a	n/a n/a	<10 <10	n/a	n/a	n/a n/a	n/a	n/a n/a	n/a
	7/31/2001	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	<10	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a
	8/28/2002	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	3/4/2003	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	8/26/2003	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	2/25/2004	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	8/27/2004	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	2/23/2005	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	4.3	n/a	n/a	n/a	n/a	n/a	n/a
	8/23/2005	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	2/24/2006	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	8/25/2006	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	10/10/2006	6.2	127	1.0	< 0.05	n/a	n/a	0.5	n/a	n/a	n/a	21	87	130	<1	n/a	n/a	n/a	< 0.1	< 0.02	< 0.01
	12/21/2006	6.4	354	1.3	< 0.05	n/a	n/a	0.52	n/a	n/a	n/a	22	85	120	<1	n/a	n/a	n/a	< 0.1	< 0.02	< 0.01
	3/19/2007	6.4	163	0.7	< 0.05	n/a	n/a	0.37	n/a	n/a	n/a	21	88	120	<1	n/a	n/a	n/a	< 0.01	< 0.02	< 0.02
	10/6/2008	6.1	101	0.2	< 0.01	n/a	n/a	< 0.02	n/a	n/a	n/a	40.6	120	115	3.24	n/a	n/a	n/a	n/a	n/a	n/a
	5/21/2009	6.3	-17.5	0.8	0.017	n/a	n/a	0.0229	n/a	n/a	n/a	68.9	177	111	< 0.0002	n/a	n/a	n/a	n/a	n/a	n/a
	11/9/2009	6.5	85.0	0.0	< 0.01	n/a	n/a	< 0.02	n/a	n/a	n/a	79.4	177	112	0.211	n/a	n/a	n/a	n/a	n/a	n/a
	4/28/2010	6.1	157	0.0	< 0.01	n/a	n/a	0.066	n/a	n/a	n/a	112	227	389	< 0.0002	n/a	n/a	n/a	n/a	n/a	n/a
	10/6/2010	6.6	104	0.1	< 0.01	n/a	n/a	0.045	n/a	n/a	n/a	114	206	117	< 0.2	n/a	n/a	n/a	n/a	n/a	n/a
	4/5/2011	6.2	143	0.9	< 0.03	n/a	n/a	0.485	n/a	n/a	n/a	0.21	46.7	249	1.23	n/a	n/a	n/a	n/a	n/a	n/a
	10/12/2011	6.4	124	0.0	< 0.03	n/a	n/a	n/a	n/a	n/a	n/a	144	224	133	< 0.2	n/a	n/a	n/a	n/a	n/a	n/a
	4/11/2012	6.3	240	0.0	< 0.03	n/a	n/a	n/a	n/a	n/a	n/a	185	235	127	< 0.2	n/a	n/a	n/a	n/a	n/a	n/a
	10/17/2012	6.3	124	0.0	< 0.03	n/a	n/a	n/a	n/a	n/a	n/a	204	234	123	<0.2	n/a	n/a	n/a	n/a	n/a	n/a
	5/5/2013	6.5	199	0.9	< 0.03	n/a	n/a	n/a	n/a	n/a	n/a	229	228	126	0.369	n/a	n/a	n/a	n/a	n/a	n/a
	10/1/2013	6.0	189	0.4	< 0.03	n/a	n/a	n/a	n/a	n/a	n/a	230	232	133	< 0.2	<0.2	<0.2	<0.2	n/a	n/a	n/a
	4/22/2014	6.1	154	1.3	< 0.03	0.018	n/a	0.026	n/a	<0.5	n/a	2.31	31.6	252	1.72	<0.2	<0.2	<0.2	n/a	n/a	n/a
	10/9/2014	6.2	146	0.6	< 0.03	0.046	n/a	< 0.02	n/a	<0.5	n/a	235	204	146	0.456	<0.2	<0.2	<0.2	n/a	n/a	n/a
	4/15/2015 11/12/2015	6.2	185	0.5	< 0.03	0.108	n/a	0.105 0.023	n/a	<0.5	n/a	261 228	205	148	< 0.2	<0.2	<0.2	<0.2 <0.2	n/a	n/a	n/a
	4/5/2016	6.3 6.2	108 -32	0.8 1.3	<0.03 <0.03	0.360 0.028	n/a	0.023	n/a	n/a <0.5	n/a	228 297	178 209	162 160	<1 <1	<0.2 <0.2	<0.2 <0.2	<0.2	n/a	n/a	n/a
	10/25/2016	6.2	-32 76	1.3	< 0.03	0.028	n/a n/a	0.0436	n/a n/a	<0.5 0.5	n/a n/a	324	209	128	<1 <1	<0.2	<0.2	<0.2 0.26	n/a n/a	n/a n/a	n/a n/a
	4/25/2017	6.0	165	1.1	< 0.05	<0.1	n/a n/a	< 0.5	n/a n/a	<0.5	n/a n/a	324	208	140	<1	<0.2	<0.2	< 0.2	n/a n/a	n/a n/a	n/a n/a
	10/25/2017	6.0	-7	0.4	< 0.05	<0.1	n/a	<0.5	n/a	<0.5	n/a	332	206	136	<1	<0.2	<0.2	<0.2	n/a	n/a	n/a
	4/24/2018	6.2	92	1.4	< 0.05	<0.1 n/a	n/a n/a	0.0713	n/a n/a	<0.5 <0.5	n/a n/a	352 361	200	160	<1	<0.2	<0.2	<0.2	n/a n/a	n/a n/a	n/a n/a
<u> </u>	4/24/2018	0.2	94	1.4	<0.03	II/a	II/a	0.0713	II/a	<0.5	II/ ä	301	443	100	<1	<0.2	<∪.∠	<0.2	II/a	II/a	II/ ä

Table E.2. Summary of MNA Constituents, Old Midland Products Superfund Site.

Well ID	Sampling Date	Hd (SU)	(S. Oxygen Reduction Potential)	(bg) Dissolved Oxygen (DO)	(bd) Nitrate-Nitrite as N	(T) Total Manganese	(m) Dissolved Manganese	Total Iron	(mg/L)	G Field Determined Ferrous Tron (Fe2+)	(Tarric Iron (Fe3+)	Sulfate (mg/L)	Chloride	(Trotal Alkalinity [as CaCO3]	(Trotal Organic Carbon	(T/8th) 2-Chlorophenol	(T ^(St) 2,6-Dichlorophenol	π 7.7 2,4-Dichlorophenol	Methane (mg/L)	Ethane (IJ/gm)	(Thene
MW-10D																					
WW 10D	7/14/1999	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	10/27/1999	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	11/22/1999	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	1/19/2000	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	4/19/2000	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	7/25/2000	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	1/23/2001	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	7/31/2001	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	8/28/2002	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	3/4/2003	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	8/26/2003	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	2/25/2004	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	8/27/2004	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	2/23/2005	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	8/23/2005	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	2/24/2006	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	8/25/2006	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	10/11/2006	6.9	-72.5	4.2	< 0.05	n/a	n/a	1.1	n/a	n/a	n/a	< 0.2	95	200	<1	n/a	n/a	n/a	2.1	< 0.02	< 0.01
	12/21/2006	7.1	148	0.3	< 0.05	n/a	n/a	1.8	n/a	n/a	n/a	0.35	74	200	<1	n/a	n/a	n/a	0.28	< 0.02	< 0.01
	3/19/2007 10/6/2008	7.3 7.1	-79.0 103	0.2 0.1	<0.05 <0.01	n/a n/a	n/a n/a	1.1 0.843	n/a n/a	n/a n/a	n/a n/a	<0.2 <0.04	54 41.2	220 207	<1 7.46	n/a n/a	n/a n/a	n/a n/a	5.3 n/a	<0.02 n/a	<0.02 n/a
	5/21/2009	7.1	-107	0.1	< 0.01	n/a	n/a	0.762	n/a	n/a	n/a	< 0.04	46.7	223	<0.2	n/a	n/a	n/a	n/a	n/a	n/a
	11/9/2009	7.4	-166	0.0	< 0.01	n/a	n/a	3.54	n/a	n/a	n/a	0.13	44.2	210	0.241	n/a	n/a	n/a	n/a	n/a	n/a
	4/29/2010	1.8	209	0.8	< 0.01	n/a	n/a	0.828	n/a	n/a	n/a	< 0.01	45.7	55	0.918	n/a	n/a	n/a	n/a	n/a	n/a
	10/6/2010	7.7	-121	0.0	< 0.01	n/a	n/a	0.624	n/a	n/a	n/a	<0.01	46.3	228	<0.2	n/a	n/a	n/a	n/a	n/a	n/a
	4/5/2011	6.3	-100	0.7	< 0.03	n/a	n/a	0.162	n/a	n/a	n/a	129	223	124	< 0.2	n/a	n/a	n/a	n/a	n/a	n/a
	10/12/2011	7.5	-104	0.0	< 0.03	n/a	n/a	n/a	n/a	n/a	n/a	< 0.2	47.5	231	<0.2	n/a	n/a	n/a	n/a	n/a	n/a
	4/11/2012	7.6	-126	0.0	< 0.03	n/a	n/a	n/a	n/a	n/a	n/a	< 0.2	47.1	230	< 0.2	n/a	n/a	n/a	n/a	n/a	n/a
	10/17/2012	7.5	-113	0.0	< 0.03	n/a	n/a	n/a	n/a	n/a	n/a	< 0.2	47.9	231	< 0.2	n/a	n/a	n/a	n/a	n/a	n/a
	5/5/2013	7.8	-102	0.0	< 0.03	n/a	n/a	n/a	n/a	n/a	n/a	< 0.2	47.7	224	< 0.2	n/a	n/a	n/a	n/a	n/a	n/a
	10/1/2013	7.2	-94.0	0.3	< 0.03	n/a	n/a	n/a	n/a	n/a	n/a	0.23	49.8	231	< 0.2	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	4/22/2014	7.2	-75.9	0.5	< 0.03	0.080	n/a	0.533	n/a	0.5	0.033	231	209	134	< 0.2	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	10/9/2014	7.5	-85.0	0.6	0.037	0.052	n/a	0.57	n/a	< 0.5	n/a	0.49	51.1	226	0.428	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	4/15/2015	7.1	-61.7	0.2	< 0.03	0.049	n/a	0.692	n/a	1.0	n/a	0.30	51.2	218	0.442	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	11/12/2015	7.2	-2.2	0.7	< 0.03	0.376	n/a	0.361	n/a	0.5	n/a	5.45	37.6	196	1.94	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	4/5/2016	7.1	-51.0	0.4	< 0.03	0.052	n/a	0.505	n/a	< 0.5	n/a	< 0.5	55.1	219	<1	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	10/25/2016	7.1	-92	1.0	0.044	0.0080	n/a	0.6	n/a	1.0	n/a	2.09	55.1	223	<1	< 0.2	< 0.2	0.253	n/a	n/a	n/a
	4/25/2017	7.3	-105	0.6	0.532	< 0.1	n/a	0.625	n/a	< 0.5	n/a	< 0.5	60.9	231	<1	< 0.2	< 0.2	0.257	n/a	n/a	n/a
	10/25/2017	7.3	-57	0.7	< 0.05	< 0.1	n/a	0.6	n/a	1.0	n/a	0.93	57.2	218	<1	< 0.2	< 0.2	0.206	n/a	n/a	n/a
	4/24/2018	7.3	-104	0.9	< 0.05	n/a	n/a	1.2	n/a	1.0	0.2	2.57	51.9	217	<1	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a

Table E.2. Summary of MNA Constituents, Old Midland Products Superfund Site.

Well ID	Sampling Date	Hd (SU)	m Oxygen Reduction Potential S (ORP)	(mg/L) (T)	(M) Nitrate-Nitrite as N	om (T/T) Total Manganese	om Dissolved Manganese	(mg/L)	(mg/L) Dissolved Iron	base Field Determined Ferrous Tron (Fe2+)	(Mg/M) (Fe3+)	Sulfate (mg/L)	(T/bu)	bu) (Total Alkalinity [as CaCO3]	(Trotal Organic Carbon	(Transport	ng 2,6-Dichlorophenol	ள் ர 7 2,4-Dichlorophenol	(mg/L)	(Ll/gm)	(A/Sw)
MW-12S																					
	7/14/1999	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	10/27/1999	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	1/19/2000	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	4/20/2000	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	7/25/2000	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	1/24/2001	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	7/30/2001	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	8/27/2002	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	3/3/2003	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	8/26/2003 2/25/2004	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	2/25/2004 8/27/2004	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	2/24/2005	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	8/25/2005	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	<1 <1	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a
	2/24/2006	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	8/25/2006	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	10/11/2006	5.8	155	0.7	0.22	n/a	n/a	0.32	n/a	n/a	n/a	1.6	9.2	32	<1	n/a	n/a	n/a	<0.1	< 0.02	< 0.01
	12/21/2006	6.1	32.6	0.2	0.22	n/a	n/a	3	n/a	n/a	n/a	0.79	7.5	81	<1	n/a	n/a	n/a	<0.1	< 0.02	< 0.01
	3/20/2007	6.3	65.5	0.3	< 0.05	n/a	n/a	4.1	n/a	n/a	n/a	0.91	7.1	76	<1	n/a	n/a	n/a	0.56	< 0.02	< 0.02
	10/7/2010	6.2	60.0	0.0	< 0.01	n/a	n/a	1.9	n/a	n/a	n/a	1.6	8.19	40.5	< 0.2	n/a	n/a	n/a	n/a	n/a	n/a
	10/11/2011	6.1	154	0.0	0.065	n/a	n/a	n/a	n/a	n/a	n/a	1.62	8.71	52	< 0.2	n/a	n/a	n/a	n/a	n/a	n/a
	10/17/2012	6.1	139	0.0	0.199	n/a	n/a	n/a	n/a	n/a	n/a	1.62	8.96	39	0.231	n/a	n/a	n/a	n/a	n/a	n/a
	5/7/2013	6.3	201	0.1	< 0.03	n/a	n/a	n/a	n/a	n/a	n/a	1.2	5.59	52.3	< 0.2	n/a	n/a	n/a	n/a	n/a	n/a
	10/1/2013	5.9	120	0.2	0.168	n/a	n/a	n/a	n/a	n/a	n/a	1.64	9.5	<6	0.519	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	4/21/2014	Flooded b	elow grade	surface con	pletion, the	refore well	was not sam	pled.													
	10/7/2014	5.6	223	0.3	0.139	0.014	n/a	0.840		< 0.5	n/a	1.39	9.04	42.5	< 0.2	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	4/13/2015	Flooded b	elow grade	surface con	npletion, the	refore well	was not sam	pled.													
	11/10/2015	5.4	108	0.8	0.151	0.028	n/a	0.734	n/a	< 0.5	n/a	1.58	8.69	36.6	<1	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	4/6/2016	6.0	-95.5	0.2	< 0.03	0.136	n/a	1.6	n/a	1	0.6	0.78	5.84	83.5	<1	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	10/26/2016	6.3	116	0.4	< 0.03	0.053	n/a	1.81	n/a	NR	n/a	1.58	8.58	195	<1	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	4/27/2017	6.6	-56	0.1	< 0.25	0.238	n/a	2.03	n/a	1.5	0.53	0.5	7.29	54.7	<1	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	10/24/2017	6.1	-7	0.4	0.066	< 0.1	n/a	< 0.5	n/a	< 0.5	n/a	2.05	9.35	50.1	<1	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	4/24/2018	5.6	131	0.5	0.0873	n/a	n/a	0.68	n/a	< 0.5	n/a	1.08	8.7	41.8	<1	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a

Table E.2. Summary of MNA Constituents, Old Midland Products Superfund Site.

Well ID	Sampling Date	Hd (SU)	S Oxygen Reduction Potential (ORP)	(Ba) Dissolved Oxygen (DO)	(mg/L) Nitrate-Nitrite as N	(T) Total Manganese	(MZ/Z) Dissolved Manganese	(mg/L)	(mg/L)	Eich Determined Ferrous	(Mag) (Martic Iron (Fe3+)	Sulfate (mg/L)	Chloride (mg/L)	(T) Total Alkalinity [as CaCO3]	(Man) Total Organic Carbon	απ 2-Chlorophenol	π 7/3 2,6-Dichlorophenol	er 2,4-Dichlorophenol	Methane (mg/L)	Ethane (J/gm)	Ethene (Mg/L)
MW-16S																					
	7/14/1999	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	10/28/1999	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	1/19/2000	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	4/20/2000	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	7/26/2000	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	1/24/2001	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	7/31/2001	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	8/28/2002	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	3/4/2003	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	8/27/2003	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	2/26/2004	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	8/30/2004	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	2/24/2005	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	5.5	n/a	n/a	n/a	n/a	n/a	n/a
	8/25/2005	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	2/24/2006	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	8/28/2006	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	10/12/2006	6.8	-20.3	0.3	< 0.05	n/a	n/a	0.79	n/a	n/a	n/a	410	210	76	<1	n/a	n/a	n/a	< 0.1	< 0.02	< 0.01
	12/19/2006	6.9	50.0	0.4	< 0.05	n/a	n/a	1.1	n/a	n/a	n/a	n/a	120	110	<1	n/a	n/a	n/a	< 0.1	< 0.02	< 0.01
	3/22/2007	6.6	8.5	0.3	< 0.05	n/a	n/a	1.2	n/a	n/a	n/a	340	100	100	<1	n/a	n/a	n/a	0.015	<0.02	< 0.02
	9/30/2008 5/19/2009	6.4 6.6	-22.2 -68.9	0.1 0.9	<0.0001 0.018	n/a n/a	n/a n/a	2.41 1.59	n/a n/a	n/a n/a	n/a n/a	313 344	103 80.9	111 105	<0.0002 0.356	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a
	11/2/2009	6.3	21.0	0.9	< 0.013	n/a	n/a	2.53	n/a	n/a	n/a	277	94.1	105	< 0.0002	n/a	n/a	n/a	n/a	n/a	n/a
	4/28/2010	6.5	34.0	0.0	0.012	n/a	n/a	2.91	n/a	n/a	n/a	365	89.6	321	<0.2	n/a	n/a	n/a	n/a	n/a	n/a
	10/6/2010	6.8	2.0	0.0	< 0.012	n/a	n/a	1.97	n/a	n/a	n/a	296	142	103	0.481	n/a	n/a	n/a	n/a	n/a	n/a
	4/6/2011	5.9	17.0	0.8	< 0.01	n/a	n/a	1.02	n/a	n/a	n/a	222	107	115	<0.2	n/a	n/a	n/a	n/a	n/a	n/a
	10/16/2011	6.8	-14.0	0.0	< 0.03	n/a	n/a	n/a	n/a	n/a	n/a	242	165	136	<0.2	n/a	n/a	n/a	n/a	n/a	n/a
	4/16/2012	6.6	35.0	0.0	< 0.03	n/a	n/a	n/a	n/a	n/a	n/a	281	80.4	101	<0.2	n/a	n/a	n/a	n/a	n/a	n/a
	10/21/2012	6.9	2.0	0.0	< 0.03	n/a	n/a	n/a	n/a	n/a	n/a	281	129	123	<0.2	n/a	n/a	n/a	n/a	n/a	n/a
	5/1/2013	7.2	-94.0	0.0	< 0.03	n/a	n/a	n/a	n/a	n/a	n/a	177	108	86.4	20.2	n/a	n/a	n/a	n/a	n/a	n/a
	10/1/2013	6.7	53.0	0.3	< 0.03	n/a	n/a	n/a	n/a	n/a	n/a	278	130	95.2	< 0.2	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	4/21/2014	6.6	138	0.7	0.036	2.54	n/a	0.644	n/a	< 0.5	n/a	248	77.3	106	0.246	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	10/7/2014	6.7	36.0	0.3	< 0.03	4.57	n/a	1.2	n/a	0.5	0.7	241	91	120	< 0.2	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	4/14/2015	6.7	438	0.9	0.038	0.972	n/a	0.188	n/a	< 0.5	n/a	230	88.8	120	0.215	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	11/11/2015	6.8	98	0.7	< 0.03	5.59	n/a	0.715	n/a	< 0.5	n/a	244	109	132	<1	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	4/4/2016	6.6	527	2.1	0.038	1.47	n/a	0.573	n/a	< 0.5	n/a	244	72.3	123	<1	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	10/26/2016	6.3	26	0.3	< 0.03	4.55	n/a	1.44	n/a	1	0.44	178	108	140	<1	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	4/25/2017	6.7	85	0.5	< 0.05	2.26	n/a	1.14	n/a	NR	n/a	207	77.6	127	<1	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	10/24/2017	6.7	0	0.6	< 0.05	n/a	3.9	n/a	0.721	1	n/a	200	110	144	<1	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	4/24/2018	6.6	-129	0.8	0.0647	n/a	n/a	0.399	n/a	< 0.5	n/a	163	98.3	139	<1	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a

Table E.2. Summary of MNA Constituents, Old Midland Products Superfund Site.

Well	Sampling	hd.	Oxygen Reduction Potential (ORP)	Dissolved Oxygen (DO)	Nitrate-Nitrite as N	Total Manganese	Dissolved Manganese	Total Iron	Dissolved Iron	Field Determined Ferrous Iron (Fe2+)	Ferric Iron (Fe3+)	Sulfate	Chloride	Total Alkalinity [as CaCO3]	Total Organic Carbon	2-Chlorophenol	2,6-Dichlorophenol	2,4-Dichlorophenol	Methane	Ethane	Ethene
ID	Date	(SU)	(mVs)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(µg/L)	(µg/L)	(µg/L)	(mg/L)	(mg/L)	(mg/L)
MW-16D																					
	10/16/2006	6.6	-57.9	6.2	< 0.05	n/a	n/a	6.1	n/a	n/a	n/a	240	210	130	<1	n/a	n/a	n/a	< 0.1	< 0.02	< 0.01
	12/20/2006	6.8	-109	0.3	< 0.05	n/a	n/a	10	n/a	n/a	n/a	170	170	120	1.3	n/a	n/a	n/a	< 0.1	< 0.02	< 0.01
	3/21/2007	6.7	-82.7	0.3	< 0.05	n/a	n/a	8.8	n/a	n/a	n/a	240	200	110	<1	n/a	n/a	n/a	0.14	< 0.02	< 0.02
	9/30/2008	6.6	-156	0.1	< 0.01	n/a	n/a	4.27	n/a	n/a	n/a	196	111	101	2.26	n/a	n/a	n/a	n/a	n/a	n/a
	5/19/2009	6.8	-180	1.3	0.028	n/a	n/a	3.98	n/a	n/a	n/a	213	105	100	1.74	n/a	n/a	n/a	n/a	n/a	n/a
	11/3/2009	6.6	-93.0	0.0	< 0.01	n/a	n/a	3.7	n/a	n/a	n/a	208	104	104	2.21	n/a	n/a	n/a	n/a	n/a	n/a
	4/28/2010	6.5	-26.0	0.4	0.012	n/a	n/a	8.34	n/a	n/a	n/a	210	99.7	316	3.42	n/a	n/a	n/a	n/a	n/a	n/a
	10/6/2010	7.7	-166	0.0	< 0.01	n/a	n/a	2.52	n/a	n/a	n/a	164	143	73	14.7	n/a	n/a	n/a	n/a	n/a	n/a
	4/6/2011	6.6	-80.0	1.1	< 0.03	n/a	n/a	3.78	n/a	n/a	n/a	205	97.5	98.7	3.49	n/a	n/a	n/a	n/a	n/a	n/a
	10/13/2011	6.8	-122	0.0	< 0.03	n/a	n/a	n/a	n/a	n/a	n/a	184	105	97	12.2	n/a	n/a	n/a	n/a	n/a	n/a
	4/16/2012	6.8	-75.0	0.0	< 0.03	n/a	n/a	n/a	n/a	n/a	n/a	166	96.9	94.5	11.9	n/a	n/a	n/a	n/a	n/a	n/a
	10/21/2012	7.0	-77.0	0.0	< 0.03	n/a	n/a	n/a	n/a	n/a	n/a	165	90.7	96	11	n/a	n/a	n/a	n/a	n/a	n/a
	5/1/2013	7.4	-88.0	0.0	< 0.03	n/a	n/a	n/a	n/a	n/a	n/a	169	143	66.5	20.6	n/a	n/a	n/a	n/a	n/a	n/a
	10/2/2013	7.4	-101	0.2	< 0.03	n/a	n/a	n/a	n/a	n/a	n/a	154	102	93.2	21.7(B)	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	4/21/2014	7.4	-61.0	0.3	< 0.03	0.489	n/a	3.04	n/a	0.5	2.54	148	105	78.6	28.1	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	10/7/2014	7.0	-106	0.3	< 0.03	0.48	n/a	2.16	n/a	1.5	0.66	138	79.8	94.8	16.4	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	4/14/2015	7.3	-81.0	0.6	< 0.03	0.033	n/a	1.52	n/a	0.5	1.02	131	87.5	86.2	23.9	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	11/11/2015	7.2	-123	0.3	<0.3	0.437	n/a	2.17	n/a	2.0	0.17	126	73.3	102	11.2	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	4/4/2016	6.8	-78	1.1	< 0.03	0.394	n/a	2.29	n/a	1.0	1.29	126	70.9	96.3	11	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	10/25/2016	6.6	-139	0.8	< 0.03	0.508	n/a	2.51	n/a	2.0	0.51	119	60.6	113	2.5	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	4/25/2017	7.7	-129	0.7	< 0.05	n/a	0.380	n/a	2.02	0.5	n/a	109	69.7	110	7.7	<0.2	< 0.2	< 0.2	n/a	n/a	n/a
	10/24/2017	8.2	-228	0.4	< 0.05	n/a	0.364	n/a	1.89	< 0.5	n/a	91.4	80.4	88.1	6.4	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	4/24/2018	7.3	-170	0.8	< 0.05	n/a	n/a	2.42	n/a	< 0.5	n/a	102	62.5	111	15.8	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a

Table E.2. Summary of MNA Constituents, Old Midland Products Superfund Site.

Well	Sampling	Нd	Oxygen Reduction Potential (ORP)	Dissolved Oxygen (DO)	Nitrate-Nitrite as N	Total Manganese	Dissolved Manganese	Total Iron	Dissolved Iron	Field Determined Ferrous Iron (Fe2+)	Ferric Iron (Fe3+)	Sulfate	Chloride	Total Alkalinity [as CaCO3]	Total Organic Carbon	2-Chlorophenol	2,6-Dichlorophenol	2,4-Dichlorophenol	Methane	Ethane	Ethene
ID	Date	(SU)	(mvs)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(μg/L)	(μg/L)	(μg/L)	(mg/L)	(mg/L)	(mg/L)
MW-17S																					
	7/15/1999	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	10/28/1999	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	1/16/2000	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	4/20/2000	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	7/25/2000	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	1/24/2001 7/31/2001	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	8/28/2002	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10 <1	n/a	n/a	n/a	n/a	n/a	n/a
	3/4/2003	n/a n/a	n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a	n/a n/a	n/a n/a	n/a n/a	<1	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a
	8/27/2003	n/a	n/a n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a n/a	n/a n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	2/26/2004	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	1.9	n/a	n/a	n/a	n/a	n/a	n/a
	8/30/2004	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	2/24/2005	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	5.5	n/a	n/a	n/a	n/a	n/a	n/a
	8/25/2005	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	2/27/2006	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	1.4	n/a	n/a	n/a	n/a	n/a	n/a
	8/29/2006	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	10/12/2006	5.7	178	0.5	0.13	n/a	n/a	0.052	n/a	n/a	n/a	2.6	18	34	<1	n/a	n/a	n/a	< 0.1	< 0.02	< 0.01
	12/18/2006	5.4	185	1.5	< 0.05	n/a	n/a	0.039	n/a	n/a	n/a	3	18	29	<1	n/a	n/a	n/a	< 0.1	< 0.02	< 0.01
	3/20/2007	5.9	180	0.4	0.061	n/a	n/a	0.04	n/a	n/a	n/a	2.7	17	35	<1	n/a	n/a	n/a	0.076	< 0.02	< 0.02
	9/25/2008	5.6	76.9	0.2	0.218	n/a	n/a	0.0344	n/a	n/a	n/a	3.04	16.2	35.9	< 0.2	n/a	n/a	n/a	n/a	n/a	n/a
	5/20/2009	6.0	66.5	0.4	0.116	n/a	n/a	0.181	n/a	n/a	n/a	2.9	17.7	37.2	0.262	n/a	n/a	n/a	n/a	n/a	n/a
	11/4/2009	5.8	124	0.0	0.214	n/a	n/a	0.0655	n/a	n/a	n/a	2.72	17	36.4	0.251	n/a	n/a	n/a	n/a	n/a	n/a
	5/4/2010	5.8	174	0.0	0.179	n/a	n/a	0.183	n/a	n/a	n/a	2.84	16.3	8	0.529	n/a	n/a	n/a	n/a	n/a	n/a
	10/11/2010	6.0	153	0.0	0.203	n/a	n/a	0.104	n/a	n/a	n/a	2.66	16.8	35	0.21	n/a	n/a	n/a	n/a	n/a	n/a
	4/11/2011	5.5	159	1.4	0.219	n/a	n/a	0.11	n/a	n/a	n/a	2.8	17.9	32.8	0.209	n/a	n/a	n/a	n/a	n/a	n/a
	10/17/2011	6.1	119	0.0	0.161	n/a	n/a	n/a	n/a	n/a	n/a	2.74	18.8	43.6	< 0.2	n/a	n/a	n/a	n/a	n/a	n/a
	4/12/2012	5.9	216	0.0	0.235	n/a	n/a	n/a	n/a	n/a	n/a	2.77	16.7	34.5	< 0.2	n/a	n/a	n/a	n/a	n/a	n/a
	10/22/2012	6.0	145	0.0	0.287	n/a	n/a	n/a	n/a	n/a	n/a	2.72	18.3	34.1	< 0.2	n/a	n/a	n/a	n/a	n/a	n/a
	5/5/2013	6.5	77.0	0.0	< 0.03	n/a	n/a	n/a	n/a	n/a	n/a	76	142	126	1.94	n/a	n/a	n/a	n/a	n/a	n/a
	10/2/2013	5.8	191	0.3	0.269	n/a	n/a	n/a	n/a	n/a	n/a	2.66	17.6	38.2	<0.2(B)	<0.2	<0.2	<0.2	n/a	n/a	n/a
	4/22/2014	5.8	187	0.5	0.325	0.056	n/a	0.254	n/a	<0.5	n/a	2.79	17	30.2	0.207	<0.2	< 0.2	<0.2	n/a	n/a	n/a
	10/7/2014	5.7	165	0.3	0.345	0.053	n/a	0.062	n/a	< 0.5	n/a	2.66	15.9	32.7	<0.2	<0.2	<0.2	<0.2	n/a	n/a	n/a
	4/14/2015	5.9	148	0.9	0.331	0.002	n/a	0.063	n/a	< 0.5	n/a	2.8	15.9	35.7	< 0.2	<0.2	<0.2	<0.2	n/a	n/a	n/a
	11/11/2015	5.3	96.8	0.5	0.351	0.567	n/a	0.553	n/a	< 0.5	n/a	2.67	16.8	31.5	<1	<0.2	<0.2	<0.2	n/a	n/a	n/a
	4/5/2016 10/25/2016	5.9	225 87	2.8 1.0	0.274 0.340	0.042 0.0710	n/a	0.292 <0.2	n/a	<0.5 <0.5	n/a <0.2	2.68 3.02	16.9 17.5	30.1 33.0	<1 <1	<0.2 <0.2	<0.2 <0.2	<0.2 <0.2	n/a	n/a	n/a
	4/27/2016	5.6 5.9	87 148	0.5	0.340		n/a	<0.2 0.590	n/a	<0.5 <0.5	<0.2	2.79	17.5	41.2	<1 <1	<0.2	<0.2	<0.2	n/a	n/a	n/a
	10/25/2017	5.9	-1	0.5	0.218	n/a <0.1	n/a	<0.590 <0.5	n/a	<0.5 <0.5	n/a	2.79	18.2 17.7	35.0	<1 <1	<0.2	<0.2	<0.2	n/a	n/a	n/a
		5.8 5.7			0.273		n/a	<0.5 0.907	n/a		n/a			35.0	<1 <1	<0.2	<0.2	<0.2	n/a	n/a	n/a
<u> </u>	4/25/2018	٥.1	161	0.6	0.295	n/a	n/a	0.907	n/a	<0.5	n/a	3.17	18.4	31./	<1	<0.2	<0.2	<0.2	n/a	n/a	n/a

Table E.2. Summary of MNA Constituents, Old Midland Products Superfund Site.

Well ID	Sampling Date	Hd (SU)	B Oxygen Reduction Potential	m JZ Dissolved Oxygen (DO)	(Mg/M) (Nitrate-Nitrite as N	(J/T) Total Manganese	E Dissolved Manganese	(mg/L)	(mg/L)	Field Determined Ferrous	Man Ferric Iron (Fe3+)	Sulfate	Chloride (mg/L)	Total Alkalinity [as CaCO3]	Ty (Ty Total Organic Carbon	7/2 2-Chlorophenol	元 元 7. 2,6-Dichlorophenol	ਜ ਨੂੰ 2,4-Dichlorophenol	Methane (mg/L)	Ethane (MZ/gm)	Ethene (mg/L)
MW-18S	Date	()		. 0 /	, ,	, 0 ,	, 0 ,	. 0 /	, 0 ,	. 0 /	. 0 /	. 0 ,	. 0 /	. 0 /	. 0 /	40 /	40 /	40 /	, 0 ,	· U /	. 0 /
IVI W - 105	7/21/1999	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	10/28/1999	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	1/20/2000	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	4/20/2000	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	7/26/2000	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	1/24/2001	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	7/31/2001	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	8/28/2002	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	3/27/2003	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	8/27/2003	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	2/26/2004	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	8/30/2004	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	2/24/2005	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	4.5	n/a	n/a	n/a	n/a	n/a	n/a
	8/25/2005	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	2/27/2006	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	1.1	n/a	n/a	n/a	n/a	n/a	n/a
	8/29/2006	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	10/16/2006	6.8	85.2	2.9	0.38	n/a	n/a	11	n/a	n/a	n/a	30	10	110	3.8	n/a	n/a	n/a	< 0.1	< 0.02	< 0.01
	12/19/2006	5.9	-69.4	0.9	0.44	n/a	n/a	0.33	n/a	n/a	n/a	n/a	11	<1	1.9	n/a	n/a	n/a	< 0.1	< 0.02	< 0.01
	3/20/2007	5.9	178	0.3	0.6	n/a	n/a	2.3	n/a	n/a	n/a	1.8	18	27	<1	n/a	n/a	n/a	< 0.01	< 0.02	< 0.02
	5/21/2009	6.0	15.8	0.5	0.673	n/a	n/a	0.0535	n/a	n/a	n/a	4.43	23.9	33.4	< 0.0002	n/a	n/a	n/a	n/a	n/a	n/a
	11/4/2009	6.0	204	0.0	0.195	n/a	n/a	0.117	n/a	n/a	n/a	32.8	80.3	73	0.762	n/a	n/a	n/a	n/a	n/a	n/a
	4/28/2010	5.6	203	0.0	0.632	n/a	n/a	0.0951	n/a	n/a	n/a	4.02	20.3	29	< 0.2	n/a	n/a	n/a	n/a	n/a	n/a
	10/7/2010	6.3	229	0.1	< 0.01	n/a	n/a	0.252	n/a	n/a	n/a	45.6	126	86.7	0.222	n/a	n/a	n/a	n/a	n/a	n/a
	4/6/2011	5.7	145	0.7	0.816	n/a	n/a	0.0687	n/a	n/a	n/a	6.44	22.5	56	0.36	n/a	n/a	n/a	n/a	n/a	n/a
	10/13/2011	6.1	114	0.0	< 0.03	n/a	n/a	n/a	n/a	n/a	n/a	43.8	119	93	< 0.2	n/a	n/a	n/a	n/a	n/a	n/a
	4/12/2012	6.3	204	0.0	0.309	n/a	n/a	n/a	n/a	n/a	n/a	20.1	46.5	73.8	< 0.2	n/a	n/a	n/a	n/a	n/a	n/a
	10/18/2012	6.6	96.0	0.0	0.24	n/a	n/a	n/a	n/a	n/a	n/a	22.5	35.6	132	0.946	n/a	n/a	n/a	n/a	n/a	n/a
	5/6/2013	6.6	116	6.0	0.303	n/a	n/a	n/a	n/a	n/a	n/a	21.6	53	82.2	1.11	n/a	n/a	n/a	n/a	n/a	n/a
	10/1/2013	6.2	78.0	0.3	< 0.03	n/a	n/a	n/a	n/a	n/a	n/a	40.5	92.8	<6	0.305	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	4/22/2014	6.0	191	0.7	0.127	0.128	n/a	0.104	n/a	<0.5	n/a	24.7	55.3	84.4	0.243	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	10/8/2014	6.0	-16.4	0.3	<0.3	0.376	n/a	0.617	n/a	0.5	0.117	37.8	73.4	100	<0.2	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	4/14/2015	5.9	191	0.2	0.317	0.859	n/a	0.142	n/a	<0.5	n/a	10.8	30.2	73.6	0.205	< 0.2	<0.2	< 0.2	n/a	n/a	n/a
	11/12/2015	6.1	78.9	0.6	< 0.3	0.134	n/a	0.478	n/a	<0.5	n/a	31.4	67.2	107	<1	< 0.2	<0.2	<0.2	n/a	n/a	n/a
	4/5/2016	6.11	-102.3	0.5	0.212	0.115	n/a	0.302	n/a	<0.5	n/a	14.8	38.7	70.3	<1	< 0.2	<0.2	<0.2	n/a	n/a	n/a
	10/25/2016	6.5	-87	0.3	< 0.15	0.283	n/a	0.65	n/a	1	n/a	39.8	109	154	<1	<0.2	<0.2	<0.2	n/a	n/a	n/a
	4/26/2017	6.7	-40	0.4	< 0.05	0.210	n/a	<0.5	n/a	<0.5	n/a	20.8	56.2	92.8	<1	<0.2	<0.2	<0.2	n/a	n/a	n/a
	10/25/2017	6.0	-25	0.6	< 0.25	0.213	n/a	< 0.5	n/a	<0.5	n/a	41.4	113	117	<1	<0.2	<0.2	<0.2	n/a	n/a	n/a
	4/26/2018	6.1	113	0.6	0.0941	n/a	n/a	0.0356	n/a	< 0.5	n/a	19	54	93.2	<1	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a

Table E.2. Summary of MNA Constituents, Old Midland Products Superfund Site.

Well ID	Sampling Date	Hd (SU)	 ii) Oxygen Reduction Potential is (ORP) 	(mg/L) Dissolved Oxygen (DO)	(T) (Marte-Nitrite as N	m) Total Manganese	m dd Dissolved Manganese (7	(mg/L)	(mg/L)	iii Field Determined Ferrous	(T) Ferric Iron (Fe3+)	Sulfate	Chloride Chloride	fig. Total Alkalinity [as CaCO3]	m Garlo Organic Carbon (7)	(r) 2-Chlorophenol	க் ஜீ 2,6-Dichlorophenol	re 2,4-Dichlorophenol	Methane (mg/L)	Ethane (L/gm)	Ethene (Mg/L)
MW-18D																					
	7/21/1999	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	10/28/1999	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	1/20/2000	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	4/20/2000	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	7/26/2000	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	7/31/2001 8/28/2002	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	<10 <1	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a
	3/4/2003	n/a	n/a	n/a	n/a	n/a	n/a n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	8/27/2003	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	2/26/2004	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	1.2	n/a	n/a	n/a	n/a	n/a	n/a
	8/30/2004	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	2/24/2005	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	8/25/2005	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	2/27/2006	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	1.2	n/a	n/a	n/a	n/a	n/a	n/a
	8/29/2006	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	10/16/2006	6.6	-38.3	1.6	< 0.05	n/a	n/a	1.6	n/a	n/a	n/a	0.82	15	130	<1	n/a	n/a	n/a	0.23	< 0.02	< 0.01
	12/19/2006	6.5	-67.3	1.5	< 0.05	n/a	n/a	2.6	n/a	n/a	n/a	n/a	14	140	<1	n/a	n/a	n/a	0.12	< 0.02	< 0.01
	3/20/2007	6.8	-55.1	0.4	< 0.05	n/a	n/a	2.6	n/a	n/a	n/a	1.4	16	140	1.2	n/a	n/a	n/a	0.042	< 0.02	< 0.02
	10/1/2008	6.6	-77.6	0.1	< 0.01	n/a	n/a	1.8	n/a	n/a	n/a	1.27	13.8	134	1.39	n/a	n/a	n/a	n/a	n/a	n/a
	5/21/2009	6.7	-131	0.2	0.025	n/a	n/a	1.6	n/a	n/a	n/a	1.44	17.4	137	< 0.0002	n/a	n/a	n/a	n/a	n/a	n/a
	11/4/2009	7.0	-101	5.1	< 0.01	n/a	n/a	2.3	n/a	n/a	n/a	0.19	16.8	142	0.271	n/a	n/a	n/a	n/a	n/a	n/a
	4/29/2010	6.6	-115	5.0	< 0.01	n/a	n/a	2.88	n/a	n/a	n/a	0.51	18.3	87	< 0.2	n/a	n/a	n/a	n/a	n/a	n/a
	10/7/2010	7.1	-103	0.0	< 0.01	n/a	n/a	2.27	n/a	n/a	n/a	0.91	19	135	< 0.2	n/a	n/a	n/a	n/a	n/a	n/a
	4/6/2011	6.8	-92.0	1.4	< 0.03	n/a	n/a	1.7	n/a	n/a	n/a	1.35	20.7	138	< 0.2	n/a	n/a	n/a	n/a	n/a	n/a
	10/13/2011	6.7	-76.0	0.0	< 0.03	n/a	n/a	n/a	n/a	n/a	n/a	1.55	22.2	146	< 0.2	n/a	n/a	n/a	n/a	n/a	n/a
	4/16/2012	7.0	-80.0	0.1	< 0.03	n/a	n/a	n/a	n/a	n/a	n/a	1.2	22.6	143	< 0.2	n/a	n/a	n/a	n/a	n/a	n/a
	10/21/2012	7.2	-80.0	0.0	< 0.03	n/a	n/a	n/a	n/a	n/a	n/a	1.57	24.1	140	< 0.2	n/a	n/a	n/a	n/a	n/a	n/a
	5/6/2013	7.3	78.0	5.6	< 0.03	n/a	n/a	n/a	n/a	n/a	n/a	3.09	22.2	149	0.646	n/a	n/a	n/a	n/a	n/a	n/a
	10/1/2013	6.8	-72.0	0.2	< 0.15	n/a	n/a	n/a	n/a	n/a	n/a	2.37	25.9	36.2	< 0.2	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	4/22/2014	6.7	178	1.4	0.044	0.048	n/a	0.52	n/a	< 0.5	n/a	2.8	26.3	139	< 0.2	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	10/8/2014	6.7	-99.5	0.2	< 0.3	0.192	n/a	2.64	n/a	1.5	1.14	0.53	27.9	139	< 0.2	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	4/14/2015	6.6	-6.9	0.2	< 0.03	0.200	n/a	1.22	n/a	0.5	0.72	1.67	28.6	141	< 0.2	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	11/12/2015	6.7	-34.5	0.6	< 0.3	0.178	n/a	2.48	n/a	2.5	-0.02	1.59	28.9	129	<1	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	4/5/2016	6.7	-136.6	0.3	< 0.03	0.179	n/a	1.49	n/a	1	0.49	1.02	31.8	117	<1	< 0.2	<0.2	<0.2	n/a	n/a	n/a
	10/25/2016	6.4	-106	0.5	< 0.03	0.204	n/a	2.44	n/a	3.0	n/a	< 0.5	32.4	138	<1	<0.2	<0.2	<0.2	n/a	n/a	n/a
	4/26/2017	6.1	135.8	0.9	< 0.25	0.22	n/a	1.97	n/a	2.0	n/a	<2.5	31.8	139	<1	<0.2	<0.2	<0.2	n/a	n/a	n/a
	10/25/2017	6.6	-37.2	0.3	< 0.05	0.218	n/a	2.79	n/a	2.0	0.79	30.7	< 0.5	142	<1	<0.2	<0.2	<0.2	n/a	n/a	n/a
	4/26/2018	6.8	4.9	0.6	< 0.05	n/a	n/a	0.731	n/a	0.5	0.23	1.86	33.1	142	<1	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a

Table E.2. Summary of MNA Constituents, Old Midland Products Superfund Site.

Well	Sampling	нd	Oxygen Reduction Potential (ORP)	Dissolved Oxygen (DO)	Nitrate-Nitrite as N	Total Manganese	Dissolved Manganese	Total Iron	Dissolved Iron	Field Determined Ferrous Iron (Fe2+)	Ferric Iron (Fe3+)	Sulfate	Chloride	Total Alkalinity [as CaCO3]	Total Organic Carbon	2-Chlorophenol	2,6-Dichlorophenol	2,4-Dichlorophenol	Methane	Ethane	Ethene
ID	Date	(SU)	(mVs)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(μg/L)	(µg/L)	(μg/L)	(mg/L)	(mg/L)	(mg/L)
MW-19S																					
	7/15/1999	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	10/28/1999	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	1/20/2000	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	4/20/2000 7/26/2000	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	1/24/2001	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10 <10	n/a	n/a	n/a	n/a	n/a	n/a
	7/31/2001	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	<10	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a
	8/28/2002	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	3/4/2003	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	8/27/2003	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	1.4	n/a	n/a	n/a	n/a	n/a	n/a
	2/26/2004	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	8/31/2004	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	2/25/2005	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	5.6	n/a	n/a	n/a	n/a	n/a	n/a
	8/26/2005	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	1.1	n/a	n/a	n/a	n/a	n/a	n/a
	2/27/2006	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	1.4	n/a	n/a	n/a	n/a	n/a	n/a
	8/29/2006	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	10/16/2006	5.9	176	8.9	0.12	n/a	n/a	0.043	n/a	n/a	n/a	52	140	42	<1	n/a	n/a	n/a	< 0.1	< 0.02	< 0.01
	12/19/2006	6.1	232	4.1	< 0.05	n/a	n/a	0.099	n/a	n/a	n/a	n/a	98	52	<1	n/a	n/a	n/a	< 0.1	< 0.02	< 0.01
	3/20/2007	5.6	196	0.6	< 0.05	n/a	n/a	0.037	n/a	n/a	n/a	23	140	39	<1	n/a	n/a	n/a	0.72	< 0.02	< 0.02
	9/26/2008	5.5	83.4	0.8	< 0.01	n/a	n/a	< 0.02	n/a	n/a	n/a	25	163	50.6	0.228	n/a	n/a	n/a	n/a	n/a	n/a
	5/20/2009	5.6	33.0	1.3	< 0.01	n/a	n/a	0.142	n/a	n/a	n/a	23.2	160	75	0.262	n/a	n/a	n/a	n/a	n/a	n/a
	11/3/2009	6.0	101	0.0	< 0.01	n/a	n/a	0.216	n/a	n/a	n/a	28.7	127	99.4	0.723	n/a	n/a	n/a	n/a	n/a	n/a
	4/29/2010	5.7	189	0.8	< 0.01	n/a	n/a	4.12	n/a	n/a	n/a	31.4	158	223	0.679	n/a	n/a	n/a	n/a	n/a	n/a
	10/11/2010	5.8	163	0.0	< 0.01	n/a	n/a	0.444	n/a	n/a	n/a	34.9	170	57.5	< 0.02	n/a	n/a	n/a	n/a	n/a	n/a
	4/7/2011	5.2	149	0.4	< 0.03	n/a	n/a	0.233	n/a	n/a	n/a	38.4	174	66.4	< 0.2	n/a	n/a	n/a	n/a	n/a	n/a
	10/16/2011	5.7	132	0.0	< 0.03	n/a	n/a	n/a	n/a	n/a	n/a	32.7	173	69.6	< 0.2	n/a	n/a	n/a	n/a	n/a	n/a
	4/17/2012	5.9	153	0.0	< 0.03	n/a	n/a	n/a	n/a	n/a	n/a	32.2	154	73.7	<0.2	n/a	n/a	n/a	n/a	n/a	n/a
	10/22/2012	5.9	110	0.0	< 0.03	n/a	n/a	n/a	n/a	n/a	n/a	40.8	161	68.8	<0.2	n/a	n/a	n/a	n/a	n/a	n/a
	5/5/2013	6.0	134	3.4	< 0.03	n/a	n/a	n/a	n/a	n/a	n/a	41.1	45.5	76	<0.2	n/a	n/a	n/a	n/a	n/a	n/a
	10/2/2013 4/21/2014	5.6	165	1.1	<0.03	n/a	n/a	n/a	n/a	n/a	n/a	37.4	154	77.7	0.232(B)	<0.2	<0.2	<0.2	n/a	n/a	n/a
	4/21/2014 10/7/2014	5.8 5.8	175 121	0.6 0.4	<0.03 <0.03	0.261 0.293	n/a	0.52 0.296	n/a n/a	<0.5 <0.5	n/a	36.2 37.2	141 141	78.3 80.8	0.268 <0.2	<0.2 <0.2	<0.2 <0.2	<0.2 <0.2	n/a	n/a	n/a
	4/14/2015	5.8	137	1.0	< 0.03	0.293	n/a n/a	0.296	n/a n/a	<0.5	n/a n/a	34.4	141	84.5	0.235	<0.2	<0.2	<0.2	n/a n/a	n/a n/a	n/a n/a
	11/11/2015	5.7	71.3	0.6	< 0.03	0.244	n/a n/a	0.180	n/a n/a	<0.5 0.5	n/a n/a	40.8	138	84.5 82.6	0.235 <1	<0.2	<0.2	<0.2	n/a n/a	n/a n/a	n/a n/a
	4/5/2016	6.1	222	2.7	< 0.03	0.206	n/a	0.200	n/a	<0.5	n/a	38.6	139	77.2	<1	<0.2	<0.2	0.272	n/a	n/a	n/a
	10/26/2016	5.7	121	0.8	< 0.03	0.200	n/a	0.2200	n/a	0.5	n/a	41	143	76.7	<1	<0.2	<0.2	<0.2	n/a	n/a	n/a
	4/26/2017	5.8	115	1.5	< 0.05	0.267	n/a	<0.5	n/a	< 0.5	n/a	37	144	89.7	<1	<0.2	<0.2	<0.2	n/a	n/a	n/a
	10/25/2017	5.9	76	1.1	< 0.05	0.29	n/a	<0.5	n/a	0.5	n/a	39.4	140	8.5	<1	<0.2	<0.2	<0.2	n/a	n/a	n/a
	4/25/2018	5.7	-136	0.6	< 0.05	n/a	n/a	0.1090		< 0.5	n/a	37.6	133	88.7	<1	<0.2	<0.2	<0.2	n/a	n/a	n/a

Table E.2. Summary of MNA Constituents, Old Midland Products Superfund Site.

Well	Sampling	Нd	Oxygen Reduction Potential (ORP)	Dissolved Oxygen (DO)	Nitrate-Nitrite as N	Total Manganese	Dissolved Manganese	Total Iron	Dissolved Iron	Field Determined Ferrous Iron (Fe2+)	Ferric Iron (Fe3+)	Sulfate	Chloride	Total Alkalinity [as CaCO3]	Total Organic Carbon	2-Chlorophenol	2,6-Dichlorophenol	2,4-Dichlorophenol	Methane	Ethane	Ethene
ID	Date	(SU)	(mvs)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(µg/L)	(μg/L)	(μg/L)	(mg/L)	(mg/L)	(mg/L)
MW-19D																					
	7/15/1999	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	10/28/1999	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	1/20/2000	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	4/20/2000	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	7/26/2000	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	1/24/2001	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	7/31/2001	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	8/28/2002 3/4/2003	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1 1.1	n/a	n/a	n/a	n/a	n/a	n/a
	8/27/2003	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	1.1 <1	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a
	2/26/2004	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	8/31/2004	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	2.4	n/a	n/a	n/a	n/a	n/a	n/a
	2/25/2005	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	6.4	n/a	n/a	n/a	n/a	n/a	n/a
	8/26/2005	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	2/27/2006	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	8/29/2006	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	10/18/2006	6.2	-32.0	3.3	< 0.05	n/a	n/a	8.4	n/a	n/a	n/a	38	130	98	<1	n/a	n/a	n/a	< 0.1	< 0.02	< 0.01
	12/19/2006	6.4	-33.8	0.3	< 0.05	n/a	n/a	9	n/a	n/a	n/a	n/a	110	100	<1	n/a	n/a	n/a	< 0.1	< 0.02	< 0.01
	3/20/2007	6.5	-81.2	0.4	< 0.05	n/a	n/a	8.9	n/a	n/a	n/a	75	120	110	<1	n/a	n/a	n/a	0.12	< 0.02	< 0.02
	9/29/2008	6.4	-134	0.1	< 0.01	n/a	n/a	6.81	n/a	n/a	n/a	65	104	116	< 0.0002	n/a	n/a	n/a	n/a	n/a	n/a
	5/20/2009	6.5	-147	0.3	0.032	n/a	n/a	7.68	n/a	n/a	n/a	73.7	118	102	< 0.0002	n/a	n/a	n/a	n/a	n/a	n/a
	11/3/2009	6.4	-32.0	0.0	< 0.01	n/a	n/a	6.88	n/a	n/a	n/a	71.4	115	106	< 0.2	n/a	n/a	n/a	n/a	n/a	n/a
	5/4/2010	6.1	-20.0	0.0	< 0.01	n/a	n/a	6.8	n/a	n/a	n/a	61.6	121	209	< 0.2	n/a	n/a	n/a	n/a	n/a	n/a
	10/11/2010	6.7	-45.0	0.0	0.039	n/a	n/a	6.49	n/a	n/a	n/a	87.8	117	97.5	< 0.2	n/a	n/a	n/a	n/a	n/a	n/a
	4/7/2011	6.6	-53.0	0.6	< 0.03	n/a	n/a	5.84	n/a	n/a	n/a	60.6	123	105	< 0.2	n/a	n/a	n/a	n/a	n/a	n/a
	10/17/2011	6.7	-56.0	0.1	< 0.03	n/a	n/a	n/a	n/a	n/a	n/a	72	121	107	< 0.2	n/a	n/a	n/a	n/a	n/a	n/a
	4/17/2012	6.6	-35.0	0.2	< 0.03	n/a	n/a	n/a	n/a	n/a	n/a	65	118	114	< 0.2	n/a	n/a	n/a	n/a	n/a	n/a
	10/22/2012	6.8	-47.0	0.0	< 0.03	n/a	n/a	n/a	n/a	n/a	n/a	55.7	117	108	< 0.2	n/a	n/a	n/a	n/a	n/a	n/a
	5/5/2013	6.8	97.0	2.6	0.076	n/a	n/a	n/a	n/a	n/a	n/a	49.8	108	110	0.325	n/a	n/a	n/a	n/a	n/a	n/a
	10/2/2013	6.3	-37.0	0.5	< 0.15	n/a	n/a	n/a	n/a	n/a	n/a	61.9	87	94.7	<0.2(B)	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	4/22/2014	6.5	-33.7	0.3	< 0.03	0.871	n/a	6.84	n/a	3.0	3.84	66.3	93.3	109	0.287	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	10/7/2014	6.5	-20.0	0.3	< 0.03	0.854	n/a	6.1	n/a	2.0	4.1	71.6	82.6	109	0.854	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	4/15/2015	6.6	38.1	1.0	< 0.03	0.755	n/a	4.02	n/a	1.5	2.52	71.7	83.2	107	0.2	<0.2	<0.2	<0.2	n/a	n/a	n/a
	11/13/2015	6.3	41.4	0.5	< 0.3	0.805	n/a	5.43	n/a	2.0	3.43	65.2	85.1	102	<1	<0.2	<0.2	<0.2	n/a	n/a	n/a
	4/5/2016	6.7	5.0	5.2	< 0.03	0.74	n/a	4.89	n/a	2.0	2.89	73.7	86.2	53	<1	<0.2	<0.2	<0.2	n/a	n/a	n/a
	10/26/2016	6.1	-51	0.3	0.057	0.881	n/a	5.59	n/a	2.5	3.09	74	82	105	<1	<0.2	<0.2	<0.2	n/a	n/a	n/a
	4/26/2017	6.5	-18	0.4	< 0.05	0.992	n/a	3.6	n/a	2.5	1.1	44.4	97.2	117	<1	<0.2	<0.2	<0.2	n/a	n/a	n/a
	10/25/2017	6.6	-28	0.3	< 0.05	0.858	n/a	5.43	n/a	2.0	3.43	68	75.4	110	<1	<0.2	<0.2	<0.2	n/a	n/a	n/a
	4/25/2018	6.3	-154	0.3	0.0662	n/a	n/a	2.64	n/a	1.5	1.14	51.8	89.1	104	<1	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a

Table E.2. Summary of MNA Constituents, Old Midland Products Superfund Site.

Well ID	Sampling Date	Hd (SU)	D Oxygen Reduction Potential (ORP)	(mg) Dissolved Oxygen (DO)	sm) (T) Nitrate-Nitrite as N	(T/Z Total Manganese	m Dissolved Manganese	(mg/L)	m Sg Dissolved Iron	 Eield Determined Ferrous Tron (Fe2+) 	(T/Sm) (Fe3+)	Souffate (mg/L)	Chloride (mg/L)	(m) Total Alkalinity [as CaCO3]	(T/Sm) Total Organic Carbon	$ \stackrel{\pi}{\text{gg}} 2\text{-Chlorophenol} $	(T/s/d) 2,6-Dichlorophenol	fa 2,4 Dichlorophenol	Methane (mg/L)	Ethane (A/gm)	Ethene (L/gm)
MW-20S	7/15/1999	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	10/28/1999	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	1/20/2000	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	4/24/2000	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	7/26/2000	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	1/25/2001	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	7/31/2001	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	8/28/2002	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	3/4/2003	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	8/27/2003	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	1.1	n/a	n/a	n/a	n/a	n/a	n/a
	2/27/2004	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	8/31/2004	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	1.5	n/a	n/a	n/a	n/a	n/a	n/a
	2/25/2005	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	5.9	n/a	n/a	n/a	n/a	n/a	n/a
	8/26/2005	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	1.1	n/a	n/a	n/a	n/a	n/a	n/a
	2/27/2006	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	1.2	n/a	n/a	n/a	n/a	n/a	n/a
	8/29/2006	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	1.1	n/a	n/a	n/a	n/a	n/a	n/a
	10/18/2006	6.0	-14.5	0.5	< 0.05	n/a	n/a	3.8	n/a	n/a	n/a	320	280	81	<1	n/a	n/a	n/a	< 0.1	< 0.02	< 0.01
	12/20/2006	5.9	-12.3	12.2	< 0.05	n/a	n/a	6	n/a	n/a	n/a	240	220	74	<1	n/a	n/a	n/a	< 0.1	< 0.02	< 0.01
	3/21/2007	6.2	-27.9	0.3	< 0.05	n/a	n/a	10	n/a	n/a	n/a	290	220	66	<1	n/a	n/a	n/a	0.063	< 0.02	< 0.02
	5/18/2009	6.5	-199	0.1	0.029	n/a	n/a	8.24	n/a	n/a	n/a	242	144	82.6	0.389	n/a	n/a	n/a	n/a	n/a	n/a
	11/3/2009	6.4	-101	0.0	< 0.01	n/a	n/a	8.21	n/a	n/a	n/a	235	137	84.9	<0.2	n/a	n/a	n/a	n/a	n/a	n/a
	4/28/2010	6.5	-12.0	2.0	0.024	n/a	n/a	15.3	n/a	n/a	n/a	238	137	376	0.386	n/a	n/a	n/a	n/a	n/a	n/a
	10/6/2010 4/6/2011	6.7 6.3	-51.0 -40.0	0.0 1.3	0.107 <0.03	n/a n/a	n/a	7.06 6.49	n/a n/a	n/a n/a	n/a	241 213	136 110	79.4 76.3	<0.2 <0.2	n/a	n/a	n/a n/a	n/a	n/a	n/a
	10/16/2011	6.5	-66.0	0.1	< 0.03	n/a	n/a n/a		n/a	n/a n/a	n/a n/a	224	129	84	<0.2	n/a n/a	n/a n/a	n/a	n/a n/a	n/a n/a	n/a n/a
	4/16/2012	6.5	-24.0	0.0	< 0.03	n/a	n/a	n/a n/a	n/a	n/a	n/a n/a	209	117	81.3	<0.2	n/a	n/a	n/a	n/a	n/a	n/a
	10/22/2012	6.7	-38.0	0.0	< 0.03	n/a	n/a	n/a	n/a	n/a	n/a	207	121	85.2	<0.2	n/a	n/a	n/a	n/a	n/a	n/a
	5/2/2013	6.7	-40.0	0.0	< 0.03	n/a	n/a	n/a	n/a	n/a	n/a	198	115	83.8	<0.2	n/a	n/a	n/a	n/a	n/a	n/a
	10/2/2013	6.3	-36.0	0.3	< 0.15	n/a	n/a	n/a	n/a	n/a	n/a	188	115	71.8	<0.2(B)	<0.2	< 0.2	<0.2	n/a	n/a	n/a
	4/21/2014	6.4	-7.1	0.3	< 0.03	1.53	n/a	7.66	n/a	3.0	4.66	179	108	92.9	0.206	< 0.2	<0.2	< 0.2	n/a	n/a	n/a
	10/8/2014	6.4	-6.0	0.4	< 0.03	1.54	n/a	6.86	n/a	3.0	3.86	174	108	97.2	0.484	<0.2	<0.2	<0.2	n/a	n/a	n/a
	4/14/2015	6.6	27.0	0.7	< 0.03	0.045	n/a	4.79	n/a	1.0	3.79	180	111	97.8	0.234	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	11/13/2015	6.3	16.7	0.5	<.3	1.19	n/a	5.71	n/a	2.0	3.71	158	99.2	100	<1	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	4/5/2016	6.7	0.0	1.7	< 0.03	2	n/a	5.25	n/a	2.0	3.25	181	110	62.3	<1	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	10/26/2016	6.4	-53	0.7	< 0.15	1.55	n/a	6.06	n/a	2.0	4.06	170	95.8	105	<1	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	4/25/2017	6.5	-30	1.0	0.07	n/a	1.43	n/a	5.49	3.0	n/a	204	106	98.5	<1	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	10/24/2017	6.5	-31	0.7	< 0.05	1.43	n/a	5.44	n/a	3.5	1.94	172	96.9	104	<1	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	4/24/2018	6.4	-167	0.6	< 0.05	n/a	n/a	n/a	1.82	2.0	n/a	158	89.3	99.9	<1	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a

Table E.2. Summary of MNA Constituents, Old Midland Products Superfund Site.

Well ID	Sampling Date	Hd (SU)	m Oxygen Reduction Potential (ORP)	(DO) Dissolved Oxygen (DO)	(mg/L) Nitrate-Nitrite as N	(T) Total Manganese	m Dissolved Manganese	(mg/L)	(mg/L) Dissolved Iron	 (a) Field Determined Ferrous (b) Tron (Fe2+) 	(T/S) Ferric Iron (Fe3+)	Souffate (mg/L)	Chloride (m/Z)	by Total Alkalinity [as CaCO3]	(T/Sm) Total Organic Carbon	$ \stackrel{\pi}{\text{gg}} 2\text{-Chlorophenol} $	(T/s/d) 2,6-Dichlorophenol	fa 2,4 Dichlorophenol	Methane (mg/L)	Ethane (A/gm)	Ethene (mg/L)
MW-20D	7/21/1999	n/o	n/o	n/o	n/o	n/o	n/o	n/o	n/o	n/a	n/o	n/o	n/o	n/o	<10	n/o	n/o	n/o	n/o	n/o	n/a
	10/28/1999	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	<10	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a
	10/28/1999	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	4/24/2000	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	7/26/2000	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	1/25/2001	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	7/31/2001	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	8/28/2002	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	3/4/2003	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	8/27/2003	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	2/27/2004	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	8/31/2004	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	2/25/2005	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	4.4	n/a	n/a	n/a	n/a	n/a	n/a
	8/26/2005	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	2/27/2006	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	1.1	n/a	n/a	n/a	n/a	n/a	n/a
	8/29/2006	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	10/18/2006	6.3	-41.1	1.0	< 0.05	n/a	n/a	9.2	n/a	n/a	n/a	260	240	110	<1	n/a	n/a	n/a	< 0.1	< 0.02	< 0.01
	12/19/2006	6.4	24.8	0.6	< 0.05	n/a	n/a	11	n/a	n/a	n/a	n/a	200	94	<1	n/a	n/a	n/a	< 0.1	< 0.02	< 0.01
	3/21/2007	6.4	-31.8	0.4	< 0.05	n/a	n/a	16	n/a	n/a	n/a	280	190	80	<1	n/a	n/a	n/a	< 0.01	< 0.02	< 0.02
	5/18/2009	6.5	-128	0.3	0.033	n/a	n/a	7.24	n/a	n/a	n/a	220	110	83.3	0.316	n/a	n/a	n/a	n/a	n/a	n/a
	11/3/2009	6.6	-38.0	0.0	< 0.01	n/a	n/a	7.19	n/a	n/a	n/a	219	120	84.2	< 0.2	n/a	n/a	n/a	n/a	n/a	n/a
	4/28/2010	6.6	-14.0	0.0	0.049	n/a	n/a	9.8	n/a	n/a	n/a	242	111	335	< 0.2	n/a	n/a	n/a	n/a	n/a	n/a
	10/6/2010	6.7	-41.0	1.8	0.068	n/a	n/a	7.85	n/a	n/a	n/a	241	110	80	< 0.2	n/a	n/a	n/a	n/a	n/a	n/a
	4/6/2011	5.8	-41.0	0.6	< 0.03	n/a	n/a	6.59	n/a	n/a	n/a	210	127	82.3	<0.2	n/a	n/a	n/a	n/a	n/a	n/a
	10/16/2011	6.5	-58.0	0.0	< 0.03	n/a	n/a	n/a	n/a	n/a	n/a	228	112	80.7	< 0.2	n/a	n/a	n/a	n/a	n/a	n/a
	4/17/2012	6.6	-24.0	0.1	< 0.03	n/a	n/a	n/a	n/a	n/a	n/a	212	100	87.5	<0.2	n/a	n/a	n/a	n/a	n/a	n/a
	10/21/2012	6.6	-36.0	0.0	< 0.03	n/a	n/a	n/a	n/a	n/a	n/a	214	104	80.4	<0.2	n/a	n/a	n/a	n/a	n/a	n/a
	5/2/2013	6.6	1.0	0.1	0.058	n/a	n/a	n/a	n/a	n/a	n/a	200	98	80.5	<0.2	n/a	n/a	n/a	n/a	n/a	n/a
	10/2/2013	6.4	-32.0	0.3	< 0.15	n/a	n/a	n/a	n/a	n/a	n/a	197	94.8	47.4	<0.2(B)	<0.2	<0.2	<0.2	n/a	n/a	n/a
	4/21/2014	6.4	25.8	0.4	<0.03	2.46	n/a	9.46	n/a	3.0	6.46	191	86.3	81.6	0.22	<0.2	<0.2	<0.2	n/a	n/a	n/a
	10/7/2014 4/14/2015	6.5 6.5	-22.0 53.0	0.3 0.9	<0.03 <0.03	1.85 2.19	n/a n/a	7.85 5.74	n/a n/a	2.0 2.0	5.85 3.74	176 170	78.5 77.5	90.7 87.6	<0.2 0.231	<0.2 <0.2	<0.2 <0.2	<0.2 <0.2	n/a	n/a	n/a
	11/11/2015	6.6	-19.4	0.9	< 0.03	1.62	n/a n/a	7.01	n/a n/a	7.0	0.01	169	72.1	86.1	0.231 <1	<0.2	<0.2	<0.2	n/a n/a	n/a n/a	n/a n/a
	4/4/2016	6.3	33.0	1.5	< 0.03	2.73	n/a	10.8	n/a	2.0	8.8	173	71.8	48	<1	<0.2	<0.2	<0.2	n/a	n/a	n/a
	10/25/2016	6.5	-21	0.3	0.055	1.59	n/a	6.44	n/a	3.0	3.44	156	66.5	<6	<1	<0.2	<0.2	<0.2	n/a	n/a	n/a
	4/25/2017	6.4	0.9	0.8	< 0.05	1.32	n/a	4.62	n/a	3.0	1.62	159	68.9	87.3	<1	<0.2	<0.2	<0.2	n/a	n/a	n/a
	10/24/2017	6.4	-19.7	0.3	< 0.05	1.65	n/a	7.38	n/a	3.0	4.38	151	63.2	98.5	<1	<0.2	<0.2	<0.2	n/a	n/a	n/a
	4/24/2018	6.2	-144.5	1.5	0.0521	n/a	n/a	1.94	n/a	1.5	0.44	141	62.2	90.6	<1	<0.2	<0.2	<0.2	n/a	n/a	n/a

Table E.2. Summary of MNA Constituents, Old Midland Products Superfund Site.

Well	Sampling	рН	Oxygen Reduction Potential (ORP)	Dissolved Oxygen (DO)	Nitrate-Nitrite as N	Total Manganese	Dissolved Manganese	Total Iron	Dissolved Iron	Field Determined Ferrous Iron (Fe2+)	Ferric Iron (Fe3+)	Sulfate	Chloride	Total Alkalinity [as CaCO3]	Total Organic Carbon	2-Chlorophenol	2,6-Dichlorophenol	2,4-Dichlorophenol	Methane	Ethane	Ethene
ID	Date	(SU)	(mVs)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(µg/L)	(µg/L)	(µg/L)	(mg/L)	(mg/L)	(mg/L)
MW-21S																					
	10/11/2006	6.2	94.7	4.7	< 0.05	n/a	n/a	0.17	n/a	n/a	n/a	170	180	220	<1	n/a	n/a	n/a	< 0.1	< 0.02	< 0.01
	12/20/2006	6.4	9.0	0.5	< 0.05	n/a	n/a	0.6	n/a	n/a	n/a	84	100	200	<1	n/a	n/a	n/a	< 0.1	< 0.02	< 0.01
	3/20/2007	6.3	57.9	0.4	< 0.05	n/a	n/a	1	n/a	n/a	n/a	69	110	160	<1	n/a	n/a	n/a	0.025	< 0.02	< 0.02
	10/15/2008	6.2	27.3	0.2	0.03	n/a	n/a	0.608	n/a	n/a	n/a	43.5	129	115	< 0.2	n/a	n/a	n/a	n/a	n/a	n/a
	5/22/2009	6.2	-73.7	0.7	< 0.01	n/a	n/a	1.87	n/a	n/a	n/a	42	148	113	< 0.2	n/a	n/a	n/a	n/a	n/a	n/a
	11/9/2009	6.5	81.0	0.0	< 0.01	n/a	n/a	0.524	n/a	n/a	n/a	38.3	148	113	0.201	n/a	n/a	n/a	n/a	n/a	n/a
	4/29/2010	6.2	55.0	0.0	< 0.01	n/a	n/a	1.07	n/a	n/a	n/a	42.1	166	291	< 0.0002	n/a	n/a	n/a	n/a	n/a	n/a
	10/4/2010	6.4	53.0	0.0	< 0.01	n/a	n/a	0.867	n/a	n/a	n/a	34.5	145	110	< 0.2	n/a	n/a	n/a	n/a	n/a	n/a
	4/5/2011	6.1	98.0	1.0	< 0.03	n/a	n/a	0.48	n/a	n/a	n/a	36.3	160	118	< 0.2	n/a	n/a	n/a	n/a	n/a	n/a
	10/12/2011	6.4	59.0	0.0	< 0.03	n/a	n/a	n/a	n/a	n/a	n/a	33.1	145	106	< 0.2	n/a	n/a	n/a	n/a	n/a	n/a
	4/11/2012	6.2	117	0.0	< 0.03	n/a	n/a	n/a	n/a	n/a	n/a	34.6	146	104	< 0.2	n/a	n/a	n/a	n/a	n/a	n/a
	10/18/2012	6.4	49.0	0.0	< 0.03	n/a	n/a	n/a	n/a	n/a	n/a	33.3	143	104	< 0.2	n/a	n/a	n/a	n/a	n/a	n/a
	4/30/2013	6.5	101	0.0	< 0.03	n/a	n/a	n/a	n/a	n/a	n/a	9.77	18.2	108	< 0.2	n/a	n/a	n/a	n/a	n/a	n/a
	10/1/2013	6.0	102	0.4	< 0.03	n/a	n/a	n/a	n/a	n/a	n/a	32.2	142	108	< 0.2	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	4/22/2014	6.0	163	1.3	< 0.03	0.342	n/a	0.58	n/a	< 0.5	n/a	34.4	138	97.9	< 0.2	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	10/8/2014	6.0	90.6	0.4	< 0.03	0.718	n/a	0.742	n/a	1.0	n/a	36.2	141	110	< 0.2	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	4/15/2015	6.0	168	0.4	< 0.03	0.410	n/a	0.516	n/a	< 0.05	n/a	34.4	136	101	0.317	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	11/11/2015	6.1	79	0.4	< 0.03	0.796	n/a	0.721	n/a	0.5	0.221	48.9	141	124	<1	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	4/6/2016	6.0	-69	0.3	< 0.03	0.660	n/a	0.661	n/a	0.5	0.161	41.1	144	112	<1	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	10/26/2016	6.1	89	0.9	0.031	0.869	n/a	0.94	n/a	1.0	n/a	68	147	<6	<1	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	4/25/2017	6.2	104	0.3	0.560	0.857	n/a	0.732	n/a	< 0.5	n/a	40.3	141	120	<1	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	10/23/2017	6.2	-5	0.5	< 0.05	0.775	n/a	0.84	n/a	0.5	0.34	69	139	138	<1	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	4/23/2018	6.1	79	0.3	< 0.05	n/a	n/a	1.03	n/a	0.5	0.53	48.9	140	125	<1	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a

Table E.2. Summary of MNA Constituents, Old Midland Products Superfund Site.

Well	Sampling	Ha (SU)	Oxygen Reduction Potential (ORP)	E Dissolved Oxygen (DO)	(mg/L) Nitrate-Nitrite as N	(T/ T) Total Manganese	T Dissolved Manganese	(mg/L)	(mg/L)	Field Determined Ferrous Tron (Fe2+)	(Mgm) Ferric Iron (Fe3+)	Sulfate	Chloride (mg/L)	Total Alkalinity [as CaCO3]	Total Organic Carbon	Τ 2-Chlorophenol	र्षेत्र 2,6-Dichlorophenol	r r 7. 2,4-Dichlorophenol	Methane (mg/L)	Ethane (T/km)	Ethene (mg/L)
MW-21D	Date	(50)	(111 7 3)	(IIIg/L)	(mg/L)	(IIIg/L)	(IIIg/L)	(Hig/L)	(IIIg/L)	(IIIg/L)	(IIIg/L)	(IIIg/L)	(IIIg/L)	(IIIg/L)	(IIIg/L)	(µg/L)	(µg/L)	(µg/L)	(Hig/L)	(IIIg/L)	(mg/L)
WI W -21D	10/11/2006	6.9	-58.2	7.6	< 0.05	n/a	n/a	1.7	n/a	n/a	n/a	8.9	94	210	<1	n/a	n/a	n/a	3.2	< 0.02	< 0.01
	12/21/2006	7.0	53.8	0.3	< 0.05	n/a	n/a	5.8	n/a	n/a	n/a	2.1	80	200	<1	n/a	n/a	n/a	0.3	< 0.02	< 0.01
	3/20/2007	7.0	-70.1	0.4	< 0.05	n/a	n/a	1	n/a	n/a	n/a	3.1	96	200	<1	n/a	n/a	n/a	2.5	< 0.02	< 0.02
	10/15/2008	6.9	-166	0.1	0.014	n/a	n/a	0.967	n/a	n/a	n/a	2.14	82.6	190	6.62	n/a	n/a	n/a	n/a	n/a	n/a
	5/22/2009	7.0	-183	0.4	0.01	n/a	n/a	1.1	n/a	n/a	n/a	1.77	83.9	192	0.318	n/a	n/a	n/a	n/a	n/a	n/a
	11/9/2009	7.0	-125	0.0	< 0.01	n/a	n/a	16.6	n/a	n/a	n/a	0.91	85	192	0.278	n/a	n/a	n/a	n/a	n/a	n/a
	4/29/2010	7.1	-99.0	5.3	< 0.01	n/a	n/a	1.55	n/a	n/a	n/a	1.02	84.7	88	0.858	n/a	n/a	n/a	n/a	n/a	n/a
	10/4/2010	7.2	-114	0.0	< 0.01	n/a	n/a	2.48	n/a	n/a	n/a	0.64	84.4	208	0.964	n/a	n/a	n/a	n/a	n/a	n/a
	4/5/2011	6.7	-83.0	0.2	< 0.03	n/a	n/a	0.958	n/a	n/a	n/a	0.4	82.2	209	0.953	n/a	n/a	n/a	n/a	n/a	n/a
	10/12/2011	7.2	-90.0	0.0	< 0.03	n/a	n/a	n/a	n/a	n/a	n/a	< 0.2	83	205	0.348	n/a	n/a	n/a	n/a	n/a	n/a
	4/11/2012	7.2	-71.0	0.1	< 0.03	n/a	n/a	n/a	n/a	n/a	n/a	< 0.2	81.5	191	< 0.2	n/a	n/a	n/a	n/a	n/a	n/a
	10/18/2012	7.2	-97.0	0.0	< 0.03	n/a	n/a	n/a	n/a	n/a	n/a	0.23	79.3	200	0.371	n/a	n/a	n/a	n/a	n/a	n/a
	4/30/2013	7.6	-53.0	0.0	< 0.03	n/a	n/a	n/a	n/a	n/a	n/a	< 0.2	81.4	202	0.271	n/a	n/a	n/a	n/a	n/a	n/a
	10/1/2013	7.0	-99.0	0.4	< 0.03	n/a	n/a	n/a	n/a	n/a	n/a	< 0.2	78.4	201	0.808	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	4/22/2014	6.8	7.9	0.5	< 0.03	0.074	n/a	1.05	n/a	0.5	0.55	< 0.2	77	193	0.327	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	10/9/2014	7.0	-68.0	0.2	< 0.03	0.068	n/a	1.81	n/a	1.5	0.31	< 0.2	74.8	190	0.441	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	4/15/2015	6.8	-27.7	0.3	< 0.03	0.065	n/a	1.24	n/a	1	0.24	0.28	74.2	182	0.656	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	11/11/2015	7.1	-67.7	0.7	< 0.3	0.072	n/a	2.26	n/a	< 0.5	n/a	< 0.5	74.5	190	<1	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	4/4/2016	6.7	-127.2	0.4	< 0.03	0.054	n/a	1.26	n/a	1	0.26	<0.5	75.9	191	<1	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	10/26/2016	7.1	-90.0	1.1	< 0.03	0.0800	n/a	2.33	n/a	1.5	0.83	<0.5	77.8	133	<1	< 0.2	< 0.2	0.318	n/a	n/a	n/a
	4/25/2017	6.9	-51.0	0.3	< 0.05	n/a	< 0.1	n/a	0.922	1.0	n/a	<0.5	82.2	184	<1	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	10/23/2017	6.9	-7.2	0.6	< 0.05	n/a	< 0.1	n/a	1.250	1.5	n/a	< 0.5	79.8	174	<1	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	4/23/2018	6.9	-40.8	0.5	< 0.05	n/a	n/a	n/a	0.893	1.0	n/a	< 0.5	83	173	<1	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a

Table E.2. Summary of MNA Constituents, Old Midland Products Superfund Site.

Well	Sampling	н	Oxygen Reduction Potential (ORP)	Dissolved Oxygen (DO)	Nitrate-Nitrite as N	Total Manganese	Dissolved Manganese	Total Iron	Dissolved Iron	Field Determined Ferrous Iron (Fe2+)	Ferric Iron (Fe3+)	Sulfate	Chloride	Total Alkalinity [as CaCO3]	Total Organic Carbon	2-Chlorophenol	2,6-Dichlorophenol	2,4-Dichlorophenol	Methane	Ethane	Ethene
ID	Date	(SU)	(III V S)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(μg/L)	(μg/L)	(μg/L)	(mg/L)	(mg/L)	(mg/L)
MW-22S	10/10/2005	<i>c</i> 1	1.64	2.1	0.05	,	,	0.00	,	,	,	4.50	250	41		,	,	,	0.1	0.02	0.01
	10/19/2006 12/19/2006	6.1	164 134	3.1 0.6	<0.05 <0.05	n/a n/a	n/a	0.09 0.033	n/a	n/a	n/a	460	350 290	41 160	<1	n/a	n/a	n/a	<0.1 <0.1	<0.02 <0.02	<0.01 <0.01
	3/22/2007	6.1 5.9	108	0.6	<0.05		n/a	0.033	n/a	n/a	n/a	n/a		150	<1	n/a	n/a	n/a		<0.02	
	9/28/2007					n/a	n/a		n/a	n/a	n/a	510	360		<1 0.43	n/a	n/a	n/a	0.012		<0.02
		6.0	-13.6	0.3	< 0.01	n/a	n/a	0.128	n/a	n/a	n/a	401	264	162		n/a	n/a	n/a	n/a	n/a	n/a
	5/19/2009 11/3/2009	6.1	-17.3 30.0	7.7 0.0	0.01 <0.01	n/a	n/a	0.0364	n/a	n/a	n/a	547 582	356 366	162 165	0.444	n/a	n/a	n/a	n/a	n/a	n/a
	4/29/2010	6.1				n/a	n/a	0.289	n/a	n/a	n/a				1.15	n/a	n/a	n/a	n/a	n/a	n/a
		6.4	150	3.0	< 0.01	n/a	n/a	0.761	n/a	n/a	n/a	545	362	976	0.251	n/a	n/a	n/a	n/a	n/a	n/a
	10/5/2010	6.3	74.0	0.0	< 0.01	n/a	n/a	0.365	n/a	n/a	n/a	623	383	158	1.64	n/a	n/a	n/a	n/a	n/a	n/a
	4/7/2011 10/16/2011	5.6	139 88.0	0.6 0.0	<0.03 <0.03	n/a	n/a	0.163	n/a	n/a	n/a	521 627	363 381	168 151	2.61 0.474	n/a	n/a	n/a	n/a	n/a	n/a
	4/16/2012	6.1 6.2			< 0.03	n/a	n/a	n/a	n/a	n/a	n/a	702	389		<0.2	n/a	n/a	n/a	n/a	n/a	n/a
	10/21/2012		169 96.0	0.0	< 0.03	n/a	n/a	n/a	n/a	n/a	n/a		333	145 144	1.01	n/a	n/a	n/a	n/a	n/a	n/a
	5/1/2013	6.3 6.2	139	0.0	< 0.03	n/a n/a	n/a	n/a n/a	n/a	n/a	n/a	550 759	382	144	0.836	n/a	n/a	n/a	n/a	n/a	n/a
	10/1/2013	6.0	148	0.4	< 0.03		n/a		n/a	n/a	n/a	678	347	159	2.27	n/a <0.2	n/a <0.2	n/a <0.2	n/a	n/a	n/a
	4/23/2014	6.3	121	0.4	< 0.03	n/a 0.154	n/a	n/a 0.0889	n/a	n/a <0.5	n/a	631	296	151	2.45	<0.2	<0.2	<0.2	n/a	n/a	n/a
	10/7/2014	6.0	157	0.3		0.134	n/a		n/a		n/a	680		140	0.323				n/a	n/a	n/a
	4/16/2015		196	0.4	<0.03 <0.03	0.196	n/a n/a	0.0754 0.289	n/a n/a	<0.5 <0.5	n/a n/a	720	316 328	139	0.323	<0.2 <0.2	<0.2 <0.2	<0.2 <0.2	n/a	n/a	n/a
	11/13/2015	6.0			< 0.03	0.320		0.289			0.221	683							n/a	n/a	n/a
	4/6/2016	6.8	48 198	0.6	<0.03	0.320	n/a	<0.200	n/a	0.5		683 772	305	178 154	9.89 1.86	<0.2	<0.2 <0.2	<0.2 <0.2	n/a	n/a	n/a
	10/28/2016	6.2	198 40	1.9 1.4	<0.03	0.234	n/a	<0.200 0.36	n/a	<0.5 0.5	n/a	692	320(B) 288	154 179	7.16	<0.2 <0.2	<0.2	<0.2 0.403	n/a	n/a	n/a
	4/25/2016	6.4			<0.03		n/a		n/a		n/a								n/a	n/a	n/a
		6.2	64	0.5		<1	n/a	<5	n/a	NR	n/a	723	273	167	3.94	<0.2	<0.2	<0.2	n/a	n/a	n/a
	10/24/2017	6.2	92	0.4	< 0.05	0.129	n/a	<0.5	n/a	<0.5	n/a	791	265	128	<1	<0.2	<0.2	<0.2	n/a	n/a	n/a
	4/24/2018	6.1	-168	0.5	< 0.05	n/a	n/a	0.0672	n/a	NR	n/a	809	258	129	2.49	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a

Table E.2. Summary of MNA Constituents, Old Midland Products Superfund Site.

Well	Sampling	рН	Oxygen Reduction Potential (ORP)	Dissolved Oxygen (DO)	Nitrate-Nitrite as N	Total Manganese	Dissolved Manganese	TotalIron	Dissolved Iron	Field Determined Ferrous Iron (Fe2+)	Ferric Iron (Fe3+)	Sulfate	Chloride	Total Alkalinity [as CaCO3]	Total Organic Carbon	2-Chlorophenol	2,6-Dichlorophenol	2,4-Dichlorophenol	Methane	Ethane	Ethene
ID	Date	(SU)	(mVs)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(μg/L)	(μg/L)	(μg/L)	(mg/L)	(mg/L)	(mg/L)
MW-22D																					
	10/19/2006	6.7	-50.1	0.4	< 0.05	n/a	n/a	1.5	n/a	n/a	n/a	7	110	120	<1	n/a	n/a	n/a	0.31	< 0.02	< 0.01
	12/19/2006	6.7	-43.1	0.6	< 0.05	n/a	n/a	2.7	n/a	n/a	n/a	n/a	140	150	<1	n/a	n/a	n/a	0.38	< 0.02	< 0.01
	3/22/2007	6.6	-113	0.3	< 0.05	n/a	n/a	3.7	n/a	n/a	n/a	130	190	140	<1	n/a	n/a	n/a	0.71	< 0.02	< 0.02
	9/26/2008	6.5	-122	0.1	< 0.01	n/a	n/a	3.03	n/a	n/a	n/a	130	164	143	< 0.2	n/a	n/a	n/a	n/a	n/a	n/a
	5/19/2009	6.7	-168	0.6	0.041	n/a	n/a	2.05	n/a	n/a	n/a	104	134	145	0.221	n/a	n/a	n/a	n/a	n/a	n/a
	11/3/2009	6.7	-65.0	0.0	< 0.01	n/a	n/a	2.88	n/a	n/a	n/a	111	149	139	< 0.2	n/a	n/a	n/a	n/a	n/a	n/a
	4/29/2010	6.7	-11.0	0.0	0.01	n/a	n/a	2.86	n/a	n/a	n/a	113	143	293	< 0.2	n/a	n/a	n/a	n/a	n/a	n/a
	10/5/2010	6.9	-59.0	0.0	0.022	n/a	n/a	3.34	n/a	n/a	n/a	114	137	134	< 0.2	n/a	n/a	n/a	n/a	n/a	n/a
	4/7/2011	6.9	-64.0	1.6	< 0.03	n/a	n/a	2.13	n/a	n/a	n/a	102	140	139	< 0.2	n/a	n/a	n/a	n/a	n/a	n/a
	10/16/2011	6.9	-79.0	0.0	< 0.03	n/a	n/a	n/a	n/a	n/a	n/a	105	139	140	< 0.2	n/a	n/a	n/a	n/a	n/a	n/a
	4/16/2012	6.9	-24.0	0.3	0.042	n/a	n/a	n/a	n/a	n/a	n/a	92.6	141	143	< 0.2	n/a	n/a	n/a	n/a	n/a	n/a
	10/21/2012	7.0	-69.0	0.0	< 0.03	n/a	n/a	n/a	n/a	n/a	n/a	87.7	133	141	< 0.2	n/a	n/a	n/a	n/a	n/a	n/a
	5/1/2013	7.0	91.0	2.5	0.067	n/a	n/a	n/a	n/a	n/a	n/a	90.6	146	143	0.798	n/a	n/a	n/a	n/a	n/a	n/a
	10/1/2013	6.7	-35.0	0.5	< 0.03	n/a	n/a	n/a	n/a	n/a	n/a	84.3	134	149	0.234	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	4/23/2014	6.6	51.9	1.8	0.062	0.264	n/a	1.04	n/a	0.5	0.54	79.8	130	142	< 0.2	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	10/7/2014	6.7	-75.7	0.3	< 0.03	0.399	n/a	2.41	n/a	2.0	0.41	70.9	127	150	< 0.2	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	4/16/2015	6.5	6.3	0.3	< 0.06	0.341	n/a	1.11	n/a	< 0.5	n/a	63.6	121	148	0.528	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	11/13/2015	7.0	14	0.5	< 0.03	0.359	n/a	2.48	n/a	< 0.5	n/a	63.7	120	141	<1	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	4/6/2016	7.1	174	5.5	0.124(B)	0.0673	n/a	0.813	n/a	< 0.5	n/a	67.1	124(B)	135	<1	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	10/28/2016	6.8	-39	1.3	< 0.03	0.4380	n/a	1.91	n/a	2.0	n/a	61	125	139	<1	< 0.2	< 0.2	0.458	n/a	n/a	n/a
	4/25/2017	6.9	31	1.8	< 0.05	0.1590	n/a	0.514	n/a	< 0.5	n/a	54	120	156	<1	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	10/24/2017	6.9	-106	0.5	< 0.05	n/a	0.5	n/a	4.6	2.5	2.1	41.3	118	171	<1	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	4/24/2018	7	-135.5	1.66	0.1270	n/a	n/a	0.5	n	< 0.5	n/a	44.8	115	151	<1	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a

Table E.2. Summary of MNA Constituents, Old Midland Products Superfund Site.

Well	Sampling	Hd	Oxygen Reduction Potential (ORP)	Dissolved Oxygen (DO)	Nitrate-Nitrite as N	Total Manganese	Dissolved Manganese	Total Iron	Dissolved Iron	Field Determined Ferrous Iron (Fe2+)	Ferric Iron (Fe3+)	Sulfate	Chloride	Total Alkalinity [as CaCO3]	Total Organic Carbon	2-Chlorophenol	2,6-Dichlorophenol	2,4-Dichlorophenol	Methane	Ethane	Ethene
ID	Date	(SU)	(mVs)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(µg/L)	(µg/L)	(µg/L)	(mg/L)	(mg/L)	(mg/L)
MW-23																					
	10/18/2006	6.8	-83.1	0.6	< 0.05	n/a	n/a	0.9	n/a	n/a	n/a	23	44	170	1	n/a	n/a	n/a	0.14	< 0.02	< 0.01
	12/19/2006	6.8	-216	0.3	< 0.05	n/a	n/a	1.1	n/a	n/a	n/a	n/a	51	210	1.7	n/a	n/a	n/a	< 0.1	< 0.02	< 0.01
	3/22/2007	7.1	-118	0.4	< 0.05	n/a	n/a	3.1	n/a	n/a	n/a	43	47	200	1.8	n/a	n/a	n/a	0.58	< 0.02	< 0.02
	9/25/2008	6.7	-141	0.1	< 0.01	n/a	n/a	1.28	n/a	n/a	n/a	94.4	81.8	148	0.00554	n/a	n/a	n/a	n/a	n/a	n/a
	5/19/2009	6.9	-167	0.3	0.057	n/a	n/a	1.73	n/a	n/a	n/a	108	90.5	141	0.209	n/a	n/a	n/a	n/a	n/a	n/a
	11/4/2009	6.6	-54.0	0.0	< 0.01	n/a	n/a	1.52	n/a	n/a	n/a	132	93.5	141	0.941	n/a	n/a	n/a	n/a	n/a	n/a
	4/29/2010	1.2	258	0.0	< 0.01	n/a	n/a	1.6	n/a	n/a	n/a	107	86.8	201	0.637	n/a	n/a	n/a	n/a	n/a	n/a
	10/11/2010	7.1	-72.0	0.1	0.025	n/a	n/a	1.56	n/a	n/a	n/a	127	95.1	151	2.23	n/a	n/a	n/a	n/a	n/a	n/a
	4/6/2011	6.3	-119	0.5	< 0.03	n/a	n/a	1.59	n/a	n/a	n/a	126	93.1	180	1.7	n/a	n/a	n/a	n/a	n/a	n/a
	10/13/2011	7.0	-54.0	0.0	< 0.03	n/a	n/a	n/a	n/a	n/a	n/a	113	90.6	175	1.23	n/a	n/a	n/a	n/a	n/a	n/a
	4/10/2012	7.0	-66.0	0.0	< 0.03	n/a	n/a	n/a	n/a	n/a	n/a	122	90.7	163	1.25	n/a	n/a	n/a	n/a	n/a	n/a
	10/17/2012	7.2	-62.0	0.4	< 0.03	n/a	n/a	n/a	n/a	n/a	n/a	125	89.3	154	1.1	n/a	n/a	n/a	n/a	n/a	n/a
	5/1/2013	7.5	161	6.2	0.125	n/a	n/a	n/a	n/a	n/a	n/a	123	90.9	177	1.59	n/a	n/a	n/a	n/a	n/a	n/a
	10/1/2013	6.9	65.0	0.7	< 0.15	n/a	n/a	n/a	n/a	n/a	n/a	115	82.9	186	3.12	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	4/23/2014	7.0	-48.8	0.6	< 0.03	0.191	n/a	1.92	n/a	1.5	0.42	111	73	218	5.73	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	10/8/2014	6.8	-41.4	0.3	< 0.3	0.291	n/a	1.33	n/a	1.0	0.33	120	81.9	162	1.15	< 0.2	<0.2	<0.2	n/a	n/a	n/a
	4/15/2015	6.9	-53.4	0.3	< 0.06	0.168	n/a	1.62	n/a	1.0	0.62	n/a	76.8	186	5.64	< 0.2	<0.2	< 0.2	n/a	n/a	n/a
	11/12/2015	7.6	242	0.5	< 0.3	0.276	n/a	1.65	n/a	1.5	0.15	121	79.6	197	2.95	< 0.2	<0.2	< 0.2	n/a	n/a	n/a
	4/5/2016	6.7	-100	0.4	< 0.03	0.18	n/a	1.38	n/a	1.5	n/a	139	86.3	138	<1	< 0.2	<0.2	< 0.2	n/a	n/a	n/a
	10/25/2016	7.2	-38	0.7	< 0.03	0.184	n/a	1.61	n/a	2.0	n/a	126	84.5	164	2.04	< 0.2	<0.2	<0.2	n/a	n/a	n/a
	4/24/2017	6.7	-24.7	0.5	< 0.05	0.392	n/a	2.27	n/a	2.0	0.27	148	90.2	137	<1	< 0.2	<0.2	<0.2	n/a	n/a	n/a
	10/23/2017	7.0	-43.6	0.4	< 0.05	0.254	n/a	1.85	n/a	2.0	n/a	143	85.1	157	<1	<0.2	<0.2	<0.2	n/a	n/a	n/a
	4/23/2018	6.9	-158	0.7	< 0.05	n/a	n/a	2.07	n/a	2.0	0.07	140	85.1	183	2.05	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a

Table E.2. Summary of MNA Constituents, Old Midland Products Superfund Site.

Well ID	Sampling Date	Hd (SU)	Oxygen Reduction Potential (ORP)	m JZ Dissolved Oxygen (DO)	by Nitrate-Nitrite as N	(MZ) Total Manganese	(m) Dissolved Manganese	(mg/L)	(mg/L)	Field Determined Ferrous Tron (Fe2+)	Mg/W Ferric Iron (Fe3+)	Sulfate (mg/L)	Chloride (mg/L)	Total Alkalinity [as CaCO3]	m (Tal Organic Carbon	7/S 2-Chlorophenol	77 2,6-Dichlorophenol	元 元 7. 2,4-Dichlorophenol	(mg/L) Methane	(Thane	(Tygm)
	Date	(50)	(== : =)	((((((((8)	((8)	(8)	(8)	(F8 =)	(F-8' /	(F8 = /	((8)	(
RW-1	7/10/1000	/	/	/	/	/	/	/	/	/	/	/	/	/	20.5	/	/	/	/	/	/
	7/19/1999 10/29/1999	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	20.5	n/a	n/a	n/a	n/a	n/a	n/a
	1/25/2000	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	3060 3320	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a
	4/25/2000	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a n/a	n/a	1470	n/a	n/a	n/a	n/a	n/a	n/a
	7/27/2000	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	223	n/a	n/a	n/a	n/a	n/a	n/a
	1/31/2001	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	7/30/2001	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	15.5	n/a	n/a	n/a	n/a	n/a	n/a
	8/28/2002	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	9.9	n/a	n/a	n/a	n/a	n/a	n/a
	3/5/2003	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	14	n/a	n/a	n/a	n/a	n/a	n/a
	8/27/2003	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	18	n/a	n/a	n/a	n/a	n/a	n/a
	2/25/2004	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	20	n/a	n/a	n/a	n/a	n/a	n/a
	8/24/2004	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	71	n/a	n/a	n/a	n/a	n/a	n/a
	2/21/2005	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	33	n/a	n/a	n/a	n/a	n/a	n/a
	8/22/2005	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	9.8	n/a	n/a	n/a	n/a	n/a	n/a
	2/21/2006	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	14	n/a	n/a	n/a	n/a	n/a	n/a
	8/21/2006	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	24	n/a	n/a	n/a	n/a	n/a	n/a
	9/27/2006	6.0	-26.9	0.8	< 0.05	n/a	n/a	1.8	n/a	n/a	n/a	69	75	100	8.5	n/a	n/a	n/a	< 0.1	< 0.02	< 0.01
	12/19/2006	6.7	-69.9	0.8	0.1	n/a	n/a	1.5	n/a	n/a	n/a	n/a	36	80	3.6	n/a	n/a	n/a	< 0.1	< 0.02	< 0.01
	3/21/2007	6.6	-211	0.7	< 0.05	n/a	n/a	3.5	n/a	n/a	n/a	76	120	200	3.6	n/a	n/a	n/a	0.19	< 0.02	< 0.02
	10/8/2008	6.5	1.8	0.1	< 0.01	n/a	n/a	0.698	n/a	n/a	n/a	30.6	19.5	85.9	7.09	n/a	n/a	n/a	n/a	n/a	n/a
	5/22/2009	6.9	-268	1.8	< 0.01	n/a	n/a	0.16	n/a	n/a	n/a	82.7	182	208	3.92	n/a	n/a	n/a	n/a	n/a	n/a
	11/5/2009	7.1	-338	n/a	< 0.01	n/a	n/a	0.07	n/a	n/a	n/a	38.6	243	264	3.15	n/a	n/a	n/a	n/a	n/a	n/a
	4/29/2010	6.8	-204	8.6	< 0.01	n/a	n/a	0.0679	n/a	n/a	n/a	103	219	182	3.3	n/a	n/a	n/a	n/a	n/a	n/a
	10/12/2010	7.3	-268	0.0	< 0.01	n/a	n/a	0.027	n/a	n/a	n/a	71.4	190	245	3.79	n/a	n/a	n/a	n/a	n/a	n/a
	4/7/2011	7.0	-211	0.5	< 0.03	n/a	n/a	0.161	n/a	n/a	n/a	108	257	286	2.72	n/a	n/a	n/a	n/a	n/a	n/a
	10/13/2011	6.7	-265	0.0	< 0.03	n/a	n/a	n/a	n/a	n/a	n/a	80.6	234	290	2.06	n/a	n/a	n/a	n/a	n/a	n/a
	4/19/2012	6.8	-264	0.0	< 0.03	n/a	n/a	n/a	n/a	n/a	n/a	91	192	254	1.15	n/a	n/a	n/a	n/a	n/a	n/a
	10/23/2012	6.9	-274	0.0	< 0.03	n/a	n/a	n/a	n/a	n/a	n/a	104	215	280	1.94	n/a	n/a	n/a	n/a	n/a	n/a
	5/7/2013	7.3	-233	0.0	<0.3	n/a	n/a	n/a	n/a	n/a	n/a	47	116	210	2.81	n/a	n/a	n/a	n/a	n/a	n/a
	10/2/2013	6.7	-105	0.2	< 0.03	n/a 5.45	n/a	n/a	n/a	n/a	n/a	66.8	178	265	2.87(B)	<2	<2	<2	n/a	n/a	n/a
	4/23/2014 10/8/2014	6.8	142 -208	0.0	<0.15 <0.03	5.45 9.14	n/a	0.0816 0.344	n/a	<0.5	n/a	95 119	232 280	277	1.43 1.43	<2 <2	<2	<2 <2	n/a	n/a	n/a
	4/15/2015	6.8 6.7	-208 -195	0.3	<0.03	3.28	n/a n/a	<.2	n/a n/a	<0.5 <0.5	n/a <.2	119	280 191	316 253	3.42	<2	<2 <2	<2	n/a n/a	n/a n/a	n/a n/a
	11/13/2015	7.0	-195 215	0.7	<0.15	7.38	n/a n/a	0.332	n/a n/a	0.5	<.2 n/a	142	230	332	1.85	<2	<2	<2	n/a n/a	n/a n/a	n/a n/a
	4/6/2016	6.8	-132	1.0	< 0.30	7.38	n/a	< 0.020	n/a	<0.5	< 0.020	136	241(B)	280	<10	<2	<2	<1	n/a	n/a	n/a
	10/27/2016	6.2	-238	0.3	< 0.15	7.61	n/a	<0.020	n/a	<0.5	<0.020	113	241(B) 251	308	2.35	<2	<2	<2	n/a	n/a	n/a
	4/27/2017	6.7	-238	0.3	<0.15	6.59	n/a	<5	n/a	0.5	n/a	124	237	63.5	1.58	<0.2	<0.2	<0.2	n/a	n/a	n/a
	10/26/2017	6.8	-294	0.4	<0.5	7.51	n/a	<0.5	n/a	0.5	n/a	107	253	<60	2.14	<2	<2	<2	n/a	n/a	n/a
	4/25/2018	6.7	-185	0.2	< 0.05	n/a	n/a	0.0683	n/a	NR	n/a	78.3	191	250	2.73	<2	<2	<2	n/a	n/a	n/a

Table E.2. Summary of MNA Constituents, Old Midland Products Superfund Site.

Well ID	Sampling Date	Ha (SU)	Oxygen Reduction Potential (ORP)	(mg/L) Dissolved Oxygen (DO)	(bg) Nitrate-Nitrite as N	(J/T) Total Manganese	(JZ) Dissolved Manganese	(mg/L)	(mg/L)	Field Determined Ferrous	m)/Ferric Iron (Fe3+)	Sulfate (mg/L)	Chloride	Total Alkalinity [as CaCO3]	(Trotal Organic Carbon	απ (Τ/ 2-Chlorophenol	77 2,6-Dichlorophenol	க் 7 2,4-Dichlorophenol	Methane (mg/L)	(Thane	Ethene (Mg/L)
RW-2	Dutt	. ,															40	,,,,			
10.44-2	7/19/1999	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	32.4	n/a	n/a	n/a	n/a	n/a	n/a
	10/29/1999	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	1/25/2000	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	20.4	n/a	n/a	n/a	n/a	n/a	n/a
	4/25/2000	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	7/27/2000	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	1/31/2001	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	7/30/2001	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	14.3	n/a	n/a	n/a	n/a	n/a	n/a
	8/28/2002	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	3.5	n/a	n/a	n/a	n/a	n/a	n/a
	3/5/2003	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	3.4	n/a	n/a	n/a	n/a	n/a	n/a
	8/27/2003	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	5.5	n/a	n/a	n/a	n/a	n/a	n/a
	2/25/2004	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	5	n/a	n/a	n/a	n/a	n/a	n/a
	8/24/2004	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	6.2	n/a	n/a	n/a	n/a	n/a	n/a
	2/21/2005	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	8.7	n/a	n/a	n/a	n/a	n/a	n/a
	8/22/2005	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	4.6	n/a	n/a	n/a	n/a	n/a	n/a
	2/21/2006	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	4.1	n/a	n/a	n/a	n/a	n/a	n/a
	8/21/2006	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	3.4	n/a	n/a	n/a	n/a	n/a	n/a
	9/27/2006	6.4	-115	0.3	0.05	n/a	n/a	1.3	n/a	n/a	n/a	40	68	99	11	n/a	n/a	n/a	0.24	< 0.02	< 0.01
	12/21/2006	6.5	110	5.7	0.08	n/a	n/a	1.4	n/a	n/a	n/a	9.5	8.5	16	22	n/a	n/a	n/a	< 0.1	< 0.02	< 0.01
	3/21/2007	6.8	-252	0.4	< 0.05	n/a	n/a	2.1	n/a	n/a	n/a	11	54	96	16	n/a	n/a	n/a	1.1	< 0.02	< 0.02
	10/10/2008	6.7	-24.2	0.1	< 0.01	n/a	n/a	1.36	n/a	n/a	n/a	5.67	8.63	45.8	14	n/a	n/a	n/a	n/a	n/a	n/a
	11/5/2009	7.2	-68.0	n/a	< 0.01	n/a	n/a	0.783	n/a	n/a	n/a	17.9	25.7	74	5.36	n/a	n/a	n/a	n/a	n/a	n/a
	4/29/2010	6.8	-100	0.0	< 0.01	n/a	n/a	0.481	n/a	n/a	n/a	< 0.01	258	191	1	n/a	n/a	n/a	n/a	n/a	n/a
	10/12/2010	6.8	-289	0.0	< 0.01	n/a	n/a	0.232	n/a	n/a	n/a	88.1	288	202	3	n/a	n/a	n/a	n/a	n/a	n/a
	4/7/2011	7.1	-121	0.8	< 0.03	n/a	n/a	0.303	n/a	n/a	n/a	70.4	76	131	6.34	n/a	n/a	n/a	n/a	n/a	n/a
	10/18/2011	6.8	-189	0.0	< 0.03	n/a	n/a	n/a	n/a	n/a	n/a	17	115	140	9.28	n/a	n/a	n/a	n/a	n/a	n/a
	4/19/2012	7.0	-75.0	0.5	0.106	n/a	n/a	n/a	n/a	n/a	n/a	23.2	43	90.2	11.8	n/a	n/a	n/a	n/a	n/a	n/a
	10/23/2012	7.0	-60.0	0.0	0.03	n/a	n/a	n/a	n/a	n/a	n/a	22	31.5	73.2	10.6	n/a	n/a	n/a	n/a	n/a	n/a
	5/7/2013	7.2	-206	2.1	< 0.03	n/a	n/a	n/a	n/a	n/a	n/a	12.4	46.8	104	5.26	n/a	n/a	n/a	n/a	n/a	n/a
	10/2/2013	6.5	-72.0	0.0	< 0.15	n/a	n/a	n/a	n/a	n/a	n/a	7.17	106	151	11.3(B)	0.646	< 0.222	< 0.222	n/a	n/a	n/a
	4/21/2014	Floode	d below gra	de surface	completion,	therefore w	ell was not	sampled.													
	10/8/2014	6.8	-125	0.2	< 0.03	2.84	n/a	0.282	n/a	n/a	n/a	2.7	84	133	7.4	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	4/13/2015			de surface		therefore w	ell was not	sampled.													
	11/13/2015	6.7	226	0.4	< 0.03	0.857	n/a	0.913	n/a	< 0.5	n/a	34.6	35.0	68.8	9.76	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	4/5/2016	Floode	d below gra	de surface	completion,	therefore w	ell was not	sampled.													
	10/27/2016	5.8	-99.7	0.3	< 0.03	0.934	n/a	1.88	n/a	1	0.88	2	32.4	84.4	11.3	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	4/24/2017	Floode	d below gra	de surface	completion,	therefore w	ell was not	sampled.													
	10/26/2017	6.6	-61.5	1.1	< 0.05	2.4	n/a	1.9	n/a	2.0	n/a	2.69	56.4	89.3	11.5	< 0.2	< 0.2	0.328	n/a	n/a	n/a
	4/23/2018	Floode	d below gra	de surface	completion,	therefore w	ell was not	sampled.													

Table E.2. Summary of MNA Constituents, Old Midland Products Superfund Site.

	Sampling	Нq	Oxygen Reduction Potential (ORP)	Dissolved Oxygen (DO)	Nitrate-Nitrite as N	Total Manganese	Dissolved Manganese	Total Iron	Dissolved Iron	Field Determined Ferrous Iron (Fe2+)	Ferric Iron (Fe3+)	Sulfate	Chloride	Total Alkalinity [as CaCO3]	Total Organic Carbon	2-Chlorophenol	2,6-Dichlorophenol	2,4-Dichlorophenol	Methane	Ethane	Ethene
ID	Date	(SU)	(mVs)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(μg/L)	(μg/L)	(μg/L)	(mg/L)	(mg/L)	(mg/L)
RW-3																					
	7/19/1999	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	24.2	n/a	n/a	n/a	n/a	n/a	n/a
	10/29/1999	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	1/25/2000	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	198	n/a	n/a	n/a	n/a	n/a	n/a
	4/25/2000	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	7/27/2000	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	1/31/2001 7/30/2001	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	8/28/2002	n/a n/a	n/a	n/a n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a n/a	n/a	<10 2	n/a	n/a	n/a	n/a	n/a	n/a
	3/5/2003	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	1.8	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a
	8/27/2003	n/a	n/a	n/a	n/a	n/a	n/a n/a	n/a	n/a	n/a	n/a n/a	n/a	n/a	n/a	1.5	n/a	n/a	n/a	n/a	n/a	n/a
	2/25/2004	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	1.3	n/a	n/a	n/a	n/a	n/a	n/a
	8/24/2004	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	1.3	n/a	n/a	n/a	n/a	n/a	n/a
	2/21/2005	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	1.9	n/a	n/a	n/a	n/a	n/a	n/a
	8/22/2005	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	1.7	n/a	n/a	n/a	n/a	n/a	n/a
	2/21/2006	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	1.4	n/a	n/a	n/a	n/a	n/a	n/a
,	8/21/2006	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	1.2	n/a	n/a	n/a	n/a	n/a	n/a
-	10/1/2006	6.5	-58.3	6.5	< 0.05	n/a	n/a	13	n/a	n/a	n/a	34	93	130	5.5	n/a	n/a	n/a	0.45	< 0.02	< 0.01
1	12/21/2006	6.5	148	7.4	< 0.05	n/a	n/a	1	n/a	n/a	n/a	18	15	20	19	n/a	n/a	n/a	< 0.1	< 0.02	< 0.01
1	3/21/2007	6.6	-156	0.4	< 0.05	n/a	n/a	4.2	n/a	n/a	n/a	48	100	110	2.5	n/a	n/a	n/a	0.43	< 0.02	< 0.02
	10/9/2008	6.8	8.0	3.9	0.065	n/a	n/a	0.46	n/a	n/a	n/a	7.92	4.42	40.4	11.8	n/a	n/a	n/a	n/a	n/a	n/a
	11/10/2009	7.3	-43.0	0.0	< 0.01	n/a	n/a	0.649	n/a	n/a	n/a	27.4	58	115	3.82	n/a	n/a	n/a	n/a	n/a	n/a
	10/11/2010	7.0	-79.0	0.0	< 0.01	n/a	n/a	2.37	n/a	n/a	n/a	0	224	197	1.22	n/a	n/a	n/a	n/a	n/a	n/a
III	4/13/2011	6.1	81.0	0.8	0.038	n/a	n/a	0.348	n/a	n/a	n/a	39.1	46.7	96.6	4.56	n/a	n/a	n/a	n/a	n/a	n/a
	10/18/2011	7.1	-147	0.0	< 0.03	n/a	n/a	n/a	n/a	n/a	n/a	75.8	168	173	2.18	n/a	n/a	n/a	n/a	n/a	n/a
	5/8/2013	7.3	-26.0	0.0	< 0.03	n/a	n/a	n/a	n/a	n/a	n/a	35.1	65.9	122	1.83	n/a	n/a	n/a	n/a	n/a	n/a
	10/3/2013	6.7	-74.0	0.2	< 0.03	n/a	n/a	n/a	n/a	n/a	n/a	61.4(B)	131	167	1.27(B)	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	4/21/2014		_			therefore w		-		2.0	0.50		100	1=0	2.2.						
	10/7/2014	6.8	-95.0	0.2	0.06	5.47	n/a	2.58	n/a	2.0	0.58	61.6	139	150	2.36	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	4/13/2015					therefore w		-	/	1.0	/	90.2	126	100	2.0	-0.2	-0.2	-0.2	/	/	/
	11/13/2015 4/5/2016	6.6	162	0.3	<0.03	4.55	n/a	0.587	n/a	1.0	n/a	80.3	136	188	2.8	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	4/5/2016 10/27/2016	6.0	-67.5	ide surrace o	<0.03	therefore w	n/a	sampled. 2.05	n/a	2.0	0.05	43	105	140	2.94	< 0.2	< 0.2	< 0.2	n/a	n/o	n/e
	4/24/2017					therefore w			11/21	2.0	0.03	43	103	140	2.94	<0.2	<0.2	<0.2	II/d	n/a	n/a
	10/25/2017	6.8	-58.7	0.4	<0.05	6.4	n/a	3.6	n/a	1.5	2.06	80.3	164	189	1.3	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	4/23/2017					therefore w			11/ a	1.3	2.00	00.3	104	107	1.3	\0. 2	<0.∠	<0.∠	11/а	11/а	11/ a

Table E.2. Summary of MNA Constituents, Old Midland Products Superfund Site.

Well ID	Sampling Date	Hd (SU)	 B Oxygen Reduction Potential (S) (ORP) 	(mg Dissolved Oxygen (DO)	(mg/L) Nitrate-Nitrite as N	6m) Total Manganese	Sam Dissolved Manganese	(mg/L)	(mg/L)	Eield Determined Ferrous	(T/Sam) (Fe3+)	Sulfate	Chloride	(Trotal Alkalinity [as CaCO3]	(T/Sun) (T/ani Organic Carbon	(T/Sthorophenol	απ (γα 2, 6-Dichlorophenol	ரி (yd 2,4-Dichlorophenol	Methane (mg/L)	Ethane (L/gm)	(T/Sau)
RW-4																					
	7/19/1999	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	78.4	n/a	n/a	n/a	n/a	n/a	n/a
	10/29/1999	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	1/25/2000	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	16.9	n/a	n/a	n/a	n/a	n/a	n/a
	4/25/2000	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	7/27/2000	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	1/31/2001	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	7/30/2001	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	15.2	n/a	n/a	n/a	n/a	n/a	n/a
	8/28/2002	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	5.4	n/a	n/a	n/a	n/a	n/a	n/a
	3/5/2003	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	4.6	n/a	n/a	n/a	n/a	n/a	n/a
	8/27/2003	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	8.2	n/a	n/a	n/a	n/a	n/a	n/a
	2/25/2004	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	3.9	n/a	n/a	n/a	n/a	n/a	n/a
	8/24/2004	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	7.8	n/a	n/a	n/a	n/a	n/a	n/a
	2/21/2005	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	9.4	n/a	n/a	n/a	n/a	n/a	n/a
	8/22/2005	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	4.4	n/a	n/a	n/a	n/a	n/a	n/a
	2/21/2006	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	2.2	n/a	n/a	n/a	n/a	n/a	n/a
	8/21/2006	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	6.1	n/a	n/a	n/a	n/a	n/a	n/a
	10/1/2006	6.6	-108	1.0	1.2	n/a	n/a	4.6	n/a	n/a	n/a	29	35	120	7.3	n/a	n/a	n/a	< 0.1	< 0.02	< 0.01
	12/21/2006	6.6	153	7.2	< 0.05	n/a	n/a	1.1	n/a	n/a	n/a	22	30	29	15	n/a	n/a	n/a	0.85	< 0.02	< 0.01
	3/21/2007	7.1	-5.9	0.3	< 0.05	n/a	n/a	0.47	n/a	n/a	n/a	33	50	240	4.9	n/a	n/a	n/a	0.53	< 0.02	< 0.02
	10/9/2008	6.8	69.1	2.6	0.106	n/a	n/a	6.38	n/a	n/a	n/a	9.52	139	173	0.92	n/a	n/a	n/a	n/a	n/a	n/a
	10/11/2010	6.7	-28.0	0.0	< 0.01	n/a	n/a	2.94	n/a	n/a	n/a	43.5	156	160	2.4	n/a	n/a	n/a	n/a	n/a	n/a
	10/18/2011	6.7	-66.0	0.0	< 0.03	n/a	n/a	n/a	n/a	n/a	n/a	29.7	84.3	123	1.94	n/a	n/a	n/a	n/a	n/a	n/a
	10/2/2013	6.5	-79.0	0.3	< 0.03	n/a	n/a	n/a	n/a	n/a	n/a	10.4	47.3	94.7	8.85(B)	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	4/21/2014	Floode	d below gra	ade surface	completion,	therefore w	ell was not	sampled.													
	10/7/2014	6.9	-92.0	0.3	< 0.03	0.959	n/a	12.9	n/a	1.5	11.4	19.5	65.2	136	4.77	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	4/13/2015	Floode	d below gra	ade surface	completion,	therefore w	ell was not	sampled.													
	11/13/2015		-		-	therefore w		-													
	4/5/2016	Floode	d below gra	ade surface	completion,	therefore w	ell was not	sampled.													
	10/27/2016	6.3	-34.7	0.2	0.073	0.768	n/a	6.46	n/a	2.0	4.46	32	80.1	62.7	2.62	< 0.2	< 0.2	0.427	n/a	n/a	n/a
	4/24/2017	Floode	d below gra	ade surface	completion,	therefore w	ell was not	sampled.													
	10/25/2017	6.6	-72.7	0.5	< 0.05	0.867	n/a	7.22	n/a	2.0	5.22	35.5	78.6	167	1.83	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	4/23/2018	Floode	d below gra	ade surface	completion,	therefore w	ell was not	sampled.													

Table E.2. Summary of MNA Constituents, Old Midland Products Superfund Site.

Well	Sampling	Нq	Oxygen Reduction Potential (ORP)	Dissolved Oxygen (DO)	Nitrate-Nitrite as N	Total Manganese	Dissolved Manganese	Total Iron	Dissolved Iron	Field Determined Ferrous Iron (Fe2+)	Ferric Iron (Fe3+)	Sulfate	Chloride	Total Alkalinity [as CaCO3]	Total Organic Carbon	2-Chlorophenol	2,6-Dichlorophenol	2,4-Dichlorophenol	Methane	Ethane	Ethene
ID	Date	(SU)	(mVs)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(µg/L)	(μg/L)	(μg/L)	(mg/L)	(mg/L)	(mg/L)
RW-5																					
	7/21/1999	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	14.2	n/a	n/a	n/a	n/a	n/a	n/a
	10/29/1999	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	14.5	n/a	n/a	n/a	n/a	n/a	n/a
	1/25/2000	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	14.2	n/a	n/a	n/a	n/a	n/a	n/a
	4/25/2000	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	7/27/2000	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	7/30/2001	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	8/28/2002	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	4	n/a	n/a	n/a	n/a	n/a	n/a
	3/5/2003 8/27/2003	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	2.1 2.3	n/a	n/a	n/a	n/a	n/a	n/a
	8/27/2003 2/25/2004	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	1.3	n/a	n/a	n/a	n/a	n/a	n/a
	8/24/2004	n/a n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a n/a	n/a	n/a	n/a	n/a	n/a	1.3	n/a	n/a	n/a	n/a	n/a	n/a
	2/21/2005	n/a	n/a n/a	n/a n/a	n/a	n/a n/a	n/a	n/a n/a	n/a	n/a	n/a	n/a	n/a n/a	n/a n/a	1.1	n/a n/a	n/a	n/a n/a	n/a n/a	n/a	n/a
	8/22/2005	n/a n/a			n/a		n/a			n/a	n/a	n/a			5.5		n/a			n/a	n/a
	2/21/2006	n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	1.4	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a
	8/21/2006	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	10/3/2006	6.5	-51.7	7.2	0.33	n/a	n/a	24	n/a	n/a	n/a	25	45	72	10	n/a	n/a	n/a	0.35	< 0.02	< 0.01
	12/20/2006	7.4	89.8	4.2	0.33	n/a	n/a	0.23	n/a	n/a	n/a	170	97	110	2.3	n/a	n/a	n/a	< 0.1	< 0.02	< 0.01
	3/20/2007	7.0	30.2	0.3	< 0.05	n/a	n/a	0.66	n/a	n/a	n/a	26	25	92	7.6	n/a	n/a	n/a	0.088	< 0.02	< 0.02
	10/11/2010	6.6	-89.0	0.0	< 0.01	n/a	n/a	15.5	n/a	n/a	n/a	22.6	116	85.5	5.42	n/a	n/a	n/a	n/a	n/a	n/a
	10/17/2011	6.6	-76.0	0.0	< 0.03	n/a	n/a	n/a	n/a	n/a	n/a	27.7	118	130	2.39	n/a	n/a	n/a	n/a	n/a	n/a
	10/3/2013	6.4	-56.0	0.5	< 0.03	n/a	n/a	n/a	n/a	n/a	n/a	5	119	111	2.39(B)	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	4/21/2014				completion,							-			,(_)						
	10/7/2014	6.7	-79.0	0.3	< 0.03	1.46	n/a	14.8	n/a	2.5	12.3	4.77	115	163	1.6	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	4/13/2015				completion,								-								
	11/13/2015				completion,																
	4/5/2016				completion,																
	10/27/2016	6.4	-61.6	0.7	< 0.15	1.43	n/a	10.6	n/a	2.0	8.6	11	118	56.8	3.31	< 0.2	< 0.2	0.434	n/a	n/a	n/a
	4/24/2017	Floode	ed below gra	ade surface	completion,	therefore w															
	10/25/2017	6.8	-105.9	1.3	< 0.05	1.59	n/a	15.2	n/a	1.5	13.7	18.6	116	217	3.55	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	4/23/2018	Floode	ed below gra	ade surface	completion,	therefore w	ell was not	sampled.													

Table E.2. Summary of MNA Constituents, Old Midland Products Superfund Site.

Well	Sampling	Hď	Oxygen Reduction Potential (ORP)	Dissolved Oxygen (DO)	Nitrate-Nitrite as N	Total Manganese	Dissolved Manganese	Total Iron	Dissolved Iron	Field Determined Ferrous Tron (Fe2+)	Ferric Iron (Fe3+)	Sulfate	Chloride	Total Alkalinity [as CaCO3]	Total Organic Carbon	2-Chlorophenol	2,6-Dichlorophenol	2,4-Dichlorophenol	Methane	Ethane	Ethene
ID	Date	(SU)	(mVs)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(µg/L)	(μg/L)	(μg/L)	(mg/L)	(mg/L)	(mg/L)
RW-6																					
	7/21/1999	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	10/29/1999	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	1/25/2000	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	4/25/2000	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	7/27/2000	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	1/31/2001	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	7/30/2001	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	8/28/2002	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	3/5/2003 8/27/2003	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1 <1	n/a	n/a	n/a	n/a	n/a	n/a
	2/25/2004	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1 <1	n/a	n/a	n/a	n/a	n/a	n/a
	8/24/2004	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1 <1	n/a	n/a	n/a	n/a	n/a	n/a
	2/21/2005	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1 <1	n/a	n/a	n/a	n/a	n/a	n/a
	8/22/2005	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1 <1	n/a	n/a	n/a	n/a	n/a	n/a
	2/21/2006	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	<1	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a
	8/21/2006	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	10/3/2006	6.0	12.7	1.6	< 0.05	n/a	n/a	4.5	n/a	n/a	n/a	32	140	120	2.4	n/a	n/a	n/a	0.12	< 0.02	< 0.01
	12/20/2006	6.9	-22.0	0.6	< 0.05	n/a	n/a	1.6	n/a	n/a	n/a	49	49	150	4.2	n/a	n/a	n/a	<0.12	< 0.02	< 0.01
	3/21/2007	6.8	107	0.4	< 0.05	n/a	n/a	6.9	n/a	n/a	n/a	36	100	180	2.5	n/a	n/a	n/a	0.11	< 0.02	< 0.02
	10/10/2008	6.7	-48.9	0.5	0.164	n/a	n/a	0.624	n/a	n/a	n/a	7.71	9.08	43.6	11	n/a	n/a	n/a	n/a	n/a	n/a
	5/22/2009	6.7	-88.6	3.0	0.029	n/a	n/a	11.4	n/a	n/a	n/a	89.2	101	212	3.33	n/a	n/a	n/a	n/a	n/a	n/a
	11/5/2009	6.7	-40.0	1.2	< 0.01	n/a	n/a	4.89	n/a	n/a	n/a	13.1	136	158	0.916	n/a	n/a	n/a	n/a	n/a	n/a
	5/4/2010	6.6	144	8.6	0.033	n/a	n/a	1.66	n/a	n/a	n/a	14.8	19.9	57	9.5	n/a	n/a	n/a	n/a	n/a	n/a
	10/11/2010	6.8	-64.0	0.0	< 0.01	n/a	n/a	5.04	n/a	n/a	n/a	15.8	140	130	0.519	n/a	n/a	n/a	n/a	n/a	n/a
	4/7/2011	6.0	-55.0	0.3	< 0.03	n/a	n/a	4.83	n/a	n/a	n/a	14.3	144	144	0.338	n/a	n/a	n/a	n/a	n/a	n/a
	10/17/2011	6.7	-50.0	0.0	< 0.03	n/a	n/a	n/a	n/a	n/a	n/a	11.7	143	142	< 0.2	n/a	n/a	n/a	n/a	n/a	n/a
	4/17/2012	6.7	-62.0	0.0	< 0.03	n/a	n/a	n/a	n/a	n/a	n/a	9.5	141	150	< 0.2	n/a	n/a	n/a	n/a	n/a	n/a
	10/22/2012	6.7	-7.0	0.0	< 0.03	n/a	n/a	n/a	n/a	n/a	n/a	9.5	142	139	< 0.2	n/a	n/a	n/a	n/a	n/a	n/a
	5/8/2013	7.2	-146	0.0	< 0.03	n/a	n/a	n/a	n/a	n/a	n/a	21.9	92.9	160	3.68	n/a	n/a	n/a	n/a	n/a	n/a
	10/2/2013	6.6	-75.0	0.1	< 0.15	n/a	n/a	n/a	n/a	n/a	n/a	3.42	121	144	1.25(B)	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	4/21/2014	7.0	83.4	0.9	0.134	2.82	n/a	1.48	n/a	< 0.5	n/a	57.8	104	190	2.3	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	10/7/2014	6.7	-58.0	0.4	< 0.03	2.73	n/a	9.5	n/a	2	7.5	1.54	128	156	0.448	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	4/13/2015	Floode	ed below gra	ade surface	completion,	therefore w	ell was not	sampled.													
	11/13/2005	6.0	126	0.4	< 0.3	2.01	n/a	8.17	n/a	5	3.17	2.70	128	101	<1	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	4/6/2016	6.7	13	1.2	< 0.03	1.98	n/a	1.33	n/a	0.5	0.83	30.90	105(B)	155	1.24	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	10/27/2016	6.3	-66	0.6	0.186	2.07	n/a	11.4	n/a	1.5	9.9	5.0	129	145	1.02	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	4/24/2017	Floode	ed below gra	ade surface	completion,	therefore w	ell was not	sampled.													
	10/26/2017	6.4	-34	0.3	< 0.05	1.88	n/a	9.26	n/a	4.5	4.760	16.0	128	155	<1	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	4/25/2018	6.3	-129	0.4	< 0.05	n/a	n/a	1.64	n/a	0.5	1.140	28.0	106	144	1.15	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a

Table E.2. Summary of MNA Constituents, Old Midland Products Superfund Site.

Well	Sampling	рН	Oxygen Reduction Potential (ORP)	Dissolved Oxygen (DO)	Nitrate-Nitrite as N	Total Manganese	Dissolved Manganese	Total Iron	Dissolved Iron	Field Determined Ferrous Iron (Fe2+)	Ferric Iron (Fe3+)	Sulfate	Chloride	Total Alkalinity [as CaCO3]	Total Organic Carbon	2-Chlorophenol	2,6-Dichlorophenol	2,4-Dichlorophenol	Methane	Ethane	Ethene
ID	Date	(SU)	(mVs)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(µg/L)	(µg/L)	(μg/L)	(mg/L)	(mg/L)	(mg/L)
RW-7																					
	7/21/1999	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	12.8	n/a	n/a	n/a	n/a	n/a	n/a
	10/29/1999	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	160	n/a	n/a	n/a	n/a	n/a	n/a
	1/25/2000	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	118	n/a	n/a	n/a	n/a	n/a	n/a
	4/25/2000	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	18.9	n/a	n/a	n/a	n/a	n/a	n/a
	7/27/2000	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	1/31/2001	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	7/30/2001	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	8/28/2002	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	3.6	n/a	n/a	n/a	n/a	n/a	n/a
	3/5/2003	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	3.7	n/a	n/a	n/a	n/a	n/a	n/a
	8/27/2003	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	4.5	n/a	n/a	n/a	n/a	n/a	n/a
	2/25/2004	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	3.6	n/a	n/a	n/a	n/a	n/a	n/a
	8/24/2004	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	9.2	n/a	n/a	n/a	n/a	n/a	n/a
	2/21/2005	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	2.5	n/a	n/a	n/a	n/a	n/a	n/a
	8/22/2005	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	2.2	n/a	n/a	n/a	n/a	n/a	n/a
	2/21/2006 8/21/2006	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	10 21	n/a	n/a	n/a	n/a	n/a	n/a
	8/21/2006 10/5/2006	n/a 6.8	n/a -71.6	n/a 10.8	n/a <0.05	n/a	n/a	n/a 5.6	n/a	n/a	n/a	n/a 18	n/a 110	n/a 490	2.1	n/a	n/a	n/a	n/a <0.1	n/a <0.02	n/a <0.01
	12/20/2006	6.6	-71.6 -95.2	0.9	< 0.05	n/a n/a	n/a n/a	13	n/a n/a	n/a n/a	n/a n/a	13	100	180	3.9	n/a n/a	n/a n/a	n/a n/a	0.5	<0.02	< 0.01
	3/22/2007	6.7	-93.2	0.5	< 0.05	n/a	n/a	10	n/a	n/a	n/a	27	130	290	3.4	n/a	n/a	n/a	4.9	< 0.02	<0.01
	10/8/2008	6.4	27.4	1.2	0.052	n/a	n/a	0.575	n/a	n/a	n/a	10.3	4.52	75.6	9.44	n/a	n/a	n/a	n/a	n/a	n/a
	5/22/2009	6.7	-117	2.8	0.014	n/a	n/a	9.62	n/a	n/a	n/a	69	0.15	227	1.1	n/a	n/a	n/a	n/a	n/a	n/a
	11/5/2009	7.1	-60.0	0.8	< 0.01	n/a	n/a	0.699	n/a	n/a	n/a	53.7	40.5	175	1.17	n/a	n/a	n/a	n/a	n/a	n/a
	4/29/2010	7.0	-51.0	0.7	< 0.01	n/a	n/a	2.92	n/a	n/a	n/a	26	41	98	7.82	n/a	n/a	n/a	n/a	n/a	n/a
	10/11/2010	7.0	-114	0.0	< 0.01	n/a	n/a	5.51	n/a	n/a	n/a	2.65	112	188	4.69	n/a	n/a	n/a	n/a	n/a	n/a
	4/7/2011	6.2	-42.0	0.4	< 0.03	n/a	n/a	2.35	n/a	n/a	n/a	72.6	56.8	120	1.56	n/a	n/a	n/a	n/a	n/a	n/a
	10/17/2011	6.9	-72.0	0.0	< 0.03	n/a	n/a	n/a	n/a	n/a	n/a	26.7	57.3	140	2.57	n/a	n/a	n/a	n/a	n/a	n/a
	4/17/2012	7.1	-22.0	0.0	0.091	n/a	n/a	n/a	n/a	n/a	n/a	46.7	79.9	201	2.07	n/a	n/a	n/a	n/a	n/a	n/a
	10/22/2012	7.1	73.0	0.0	7.35	n/a	n/a	n/a	n/a	n/a	n/a	48.3	34.4	112	2.61	n/a	n/a	n/a	n/a	n/a	n/a
	5/8/2013	7.2	-126	1.9	< 0.03	n/a	n/a	n/a	n/a	n/a	n/a	18.2	119	232	1.96	n/a	n/a	n/a	n/a	n/a	n/a
	10/2/2013	6.6	-74.0	0.2	< 0.15	n/a	n/a	n/a	n/a	n/a	n/a	22.8	101	216	3.1(B)	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	4/23/2014	6.9	-86.0	0.4	< 0.03	1.89	n/a	4.93	n/a	2.5	2.43	49.6	93.4	222	0.81	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	10/8/2014	6.8	-75.0	0.3	< 0.03	0.82	n/a	3.92	n/a	2.5	1.42	23.8	44.3	164	3.12	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	4/13/2015	Floode	ed below gra	de surface	completion,	therefore w	ell was not	sampled.													
	11/13/2015	6.5	197	0.3	0.037	0.218	n/a	0.459	n/a	< 0.5	n/a	34.1	22.3	114	4.03	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	4/5/2016	Floode	ed below gra	de surface	completion,	therefore w	ell was not	sampled.													
	10/28/2016	6.7	-121.8	0.2	< 0.15	0.395	n/a	3.15	n/a	1.5	1.65	17	25.6	154	4.74	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	4/24/2017	Floode	ed below gra	de surface	completion,	therefore w	ell was not	sampled.													
	10/26/2017	6.7	-91.7	0.3	< 0.05	1.05	n/a	3.1	n/a	1.5	1.6	5.62	48.1	173	5.86	<2	<2	<2	n/a	n/a	n/a
	4/25/2018	6.8	-123.0	0.2	0.0734	n/a	n/a	5.8	n/a	2.5	3.3	6.31	130	263	1.34	<2	<2	<2	n/a	n/a	n/a

Table E.2. Summary of MNA Constituents, Old Midland Products Superfund Site.

Well ID	Sampling Date	Ha (SU)	Oxygen Reduction Potential (ORP)	mg Dissolved Oxygen (DO)	(mg/L) Nitrate-Nitrite as N	(E) Total Manganese	(JZ) Dissolved Manganese	(mg/L)	(mg/L)	Field Determined Ferrous	m)/Ferric Iron (Fe3+)	Sulfate (mg/L)	(mg/L)	Total Alkalinity [as CaCO3]	(Mg) Total Organic Carbon	π 2-Chlorophenol	ਸੰਤੇ ਇੱ 2,6-Dichlorophenol	க் 7 2,4-Dichlorophenol	Methane (mg/L)	Ethane (JZ)	Ethene (mg/L)
RW-8	Dute									_											
KW-0	7/21/1999	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	80	n/a	n/a	n/a	n/a	n/a	n/a
	10/29/1999	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	890	n/a	n/a	n/a	n/a	n/a	n/a
	1/25/2000	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	4560	n/a	n/a	n/a	n/a	n/a	n/a
	4/25/2000	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	25.4	n/a	n/a	n/a	n/a	n/a	n/a
	7/27/2000	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	30.8	n/a	n/a	n/a	n/a	n/a	n/a
	1/31/2001	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	7/30/2001	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	8/28/2002	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	2.4	n/a	n/a	n/a	n/a	n/a	n/a
	3/5/2003	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	2	n/a	n/a	n/a	n/a	n/a	n/a
	8/27/2003	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	2.3	n/a	n/a	n/a	n/a	n/a	n/a
	2/25/2004	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	1.9	n/a	n/a	n/a	n/a	n/a	n/a
	8/24/2004	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	5.7	n/a	n/a	n/a	n/a	n/a	n/a
	2/21/2005	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	1.2	n/a	n/a	n/a	n/a	n/a	n/a
	8/22/2005	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	10	n/a	n/a	n/a	n/a	n/a	n/a
	2/21/2006	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	1.7	n/a	n/a	n/a	n/a	n/a	n/a
	8/21/2006	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	1.7	n/a	n/a	n/a	n/a	n/a	n/a
	10/5/2006	6.7	-148	1.4	< 0.05	n/a	n/a	160	n/a	n/a	n/a	4.3	260	290	6.2	n/a	n/a	n/a	1.5	< 0.02	< 0.01
	12/20/2006	7.1	-157	0.6	< 0.05	n/a	n/a	61	n/a	n/a	n/a	0.42	45	72	19	n/a	n/a	n/a	1.3	< 0.02	< 0.01
	3/22/2007	7.3	-224	0.3	< 0.05	n/a	n/a	54	n/a	n/a	n/a	0.21	63	120	14	n/a	n/a	n/a	7.4	< 0.02	< 0.02
	10/8/2008	5.8	48.6	1.6	0.069	n/a	n/a	0.83	n/a	n/a	n/a	3.89	3.06	9.3	13.7	n/a	n/a	n/a	n/a	n/a	n/a
	11/5/2009	7.8	-78.0	0.0	< 0.01	n/a	n/a	3.21	n/a	n/a	n/a	11.3	26.1	59.2	8.27	n/a	n/a	n/a	n/a	n/a	n/a
	4/29/2010	6.4	-116	0.0	< 0.01	n/a	n/a	3.25	n/a	n/a	n/a	5.3	18.4	38	14.1	n/a	n/a	n/a	n/a	n/a	n/a
	10/12/2010	6.7	-108	0.0	< 0.01	n/a	n/a	11	n/a	n/a	n/a	1.22	128	137	5.52	n/a	n/a	n/a	n/a	n/a	n/a
	4/7/2011	6.2	-138	0.3	< 0.03	n/a	n/a	8.53	n/a	n/a	n/a	2.77	190	247	5.24	n/a	n/a	n/a	n/a	n/a	n/a
	10/18/2011	6.6	-85.0	0.0	< 0.03	n/a	n/a	n/a	n/a	n/a	n/a	0.66	63.9	70	10.1	n/a	n/a	n/a	n/a	n/a	n/a
	4/17/2012	7.0	12.0	0.0	0.084	n/a	n/a	n/a	n/a	n/a	n/a	22.6	50.4	99.5	8.27	n/a	n/a	n/a	n/a	n/a	n/a
	10/23/2012	6.7	-65.0	0.0	< 0.03	n/a	n/a	n/a	n/a	n/a	n/a	1.71	149	127	6.75	n/a	n/a	n/a	n/a	n/a	n/a
	5/8/2013	7.1	77.0	4.7	< 0.03	n/a	n/a	n/a	n/a	n/a	n/a	18.1	112	233	1.94	n/a	n/a	n/a	n/a	n/a	n/a
	10/2/2013	6.2	-71.0	0.2	< 0.03	n/a	n/a	n/a	n/a	n/a	n/a	0.31	59.1	87.6	13.7(B)	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	4/23/2014	7.0	-102	0.4	< 0.03	1.59	n/a	6.37	n/a	2.5	3.87	12.6	143	262	1.3	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	10/8/2014	6.6	-73.0	0.3	0.044	0.464	n/a	4.27	n/a	2.0	2.27	0.75	37.9	57	8.28	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	4/13/2015					therefore w													,		,
	11/13/2015	6.5	216	0.4	< 0.3	1.60	n/a	12.1	n/a	4.5	7.6	0.53	122	141	7.81	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	4/5/2016		_		-	therefore w		-								_		_	,		,
	10/28/2016	6.7	-107.2	0.7	< 0.15	1.92	n/a	5.98	n/a	2.5	3.48	2	179	236	2.71	<2	<2	<2	n/a	n/a	n/a
	4/24/2017					therefore w		-			4.0			•••		•	• •	••	,		,
	10/26/2017	6.8	-123.1	0.1	< 0.05	n/a	n/a	n/a	10.5	0.5	10	< 0.5	187	250	5.96	<20	<20	<20	n/a	n/a	n/a
	4/23/2018	Floode	d below gra	ade surtace	completion,	therefore w	ell was not	sampled.													

Table E.2. Summary of MNA Constituents, Old Midland Products Superfund Site.

Well ID	Sampling Date	Hd (SU)	G. Oxygen Reduction Potential (S. (ORP)	(bg) Dissolved Oxygen (DO)	(mg/L)	(T/T Total Manganese	Sm Dissolved Manganese	Total Iron	(mg/L)	Game Field Determined Ferrous (Tron (Fe2+)	(Mg/Z) (Ton (Fe3+)	Sulfate (mg/L)	Chloride	(Total Alkalinity [as CaCO3]	(Total Organic Carbon	(T) 2-Chlorophenol	απ (To 2,6-Dichlorophenol	off (T) 2,4 Dichlorophenol	Methane (mg/L)	Ethane (mg/L)	Ethene (mg/L)
Barnes																					
	1/25/2000	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	1/25/2001	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	7/31/2001	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	8/27/2002	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	3/3/2003	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	8/27/2003	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	5.5	n/a	n/a	n/a	n/a	n/a	n/a
	2/25/2004	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	8/24/2004	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	2/23/2006	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	8/28/2006	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	12/18/2006	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	3/22/2007	n/a	n/a	n/a	< 0.05	n/a	n/a	2.8	n/a	n/a	n/a	6.2	9.2	120	<1	n/a	n/a	n/a	0.43	< 0.02	< 0.02
	5/21/2009	n/a	n/a	n/a	< 0.01	n/a	n/a	n/a	n/a	n/a	n/a	9.19	9.81	104	< 0.2	n/a	n/a	n/a	n/a	n/a	n/a
	10/12/2010	6.7	23.0	14.5	0.384	n/a	n/a	6.15	n/a	n/a	n/a	3.21	7.02	170	1.9	n/a	n/a	n/a	n/a	n/a	n/a
	4/13/2011	6.9	-153	0.6	< 0.03	n/a	n/a	1.55	n/a	n/a	n/a	3.57	7.57	145	0.232	n/a	n/a	n/a	n/a	n/a	n/a
	10/17/2011	7.9	-206	0.0	< 0.03	n/a	n/a	n/a	n/a	n/a	n/a	0.96	7.88	184	< 0.2	n/a	n/a	n/a	n/a	n/a	n/a
	10/18/2012	6.9	127.0	0.0	0.214	n/a	n/a	n/a	n/a	n/a	n/a	11.5	6.15	58.6	4.36	n/a	n/a	n/a	n/a	n/a	n/a
	10/3/2013	6.8	-57.0	0.2	< 0.03	n/a	n/a	n/a	n/a	n/a	n/a	6.09	7.29	121	0.768(B)	< 0.2	<0.2	< 0.2	n/a	n/a	n/a
	4/22/2014	6.8	77.9	0.3	< 0.03	0.147	n/a	1.41	n/a	< 0.5	n/a	6.05	7.81	100	0.233	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a
	10/6/2014	7.7	-167	0.4	< 0.03	0.186	n/a	1.8	n/a	1	0.8	< 0.2	6.82	193	0.798	<0.2	< 0.2	< 0.2	n/a	n/a	n/a
	4/15/2015	6.8	32.0	1.1	< 0.03	0.115	n/a	1.34	n/a	<0.5	n/a	4.33	6.71	117	0.653	<0.2	< 0.2	< 0.2	n/a	n/a	n/a
	11/10/2015	5.9	62.3	0.8	< 0.03	0.301	n/a	2.82	n/a	<0.5	n/a	< 0.5	7.15	250	1.89	<0.2	<0.2	< 0.2	n/a	n/a	n/a
	4/5/2016	7.2	80	1.43	< 0.03	0.0987	n/a	3.64	n/a	<0.5	n/a	6.62	5.97	65.9	<1	<0.2	<0.2	< 0.2	n/a	n/a	n/a
	10/25/2016	7.4	-92.4	0.6	0.042	n/a	0.3250	n/a	0.27	0.5	n/a	3	5.99	137	3.39	< 0.2	< 0.2	< 0.2	n/a	n/a	n/a

Table E.2. Summary of MNA Constituents, Old Midland Products Superfund Site.

Well	Sampling	Нф	Oxygen Reduction Potential (ORP)	mi OD) Dissolved Oxygen (DO)	Nitrate-Nitrite as N	(Manganese	m Tr Dissolved Manganese	(mg/L)	(mg/L)	Field Determined Ferrous	Ferric Iron (Fe3+)	Sulfate (mg/L)	Chloride	Total Alkalinity [as CaCO3]	Total Organic Carbon	2-Chlorophenol	2,6-Dichlorophenol	2,4-Dichlorophenol	Methane	(T/bane	Ethene
ID	Date	(SU)	(III V S)	(IIIg/L)	(mg/L)	(Ilig/L)	(IIIg/L)	(IIIg/L)	(IIIg/L)	(IIIg/L)	(mg/L)	(Ilig/L)	(mg/L)	(mg/L)	(IIIg/L)	(μg/L)	(μg/L)	(μg/L)	(mg/L)	(IIIg/L)	(mg/L)
Neeley																					
	1/25/2000	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	1/25/2001	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	7/31/2001	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<10	n/a	n/a	n/a	n/a	n/a	n/a
	8/27/2002 3/3/2003	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	1.6	n/a	n/a	n/a	n/a	n/a	n/a
	3/3/2003 8/27/2003	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1 2	n/a	n/a	n/a	n/a	n/a	n/a
	2/25/2004	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	2.5	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a
	8/24/2004	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	3.6	n/a	n/a	n/a	n/a	n/a	n/a
	2/22/2005	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	1.7	n/a	n/a	n/a	n/a	n/a	n/a
	8/23/2005	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	4.9	n/a	n/a	n/a	n/a	n/a	n/a
	2/23/2006	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	3	n/a	n/a	n/a	n/a	n/a	n/a
	8/28/2006	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	12	n/a	n/a	n/a	n/a	n/a	n/a
	10/9/2006	6.2	-40.1	1.6	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	4.5	n/a	n/a	n/a	n/a	n/a	n/a
	12/18/2006	5.4	520	0.4	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	<1	n/a	n/a	n/a	n/a	n/a	n/a
	3/22/2007	5.8	149	3.5	< 0.05	n/a	n/a	0.55	n/a	n/a	n/a	1.3	17	12	<1	n/a	n/a	n/a	0.03	< 0.02	< 0.02
	10/22/2008	n/a	n/a	n/a	0.115	n/a	n/a	0.252	n/a	n/a	n/a	1.47	17.6	29.3	0.817	n/a	n/a	n/a	n/a	n/a	n/a
	5/21/2009	n/a	n/a	n/a	0.13	n/a	n/a	0.027	n/a	n/a	n/a	4.51	10.6	19.4	2.72	n/a	n/a	n/a	n/a	n/a	n/a
	5/4/2010	5.6	42.0	0.0	< 0.01	n/a	n/a	3.86	n/a	n/a	n/a	1.24	13.2	39	0.697	n/a	n/a	n/a	n/a	n/a	n/a
	4/13/2011	5.3	122	1.8	0.579	n/a	n/a	0.225	n/a	n/a	n/a	1.22	16.3	9.7	< 0.2	n/a	n/a	n/a	n/a	n/a	n/a
	4/12/2012	6.1	99.0	0.0	< 0.03	n/a	n/a	n/a	n/a	n/a	n/a	1.4	13.4	23.1	< 0.2	n/a	n/a	n/a	n/a	n/a	n/a
	10/18/2012	6.0	121	0.0	0.14	n/a	n/a	n/a	n/a	n/a	n/a	2.46	16.2	19.3	1.02	n/a	n/a	n/a	n/a	n/a	n/a
	5/2/2013	5.8	194	0.0	0.82	n/a	n/a	n/a	n/a	n/a	n/a	1.11	17.4	14.4	0.34	n/a	n/a	n/a	n/a	n/a	n/a
	10/3/2013	5.9	18.0	0.2	< 0.03	n/a	n/a	n/a	n/a	n/a	n/a	0.82	18.1	36.1	0.94(B)	<0.2	< 0.2	<0.2	n/a	n/a	n/a
	4/21/2014	5.4	240	0.3	0.582	0.125	n/a	0.0732	n/a	< 0.5	n/a	1.03	17.1	15	0.321	<0.2	<0.2	<0.2	n/a	n/a	n/a
	10/6/2014	5.5	-93	0.4	< 0.03	0.16	n/a	4.08	n/a	1.5	2.58	0.9	15.4	22.2	0.87	<0.2	<0.2	<0.2	n/a	n/a	n/a
	4/15/2015	5.9	43	0.9	< 0.03	0.978	n/a	5.00	n/a	2.0	3	1.07	15.2	30.2	1.19	<0.2	<0.2	<0.2	n/a	n/a	n/a
	11/10/2015	7.2	-193	0.3	0.176	0.606	n/a	1.07	n/a	2.5	n/a	2.69	15.4	18.4	1.05	<0.2	<0.2	<0.2	n/a	n/a	n/a
	4/5/2016 10/25/2016	6.8	111 23.8	2.9	0.0900	0.0424 0.109	n/a	0.820	n/a	<0.5 0.5	n/a 3.53	1.45 2	10.2	71.9	<1 1.85	<0.2 <0.2	<0.2 <0.2	<0.2 <0.2	n/a	n/a	n/a
	10/25/2016 4/27/2017	6.9 7.0	23.8 16.7	0.4 0.2	0.202 <0.5	0.109	n/a n/a	4.0 14.4	n/a n/a	0.5 3.0	3.53 11.4	0.61	10.7 10.7	64.1 <60	1.85 <1	<0.2	<0.2	<0.2	n/a n/a	n/a n/a	n/a n/a
	10/25/2017	6.7	-24	0.4	<0.25	0.440	n/a	12.0	n/a	< 0.5	n/a	3.31	11.8	103	<1	<0.2	<0.2	<0.2	n/a	n/a	n/a
	4/26/2018	6.6	-24 -65.1	0.4	< 0.25	n/a	n/a	12.0	n/a	1.5	10.5	2.27	18.7	90.5	<1	<0.2	<0.2	<0.2	n/a	n/a	n/a
P-5S	7/20/2010	0.0	-03.1	0.5	\0.UJ	11/ a	11/41	14.0	11/ CL	1.3	10.5	4.41	10.7	70.5	\1	NO.2	NO.2	NO.2	11/ α	и а	11/α
1 35	4/16/2015	6.0	139	2.7	< 0.03	0.015	n/a	< 0.020	n/a	<0.5	< 0.02	1.19	5.01	49	0.248	<0.2	<0.2	<0.2	n/a	n/a	n/a

Table E.3. Summary of Field Parameters, Old Midland Products Superfund Site.

			蜇	>	Specific Conductance
			bera	igit	ific Iuct
****-11	C	Hd	(C) Temperature	Turbidity	Specific
Well ID	Sampling Date	su)	(C)	(NTU)	(mS/cm)
MW-1S					
	9/27/2006	5.4	20.4	6	0.168
	12/18/2006	5.2	18.9	1	0.170
	3/20/2007	5.6	17.2	1	0.167
	10/1/2008	5.6	21.3	0	0.177
	5/18/2009	5.5	16.5	5	0.186
	11/4/2009	5.5	19.8	0	0.184
	4/29/2010	6.1	14.9	0	0.199
	10/5/2010	6.0	20.5	35	0.190
	4/4/2011	5.4	13.9	< 0.02	0.197
	10/11/2011	5.8	20.8	4	0.211
	4/10/2012	5.6	16.6	< 0.02	0.131
	10/16/2012	5.1	19.7	< 0.02	0.159
	5/2/2013	5.8	15.6	< 0.02	0.185
	10/2/2013	5.4	23.6	4	0.187
	4/21/2014	5.3	15.7	< 0.02	0.184
	10/7/2014	5.2	23.8	9	0.172
	4/14/2015	5.4	14.4	< 0.02	0.180
	11/13/2015	6.1	15.3	6	0.184
	4/6/2016	5.8	18.8	3	0.204
	10/27/2016	5.5	28.5	3	0.206
	4/24/2017	5.6	26.9	2	0.191
	10/24/2017	5.5	19.2	0	0.171
	4/25/2018	5.5	18.7	1	0.170
MW-1D					
	9/27/2006	6.7	19.5	3	0.327
	12/19/2006	6.6	15.9	0	0.340
	3/20/2007	6.9	17.3	0	0.326
	9/30/2008	6.7	20.0	0	0.338
	5/18/2009	6.8	18.1	1	0.336
	11/5/2009	7.2	17.5	2	0.299
	4/28/2010	1.0	18.1	0	0.343
	10/5/2010	7.2	21.5	< 0.02	0.307
	4/4/2011	6.6	14.3	< 0.02	0.347
	10/11/2011	7.2	21.2	< 0.02	0.355
	4/10/2012	7.1	17.7	4	0.241
	10/16/2012	7.0	21.0	< 0.02	0.347
	5/2/2013	7.4	18.9	< 0.02	0.345
	9/30/2013	7.4	21.8	3	0.350
	4/21/2014	6.9	16.3	< 0.02	0.342
	10/7/2014	6.8	22.7	4	0.347
	4/14/2015	6.7	16.0	2	0.317
	11/13/2015	7.5	11.5	2	0.344
	4/6/2016	7.4	21.5	5	0.361
	10/27/2016	7.4	29.2	5	0.366
	4/24/2017	7.1	26.1	3	0.306
	10/27/2017	7.2	19.4	3 1	0.326
	4/25/2018	7.0	19.4	1	0.288

Table E.3. Summary of Field Parameters, Old Midland Products Superfund Site.

			(3) Temperature	ž;	Specific
			nper	Turbidity	cific
Well	Sampling	Hd	Ten	Tur	Specific
ID	Date	(su)	(C)	(NTU)	(mS/cm)
MW-3S					
	10/9/2006	5.9	19.6	2	1.10
	12/21/2006	5.8	18.3	3	1.02
	3/21/2007	6.0	18.4	0	1.72
	5/20/2009	5.8	17.7	3	2.66
	11/4/2009	5.9	19.7	0	2.42
	4/29/2010	6.2	16.0	0	3.32
	10/11/2010	6.1	19.0	< 0.02	2.21
	4/13/2011	5.4	17.4	< 0.02	2.10
	10/18/2011	6.2	18.9	< 0.02	2.04
	4/19/2012	6.0	18.6	< 0.02	2.76
	10/23/2012	6.1	22.6	< 0.02	2.23
	5/6/2013	6.8	21.2	< 0.02	2.61
	10/3/2013	5.9	23.2	5	2.75
	4/23/2014	6.0	19.3	3	3.11
	10/7/2014	5.9	25.4	9	3.25
	4/15/2015	6.0	15.0	1	3.26
	11/13/2015	5.9	22.3	2	3.03
	4/5/2016	6.2	19.7	3	3.619
	10/28/2016	5.8	26.3	5	2.888
	4/27/2017	6.0	13.4	10	3.858
	10/26/2017	6.0	12.9	2	3.343
	4/26/2018	6.2	14.7	3	3.456
MW-3D					
	10/9/2006	6.4	19.6	2	0.855
	12/21/2006	6.5	18.3	3	0.574
	3/21/2007	6.9	16.8	0	0.656
	5/20/2009	6.7	17.4	1	0.642
	11/4/2009	6.6	18.1	3	0.569
	5/4/2010	6.8	17.9	4	0.650
	10/12/2010	6.8	22.5	< 0.02	0.575
	4/13/2011	5.9	17.8	< 0.02	0.673
	10/18/2011	6.8	18.3	< 0.02	0.696
	4/19/2012	6.8	19.0	< 0.02	0.588
	10/23/2012	6.8	20.4	< 0.02	0.718
	5/6/2013	7.1	17.3	< 0.02	0.751
	10/3/2013	6.6	22.5	2	0.731
	4/23/2014	6.8	20.9	5	0.703
	10/7/2014	6.6	21.1	10	0.730
	4/15/2015	6.7	17.4	1	0.626
	11/13/2015	6.6	`9.3	3	0.711
	4/5/2016	7.0	17.5	4	0.686
	10/26/2016	6.4	20.2	3	0.641
	4/27/2017	6.7	16.4	9	0.702
	10/26/2017	6.7	17.6	7	0.666
	4/26/2018	6.8	15.4	2	0.684

Table E.3. Summary of Field Parameters, Old Midland Products Superfund Site.

Well ID	Sampling Date	Hđ (su)	O.Temperature	(ntv) (ntv)	Specific (m/Samce) (m/Samce)
MW-5S					
	10/5/2006	6.3	20.1	15	0.539
	12/20/2006	6.4	16.3	63	0.583
	3/20/2007	6.5	16.6	0	0.518
	9/25/2008	6.3	20.1	0	0.533
	5/26/2009	6.8	16.2	4	0.549
	11/10/2009	6.4	20.0	36	0.427
	4/28/2010	4.1	18.4	2	0.535
	10/7/2010	6.8	25.4	< 0.02	0.522
	4/6/2011	6.5	16.0	1	0.552
	10/11/2011	6.5	21.0	1	0.554
	4/10/2012	6.6	17.7	< 0.02	0.367
	10/16/2012	6.5	20.4	< 0.02	0.562
	4/30/2013	7.1	20.8	1	0.480
	10/1/2013	6.5	21.2	34	0.553
	4/23/2014	6.3	16.8	9	0.490
	10/7/2014	6.4	19.9	6	0.560
	4/16/2015	6.5	14.5	6	0.469
	11/11/2015	6.5	19.6	10	0.572
	4/4/2016	6.6	17.3	6	0.469
	10/27/2016	6.5	22.3	31	0.558
	4/27/2017	6.5	17.9	7	0.482
	10/24/2017	6.6	19.5	1	0.466
	4/25/2018	6.5	15.4	1	0.441

Table E.3. Summary of Field Parameters, Old Midland Products Superfund Site.

			(3) Temperature	*	Specific
			pera	idit	ific
Well	Sampling	Hd	[em]	ji.	Specific (mS/Sm)
ID	Date	(su)	(C)	(nla) (nla)	(mS/cm)
MW-8S					
	10/9/2006	5.6	19.6	14	0.535
	12/19/2006	5.8	17.8	0	0.604
	3/22/2007	5.8	16.7	0	0.683
	10/17/2008	5.5	19.7	0	0.671
	5/20/2009	5.7	15.7	5	0.813
	11/3/2009	5.7	18.5	0	1.010
	4/28/2010	4.5	15.6	0	1.010
	10/5/2010	5.9	23.8	< 0.02	0.864
	4/5/2011	5.1	14.8	3	1.050
	10/11/2011	5.8	19.7	4	0.906
	4/11/2012	5.8	14.9	< 0.02	0.725
	10/16/2012	5.6	20.6	< 0.02	0.963
	5/7/2013	6.2	21.6	4	0.942
	9/30/2013	5.6	21.9	5	0.928
	4/23/2014	5.8	17.6	15	0.980
	10/7/2014	5.7	19.2	9	0.948
	4/15/2015	5.6	15.1	18	1.030
	11/11/2015	5.5	19.1	19	0.952
	4/6/2016	5.8	16.7	3	0.927
	10/27/2016	5.8	24.5	14	0.978
	4/27/2017	5.7	19.3	9	0.972
	10/26/2017	5.7	18.9	2	0.746
	4/26/2018	5.6	16.0	2	0.888
MW-8D					
	10/10/2006	6.9	17.4	2	0.379
	12/19/2006	7.0	16.8	-4	0.397
	3/22/2007	7.1	17.6	0	0.401
	9/26/2008	7.0	18.5	2	0.390
	5/21/2009	7.5	16.7	5	0.454
	11/4/2009	7.1	17.6	5	0.363
	4/29/2010	3.0	17.4	0	0.402
	10/5/2010	7.6	17.9	< 0.02	0.389
	4/5/2011	6.9	15.5	< 0.02	0.429
	10/11/2011	7.7	20.0	1	0.436
	4/11/2012	7.3	16.4	< 0.02	0.307
	10/16/2012	7.4	19.5	< 0.02	0.455
	5/7/2013	7.8	21.9	< 0.02	0.425
	9/30/2013	7.4	22.2	6	0.449
	4/23/2014	7.4	18.0	12	0.452
	10/7/2014	7.7	19.4	13	0.459
	4/14/2015	7.5	16.5	6	0.414
	11/12/2015	8.2	17.3	7	0.404
	4/6/2016	7.5	18.5	3	0.470
	10/27/2016	7.5	18.8	5	0.485
	4/27/2017	7.8	21.5	13	0.800
	10/26/2017	7.5	16.7	2	0.477
	4/26/2018	7.5 7.5	16.7	7	0.382
	4/20/2018	1.3	10.0	/	0.364

Table E.3. Summary of Field Parameters, Old Midland Products Superfund Site.

			(3) Temperature	Ŕ	Specific Conductance
			per	iĝi	linct
*** 11	g 11	Hd	em]	ir f	Specific
Well ID	Sampling Date	(su)	(C)	(NTU)	(mS/cm)
MW-9S	Date	((-)	(/	(,
141 44 - 25	10/10/2006	5.9	18.3	66	0.994
	12/21/2006	5.9	16.1	281	0.749
	3/19/2007	6.2	14.0	12	0.902
	10/14/2008	6.4	19.7	425	0.687
	5/26/2009	6.6	15.6	7	0.772
	11/10/2009	6.4	18.7	0	0.346
	4/28/2010	6.3	17.5	384	0.894
	10/5/2010	6.5	23.1	2	0.794
	4/5/2011	5.4	16.8	< 0.02	0.720
	10/13/2011	6.3	18.1	566	0.703
	4/12/2012	6.5	15.1	146	0.842
	10/18/2012	6.2	18.7	800	0.999
	4/30/2013	6.9	23.4	79	1.100
	10/3/2013	6.0	19.8	1000	1.000
	4/21/2014	6.3	15.0	64	1.265
	10/7/2014	5.8	18.3	48	0.932
	4/14/2015	6.2	13.8	88	1.130
	11/13/2015	5.4	11.4	122	0.086
	4/6/2016	6.2	24.2	110	1.082
	10/26/2016	6.0	16.6	55	0.947
	4/25/2017	6.0	22.7	19	0.915
	10/24/2017	5.8	16.9	10	0.686
	4/24/2018	6.2	25.1	39	0.825
MW-9D					
	10/10/2006	6.1	17.0	1	0.755
	12/21/2006	6.2	16.5	6	0.793
	3/19/2007	6.4	16.2	2	0.701
	10/14/2008	6.4	17.6	0	0.665
	5/22/2009	6.5	16.7	8	0.684
	11/10/2009	6.8	17.4	22	0.714
	4/29/2010	6.3	18.1	12	0.665
	10/4/2010	6.7	18.4	1	0.581
	4/5/2011	5.7	16.5	< 0.02	0.676
	10/12/2011	6.7	17.6	4	0.706
	4/12/2012	6.7	15.8	3	0.544
	10/17/2012	6.7	18.0	< 0.02	0.738
	4/30/2013	6.9	21.9	11	0.698
	10/1/2013	6.5	21.2	11	0.727
	4/22/2014	6.4	16.6	9	0.744
	10/7/2014	6.5	19.3	15	0.690
	4/15/2015	6.5	14.5	3	0.717
	11/11/2015	6.5	18.2	5	0.696
	4/4/2016	6.5	19.3	6	0.661
	10/26/2016	6.6	19.1	6	0.704
	4/25/2017	6.7	19.2	15	0.696
	10/24/2017	6.6	18.1	2	0.572
	4/24/2018	6.6	23.3	6	0.670

 $Table\ E.3.\ Summary\ of\ Field\ Parameters,\ Old\ Midland\ Products\ Superfund\ Site.$

			(3) Temperature	ţ.	Specific Conductance
			per	bidi	iffic
Well	Sampling	Hd	[em	Turbidity	Specific
ID	Date	(su)	(C)	(NTU)	(mS/cm)
MW-10S					
	10/10/2006	6.2	19.1	5	0.555
	12/21/2006	6.4	16.2	16	0.588
	3/19/2007	6.4	16.5	4	0.542
	10/6/2008	6.1	18.6	1	0.743
	5/21/2009	6.3	16.3	2	0.916
	11/9/2009	6.5	17.0	26	0.847
	4/28/2010	6.1	14.1	0	1.110
	10/6/2010	6.6	24.4	2	0.765
	4/5/2011	6.2	16.4	2	1.130
	10/12/2011	6.4	19.1	< 0.02	1.220
	4/11/2012	6.3	15.6	< 0.02	0.967
	10/17/2012	6.3	19.2	< 0.02	1.430
	5/5/2013	6.5	13.8	< 0.02	1.350
	10/1/2013	6.0	21.7	< 0.02	1.230
	4/22/2014	6.1	14.9	6	1.353
	10/7/2014	6.2	19.6	10	1.417
	4/14/2015	6.2	14.6	10	1.360
	11/12/2015	6.3	17.6	1	1.110
	10/25/2016	6.0	25.1	14	1.486
	4/25/2017	6.2	18.8	23	1.479
	10/25/2017	6.0	19.7	1	1.556
	4/24/2018	6.2	20.7	4	1.264
MW-10D					
	10/11/2006	6.9	17.2	4	0.634
	12/21/2006	7.1	16.2	44	0.661
	3/19/2007	7.3	16.3	10	0.548
	10/6/2008	7.1	18.1	0	0.568
	5/21/2009	7.4	16.5	1	0.565
	11/9/2009	7.3	16.8	103	0.572
	4/29/2010	1.8	19.8	0	0.589
	10/6/2010	7.7	19.1	< 0.02	0.595
	4/5/2011	6.3	17.8	3	0.567
	10/12/2011	7.5	18.2	< 0.02	0.594
	4/11/2012	7.6	16.1	< 0.02	0.432
	10/17/2012	7.5	18.3	< 0.02	0.600
	5/5/2013	7.8	17.4	< 0.02	0.585
	10/1/2013	7.2	22.4	1	0.518
	4/22/2014	7.2	15.4	7	0.590
	10/7/2014	7.5	20.2	13	0.614
	4/15/2015	7.1	14.9	5	0.583
	11/12/2015	7.2	17.8	8	0.410
	4/5/2016	7.1	15.8	8	0.567
	10/25/2016	7.1	22.9	7	0.580
	4/25/2017	7.4	22.6	4	0.596
	10/25/2017	7.3	20.2	5	0.618
	4/24/2018	7.3	22.4	15	0.501

Table E.3. Summary of Field Parameters, Old Midland Products Superfund Site.

Well ID	Sampling Date	Hd (su)	(C) Temperature	(DLZ) (Urbidity	Specific
MW-12S					
	10/11/2006	5.8	20.4	2	0.098
	12/21/2006	6.1	17.6	4	0.204
	3/20/2007	6.3	16.7	64	0.162
	10/7/2010	6.2	27.0	< 0.02	0.092
	10/11/2011	6.1	22.5	< 0.02	0.117
	10/17/2012	6.1	20.4	< 0.02	0.116
	5/7/2013	6.3	16.9	< 0.02	0.125
	10/1/2013	5.9	24.0	2	0.107
	4/23/2014	Flooded below grade su	urface completion, the	refore well was not samp	pled.
	10/7/2014	5.6	21.2	11	0.111
	4/13/2015	Flooded below grade su	urface completion, the	refore well was not samp	pled.
	11/11/2015	5.4	18.4	9.3	109
	4/6/2016	6.0	16.5	2.9	0.168
	10/26/2016	6.3	22.5	22.0	0.148
	4/27/2017	6.6	16.7	0.8	0.261
	10/27/2017	6.1	18.1	5.2	0.111
	4/24/2018	5.6	15.4	2.6	0.095

Table E.3. Summary of Field Parameters, Old Midland Products Superfund Site.

			(3) Temperature	Ŕ	Specific
			pera	į	ific
Well	Sampling	Н	Jem	Turbidity	Specific
ID	Date	(su)	(C)	(NTU)	(mS/cm)
MW-16S					
	10/12/2006	6.8	17.6	2	1.513
	12/19/2006	6.9	15.7	20	1.310
	3/22/2007	6.6	17.3	12	1.105
	9/30/2008	6.4	19.2	0	1.259
	5/19/2009	6.6	17.0	4	1.131
	11/2/2009	6.3	18.1	0	0.758
	4/28/2010	6.5	19.2	8	1.080
	10/6/2010	6.8	21.7	< 0.02	0.950
	4/6/2011	5.9	18.8	< 0.02	1.030
	10/16/2011	6.8	19.9	< 0.02	1.300
	4/16/2012	6.6	17.8	1	0.772
	10/21/2012	6.9	20.7	< 0.02	1.310
	5/1/2013	7.2	21.1	4	0.866
	10/1/2013	6.7	21.5	17	1.250
	4/21/2014	6.6	16.5	11	0.969
	10/7/2014	6.7	19.6	8	0.020
	4/14/2015	6.7	15.3	6	0.986
	11/11/2015	6.8	19.1	12	1.100
	4/4/2016	6.6	20.8	12	0.969
	10/26/2016	6.3	19.0	4	1.064
	4/25/2017	6.7	20.1	18	0.918
	10/24/2017	6.7	18.0	34	0.903
	4/24/2018	6.6	17.1	9	0.917
MW-16D					
	10/16/2006	6.6	18.0	15	1.268
	12/20/2006	6.8	15.2	191	1.314
	3/21/2007	6.7	18.4	104	1.229
	9/30/2008	6.6	18.2	0	0.988
	5/19/2009	6.8	17.9	2	0.965
	11/3/2009	6.6	17.5	20	0.392
	4/28/2010	6.5	18.3	26	0.912
	10/6/2010	7.7	18.2	3	0.966
	4/6/2011	6.6	18.0	< 0.02	0.945
	10/13/2011	6.8	19.3	3	0.880
	4/16/2012	6.8	18.0	1	0.622
	10/21/2012	7.0	20.3	< 0.02	0.878
	5/1/2013	7.4	22.5	3	0.872
	10/2/2013	7.4	20.3	65	0.847
	4/21/2014	7.4	16.3	22	0.822
	10/7/2014	7.0	20.9	7	0.768
	4/14/2015	7.3	14.6	10	0.725
	11/11/2015	7.2	18.6	6	0.670
	4/4/2016	6.8	20.4	13	0.668
	10/25/2016	6.6	17.9	6	0.639
	4/25/2017	7.7	17.7	40	0.644
	10/24/2017	8.2	17.5	37	0.521
	4/24/2018	7.3	18.5	16	0.596

Table E.3. Summary of Field Parameters, Old Midland Products Superfund Site.

Well ID	Sampling Date	Hđ (su)	(C) Temperature	(DTU) (ATUT bidity	Specific SC Conductance
MW-17S					
	10/12/2006	5.7	18.5	2	0.138
	12/18/2006	5.4	18.7	5	0.134
	3/20/2007	5.9	17.3	0	0.128
	9/25/2008	5.6	19.6	0	0.125
	5/20/2009	6.0	16.2	6	0.134
	11/4/2009	5.8	18.8	0	0.128
	5/4/2010	5.8	16.8	2	0.130
	10/11/2010	6.0	18.1	< 0.02	0.138
	4/11/2011	6.0	16.2	1	0.145
	10/17/2011	6.0	19.6	2	0.156
	4/12/2012	6.0	17.6	4	0.103
	10/22/2012	6.0	21.6	< 0.02	0.140
	5/5/2013	6.0	20.5	< 0.02	0.560
	10/2/2013	6.0	22.8	2	0.150
	4/22/2014	6.0	17.0	7	0.126
	10/7/2014	6.0	23.1	3	0.129
	4/14/2015	6.0	17.5	1	0.118
	11/11/2015	6.0	20.0	3	0.123
	4/5/2016	6.0	11.3	8	0.122
	10/25/2016	6.0	20.8	3	0.132
	4/27/2017	6.0	18.5	21	0.139
	10/25/2017	6.0	17.5	6	0.152
	4/25/2018	6.0	14.8	13	0.117

Table E.3. Summary of Field Parameters, Old Midland Products Superfund Site.

			(i) Temperature	\$	Specific Conductance
			ber	jigi	iffic
Well	Sampling	Н	Lem	Turbidity	Specific
ID	Date	(su)	(C)	(NTU)	(mS/cm)
MW-18S					
	10/16/2006	6.8	19.3	20	0.351
	12/19/2006	5.9	16.2	9	0.176
	3/20/2007	5.9	16.9	89	0.123
	5/21/2009	6.0	16.4	3	0.158
	11/4/2009	6.0	18.7	0	0.403
	4/28/2010	5.6	15.8	0	0.159
	10/7/2010	6.3	21.6	< 0.02	0.559
	4/6/2011	5.7	15.4	< 0.02	0.205
	10/13/2011	6.1	20.0	3	0.643
	4/12/2012	6.3	16.4	22	0.267
	10/18/2012	6.6	18.3	< 0.02	0.470
	5/6/2013	6.6	24.9	< 0.02	0.348
	10/1/2013	6.2	21.4	45	0.591
	4/22/2014	6.0	15.8	20	0.421
	10/7/2014	6.0	20.0	8	0.531
	4/15/2015	5.9	15.5	10	0.261
	11/12/2015	6.1	15.6	7	0.471
	4/5/2016	6.1	20.7	12	0.309
	10/25/2016	6.1	23.5	19	0.620
	4/26/2017	6.7	18.5	12	0.356
	10/25/2017	6.0	20.7	2	0.705
	4/26/2018	6.1	14.7	1	0.317
MW-18D					
	10/16/2006	6.6	18.7	1	0.304
	12/19/2006	6.5	16.1	1	0.333
	3/20/2007	6.8	17.0	5	0.307
	10/1/2008	6.6	17.9	1	0.309
	5/21/2009	6.7	16.9	3	0.310
	11/4/2009	7.0	16.7	18	0.275
	4/29/2010	6.6	21.2	0	0.331
	10/7/2010	7.1	18.4	< 0.02	0.350
	4/6/2011	6.8	15.4	4	0.369
	10/13/2011	6.7	19.5	< 0.02	0.352
	4/16/2012	7.0	16.3	< 0.02	0.261
	10/21/2012	7.2	17.7	< 0.02	0.375
	5/6/2013	7.3	23.2	< 0.02	0.346
	10/1/2013	6.8	21.9	25	0.376
	4/22/2014	6.7	16.9	11	0.366
	10/7/2014	6.7	18.7	9	0.366
	4/15/2015	6.6	15.1	3	0.344
	11/12/2015	6.7	17.1	20	0.360
	4/5/2016	6.7	17.3	9	0.356
	10/25/2016	6.4	20.5	10	0.366
	4/26/2017	6.1	20.4	2	0.393
	10/25/2017	6.6	18.7	9	0.397
	4/26/2018	6.8	14.7	8	0.302

Table E.3. Summary of Field Parameters, Old Midland Products Superfund Site.

			(i) Temperature	,	Specific
			per	į	ific
Well	Sampling	Hd	[em]	Turbidits	Specific
ID	Date	(su)	(C)	(NTU)	(mS/cm)
MW-19S					
	10/16/2006	5.9	22.7	5	0.643
	12/19/2006	6.1	16.7	1	0.576
	3/20/2007	5.6	18.6	0	0.545
	9/26/2008	5.5	19.3	0	0.755
	5/20/2009	5.6	16.7	4	0.778
	11/3/2009	6.0	19.2	0	0.665
	4/29/2010	5.7	18.2	150	0.713
	10/11/2010	5.8	24.2	< 0.02	0.672
	4/7/2011	5.2	16.6	< 0.02	0.787
	10/16/2011	5.7	20.5	5	0.783
	4/17/2012	5.9	17.8	< 0.02	0.560
	10/22/2012	5.9	22.1	< 0.02	0.773
	5/5/2013	6.0	18.4	< 0.02	0.704
	10/2/2013	5.6	20.6	2	0.734
	4/21/2014	5.8	16.3	15	0.701
	10/7/2014	5.8	24.2	4	0.714
	4/14/2015	5.9	15.7	2	0.676
	11/11/2015	5.7	19.9	5	0.672
	4/6/2016	6.1	1.0	6	0.683
	10/26/2016	5.7	20.2	2	0.734
	4/26/2017	5.8	21.3	5	0.661
	10/25/2017	5.9	18.6	10	0.596
	4/25/2018	5.7	17.5	6	0.650
MW-19D					
	10/18/2006	6.2	17.8	2	0.638
	12/19/2006	6.4	17.1	43	0.813
	3/20/2007	6.5	20.0	0	0.711
	9/29/2008	6.4	19.3	1	0.738
	5/20/2009	6.5	17.6	5	0.766
	11/3/2009	6.4	17.2	18	0.620
	5/4/2010	6.1	19.5	0	0.724
	10/11/2010	6.7	23.2	< 0.02	0.703
	4/7/2011	6.6	16.3	14	0.776
	10/17/2011	6.7	21.2	< 0.02	0.763
	4/17/2012	6.6	18.4	< 0.02	0.577
	10/22/2012	6.8	21.7	< 0.02	0.744
	5/5/2013	6.8	18.2	< 0.02	0.655
	10/2/2013	6.3	25.1	2	0.659
	4/22/2014	6.5	18.9	29	0.654
	10/7/2014	6.5	21.9	13	0.646
	4/14/2015	6.6	16.0	4	0.602
	11/13/2015	6.3	17.7	2	0.608
	4/5/2016	6.7	19.1	7	0.619
	10/26/2016	6.1	20.3	7	0.646
	4/26/2017	6.5	18.4	11	0.567
	10/25/2017	6.6	18.3	9	0.504
	4/25/2018	6.3	15.6	13	0.571

 $Table\ E.3.\ Summary\ of\ Field\ Parameters,\ Old\ Midland\ Products\ Superfund\ Site.$

			(i) Temperature	\$	Specific Conductance
			per	bidi	iffic
Well	Sampling	Hd	Tem	Turbidity	Specific
ID	Date	(su)	(C)	(NTU)	(mS/cm)
MW-20S					
	10/18/2006	6.0	18.5	7	1.621
	12/20/2006	5.9	19.2	12	1.426
	3/21/2007	6.2	18.9	12	1.334
	5/18/2009	6.5	17.1	9	1.135
	11/3/2009	6.4	18.2	0	1.060
	4/28/2010	6.5	18.6	34	1.030
	10/6/2010	6.7	22.0	< 0.02	1.040
	4/6/2011	6.3	17.3	< 0.02	0.999
	10/16/2011	6.5	21.7	1	0.991
	4/16/2012	6.5	16.5	5	0.729
	10/22/2012	6.7	19.6	< 0.02	0.993
	5/2/2013	6.7	15.3	< 0.02	0.938
	10/2/2013	6.3	25.5	5	0.929
	4/22/2014	6.4	19.7	24	0.865
	10/8/2014	6.4	19.9	6	0.935
	4/14/2015	6.6	16.7	9	0.883
	11/13/2015	6.3	19.4	1	0.818
	4/5/2016	6.7	23.7	23	0.902
	10/26/2016	6.4	25.1	3	0.894
	4/25/2017	6.5	27.1	120	0.942
	10/24/2017	6.5	19.9	12	0.736
1 411 20D	4/24/2018	6.4	25.1	108	0.764
MW-20D	10/10/2006		24.0	2	1 424
	10/18/2006	6.3	24.0	3	1.434
	12/19/2006	6.4	15.9	22	1.461
	3/21/2007	6.4	18.4	50	1.216
	5/18/2009	6.5	17.4	5	1.035
	11/3/2009	6.6	17.4	10	0.853
	4/28/2010	6.6	20.2	11	0.937
	10/6/2010	6.7 5.8	27.4	6	0.685
	4/6/2011	5.8	18.6	< 0.02	0.952
	10/16/2011	6.5	22.0	7 <0.02	0.950 0.702
	4/17/2012	6.6	17.5		
	10/21/2012 5/2/2013	6.6	19.9 15.4	<0.02 7	0.971
		6.6			0.883
	10/2/2013 4/21/2014	6.4 6.4	21.0 16.7	36 65	0.887 0.833
	10/7/2014	6.5	21.7	8	0.833
	4/14/2015	6.5	16.7	9	0.813
	11/11/2015	6.6	18.9	9 17	0.703
	11/11/2015	7.1	19.3	28	0.722
	4/4/2016	6.3	18.6	28 17	0.711
	10/25/2016	6.5	19.3	4	0.711
	4/25/2017	6.4	20.1	13	0.701
	10/24/2017	6.4	18.8	9	0.701
	4/24/2018	6.2	21.0	19	0.634

Table E.3. Summary of Field Parameters, Old Midland Products Superfund Site.

			(3) Temperature	Ac	Specific
			pera	į	ific
Well	Sampling	Hd	[em]	<u>ji</u>	opec
ID	Date	(su)	(C)	(NTU)	Specific (m) Conduct
MW-21S					
	10/11/2006	6.2	17.3	8	1.259
	12/20/2006	6.4	15.9	70	1.004
	3/20/2007	6.3	16.6	11	0.767
	10/15/2008	6.2	18.6	0	0.763
	5/22/2009	6.2	15.8	5	0.793
	11/9/2009	6.5	17.9	46	0.633
	4/29/2010	6.2	15.2	7	0.816
	10/4/2010	6.4	17.5	44	0.722
	4/5/2011	6.1	19.4	20	0.744
	10/12/2011	6.4	17.8	1	0.748
	4/11/2012	6.2	15.8	15	0.567
	10/18/2012	6.4	18.1	< 0.2	0.786
	4/30/2013	6.5	20.5	28	0.710
	10/1/2013	6.0	21.3	9	0.663
	4/22/2014	6.0	16.7	23	0.735
	10/8/2014	6.0	18.7	11	0.753
	4/15/2015	6.0	14.7	15	0.726
	11/11/2015	6.1	18.9	8	0.793
	4/6/2016	6.0	15.9	7	0.712
	10/26/2016	6.1	23.8	15	0.872
	4/25/2017	6.2	17.4	10	0.746
	10/23/2017	6.2	21.3	25	0.750
	4/23/2018	6.1	16.5	21	0.669
MW-21D	.,20,2010	0.1	1010		0.005
	10/11/2006	6.9	17.1	1424	0.661
	12/21/2006	7.0	15.6	500	0.703
	3/20/2007	7.0	17.6	0	0.667
	10/15/2008	6.9	17.5	1	0.642
	5/22/2009	7.0	16.5	5	0.631
	11/9/2009	7.0	17.0	800	0.633
	4/29/2010	7.1	16.2	11	0.624
	10/4/2010	7.1	16.7	74	0.656
	4/5/2011	6.7	16.9	6	0.640
	10/12/2011	7.2	17.5	13	0.660
	4/11/2012	7.2	17.5	2	0.469
	10/18/2012	7.2	18.6	< 0.02	0.409
	4/30/2013	7.6	20.1	18	0.601
	10/1/2013	7.0	22.0	11	0.577
	4/22/2014	6.8	16.7	19	0.634
	10/9/2014	7.0	18.7	15	0.658
	4/15/2015	6.8	14.7	10	0.609
	11/11/2015	7.1	18.8	25	0.609
	4/4/2016	6.7	17.3	23	0.577
	10/26/2016	7.1	22.9	23 19	
		6.9		50	0.618
	4/25/2017		17.4		0.586
	10/23/2017	6.9	21.3	29 27	0.525
	4/23/2018	6.9	16.6	37	0.509

Table E.3. Summary of Field Parameters, Old Midland Products Superfund Site.

			(3) Temperature		Specific
			oera	idity	fic
****-11	C1!	Hd	emţ	urb b	peci
Well ID	Sampling Date	(su)	(C)	(DLC) Turbidity	Specific (mS/Sm)
MW-22S					
	10/19/2006	6.1	17.3	4	2.046
	12/19/2006	6.1	15.8	0	2.124
	3/22/2007	5.9	20.2	0	2.200
	9/28/2008	6.0	18.8	1	2.105
	5/19/2009	6.1	16.6	3	2.279
	11/3/2009	6.1	18.1	0	2.460
	4/29/2010	6.4	15.7	5	2.370
	10/5/2010	6.3	20.1	< 0.02	2.230
	4/7/2011	5.6	16.7	11	2.430
	10/16/2011	6.1	22.4	< 0.02	2.470
	4/16/2012	6.2	17.3	< 0.02	2.420
	10/21/2012	6.3	20.2	< 0.02	2.380
	5/1/2013	6.2	19.2	32	2.610
	10/1/2013	6.0	21.1	< 0.02	2.186
	4/23/2014	6.3	19.2	9	2.313
	10/7/2014	6.0	21.2	5	2.428
	4/16/2015	6.0	14.7	9	2.490
	11/13/2015	6.8	18.6	2	2.372
	4/6/2016	6.2	21.2	2	2.791
	10/28/2016	6.4	23.3	0	2.227
	4/25/2017	6.2	23.9	2	2.349
	10/24/2017	6.2	18.9	0	1.991
	4/24/2018	6.1	18.4	12	2.264
MW-22D					
	10/19/2006	6.7	16.9	5	0.655
	12/19/2006	6.7	14.7	16	0.910
	3/22/2007	6.6	18.0	2	1.072
	9/26/2008	6.5	18.1	1	1.006
	5/19/2009	6.7	17.3	7	0.984
	11/3/2009	6.7	16.8	6	0.797
	4/29/2010	6.7	16.6	8	0.964
	10/5/2010	6.9	20.6	< 0.02	0.800
	4/7/2011	6.9	16.4	< 0.02	0.972
	10/16/2011	6.9	20.6	4	0.918
	4/16/2012	6.9	18.0	< 0.02	0.680
	10/21/2012	7.0	20.3	< 0.02	0.944
	5/1/2013	7.0	19.4	< 0.02	0.906
	10/1/2013	6.7	23.3	7	0.790
	4/23/2014	6.6	17.7	13	0.863
	10/7/2014	6.7	20.7	9	0.813
	4/15/2015	6.5	15.8	< 0.02	0.814
	11/13/2015	7.0	20.1	21	0.819
	4/6/2016	7.1	22.9	11	0.874
	10/28/2016	6.8	22.9	5	0.809
	4/25/2017	6.9	26.9	8	0.774
	10/24/2017	6.9	18.7	408	0.647
	4/24/2018	6.9	22.7	10	0.723

Table E.3. Summary of Field Parameters, Old Midland Products Superfund Site.

			(C) Temperature	Ai	Specific
			pera	į	ific
Well	Campling	Hd	, in the second	(nta) (nta)	Specific
ID	Sampling Date	(su)	(C)	(NTU)	(mS/cm)
MW-23					
	10/18/2006	6.8	19.1	9	0.550
	12/19/2006	6.8	16.9	0	0.6320
	3/22/2007	7.1	17.0	90	0.741
	9/25/2008	6.7	18.5	0	0.732
	5/19/2009	6.9	17.3	3	0.769
	11/4/2009	6.6	18.8	65	0.689
	4/29/2010	1.2	17.6	3	0.859
	10/11/2010	7.1	18.9	< 0.02	0.744
	4/6/2011	6.3	17.5	< 0.02	0.975
	10/13/2011	7.0	18.3	4	0.833
	4/10/2012	7.0	17.8	< 0.02	0.601
	10/17/2012	7.2	18.9	10	0.865
	5/1/2013	7.5	22.9	< 0.02	0.831
	10/1/2013	6.9	21.2	7	0.765
	4/23/2014	7.0	16.9	19	0.905
	10/8/2014	6.8	19.3	10	0.829
	4/15/2015	6.9	15.7	9	0.904
	11/12/2015	7.6	18.3	18	0.752
	4/5/2016	6.7	17.2	9	0.822
	10/25/2016	7.1	19.0	13	0.834
	4/24/2017	6.7	22.3	19	0.711
	10/23/2017	7.0	19.6	2	0.843
D	4/23/2018	6.9	17.9	3	0.873
RW-1	0.07.000		21.0	-	0.516
	9/27/2006	6.0	21.0	5	0.516
	12/19/2006	6.7	17.4	-3	0.873
	3/21/2007	6.6	17.7	0	0.909
	10/8/2008	6.5	21.1	6	0.362
	5/22/2009	6.9 7.1	24.7	28 4	1.116
	11/5/2009		18.6	0	1.490
	4/29/2010 10/12/2010	6.8 7.3	19.7 22.1	< 0.02	1.470 1.120
	4/7/2011	7.0	16.5	< 0.02	1.600
	10/13/2011	6.7	20.2	< 0.02	1.460
	4/19/2012	6.8	18.3	< 0.02	1.040
	10/23/2012	6.9	20.9	< 0.02	1.460
	5/7/2013	7.3	23.3	< 0.02	0.822
	10/2/2013	6.7	21.4	1	1.240
	4/23/2014	6.8	18.5	2	1.424
	10/8/2014	6.8	22.2	8	1.752
	4/15/2015	6.7	15.7	< 0.02	1.200
	11/13/2015	7.0	18.6	1	1.383
	4/6/2016	6.8	16.1	3	1.686
	10/27/2016	6.2	20.0	4	1.618
	4/27/2017	6.7	16.8	3	1.562
	10/26/2017	6.8	20.8	3	1.539
	4/25/2018	6.7	15.6	2	1.201

Table E.3. Summary of Field Parameters, Old Midland Products Superfund Site.

			Temperature	sidity	Specific
Well	Sampling	Hd	Lem	Tur.	Spec
ID	Date	(su)	(C)	(NTU)	(mS/cm)
RW-2					
	9/27/2006	6.4	20.1	5	0.451
	12/21/2006	6.5	14.3	41	0.097
	3/21/2007	6.8	16.5	7	0.388
	10/10/2008	6.7	20.9	10	0.149
	11/5/2009	7.2	18.9	3	0.285
	4/29/2010	6.8	17.6	0	1.570
	10/12/2010	6.8	19.7	31	1.530
	4/7/2011	7.1	16.1	< 0.02	0.703
	10/18/2011	6.8	18.1	< 0.02	0.669
	4/19/2012	7.0	19.1	< 0.02	0.295
	10/23/2012	7.0	21.1	< 0.02	0.305
	5/7/2013	7.2	20.0	< 0.02	0.402
	10/2/2013	6.5	22.8	2	0.667
	4/21/2014	Flooded below grade si	urface completion, ther	efore well was not samp	pled.
	10/8/2014	6.8	22.0	10	0.582
	4/13/2015	Flooded below grade si	urface completion, ther	efore well was not samp	pled.
	11/13/2015	6.7	17.5	12	0.336
	4/6/2016	Flooded below grade si	urface completion, ther	efore well was not samp	pled.
	10/27/2016	5.8	21.5	5	0.293
	4/24/2017	Flooded below grade so	urface completion, ther	refore well was not samp	pled.
	10/26/2017	6.6	26.7	NR	0.361
	4/23/2018	Flooded below grade si	urface completion, ther	refore well was not samp	pled.
RW-3					
	10/1/2006	6.5	20.1	25	0.657
	12/21/2006	6.5	13.6	32	0.144
	3/21/2007	6.6	16.9	0	0.640
	10/9/2008	6.8	20.7	8	0.133
	11/10/2009	7.3	19.0	0	0.491
	10/11/2010	7.0	23.0	< 0.02	1.140
	4/13/2011	6.1	16.4	< 0.02	0.434
	10/18/2011	7.1	17.9	< 0.02	1.020
	5/8/2013	7.3	21.0	< 0.02	0.518
	10/3/2013	6.7	22.7	1	0.893
	4/21/2014	Flooded below grade so	_	refore well was not samp	
	10/7/2014	6.8	21.5	2	0.889
	4/13/2015	Flooded below grade st	_		
	11/13/2015	6.6	18.5	2	0.959
	4/6/2016	Flooded below grade si			
	10/27/2016	6.0	22.6	7	0.726
	4/24/2017	Flooded below grade si	_		
	10/25/2017	6.8	20.3	4	0.912
	4/23/2018	Flooded below grade so	urface completion, ther	refore well was not samp	pled.

Table E.3. Summary of Field Parameters, Old Midland Products Superfund Site.

			ure		nce
			(3 Temperature	idity	Specific Conductance
		=	emp	ur bi	Specific
Well ID	Sampling Date	Ed (su)	(C)	(NTU)	で (mS/cm)
RW-4	Date	(2.2)	(-)	(= = =)	(,
1000	10/1/2006	6.6	19.2	6	0.481
	12/21/2006	6.6	14.5	23	0.222
	3/21/2007	7.1	17.9	0	0.460
	10/9/2008	6.8	20.8	16	0.147
	10/11/2010	6.7	21.3	3	0.760
	10/18/2011	6.7	18.6	< 0.02	0.582
	10/2/2013	6.5	23.0	5	0.414
	4/21/2014 10/7/2014	Flooded below grade s 6.9	surface completion, ther 23.7	efore well was not samp 5	oled. 0.581
	4/13/2015			efore well was not samp	
	11/13/2015		_	efore well was not samp	
	4/6/2016	-	-	efore well was not samp	
	10/27/2016	6.3	25.5	5	0.650
	4/24/2017			efore well was not samp	
	10/25/2017	6.6	19.4	3	0.556
	4/23/2018	Flooded below grade s	surface completion, ther	efore well was not samp	oled.
RW-5					
	10/3/2006	6.5	19.0	33	0.408
	12/20/2006	7.4	15.5	0	1.173
	3/20/2007	7.0	17.0	0	0.309
	10/11/2010 10/17/2011	6.6 6.6	19.3 21.9	<0.02 <0.02	0.632 0.721
	10/1//2011	6.4	20.9	2	0.721
	4/21/2014			efore well was not samp	
	10/7/2014	6.7	23.3	5	0.777
	4/13/2015	Flooded below grade s	surface completion, ther	efore well was not samp	oled.
	11/13/2015	Flooded below grade s	surface completion, ther	efore well was not samp	oled.
	4/6/2016	Flooded below grade s	surface completion, ther	efore well was not samp	oled.
	10/27/2016	6.4	21.2	4	0.814
	4/24/2017		_	efore well was not samp	
	10/25/2017	6.8	20.3	21	0.732
RW-6	4/23/2018	Flooded below grade s	surface completion, ther	efore well was not samp	oled.
K W -0	10/3/2006	6.0	19.8	2	0.738
	12/20/2006	6.9	17.8	0	0.606
	3/21/2007	6.8	16.7	23	0.743
	10/10/2008	6.7	21.0	2	0.848
	5/22/2009	6.7	22.7	36	0.924
	11/5/2009	6.7	18.4	0	0.817
	5/4/2010	6.6	17.6	0	0.229
	10/11/2010	6.8	25.4	< 0.02	0.605
	4/7/2011	6.0	16.8	<0.02	0.786
	10/17/2011	6.7	21.9	<0.02	0.776 0.596
	4/17/2012 10/22/2012	6.7 6.7	18.8 22.1	<0.02 <0.02	0.596
	5/8/2013	7.2	25.6	< 0.02	0.630
	10/2/2013	6.6	22.4	7	0.751
	4/22/2014	7.0	17.7	14	0.794
	10/7/2014	6.7	22.2	5	0.789
	4/13/2015	Flooded below grade s	surface completion, ther	efore well was not samp	oled.
	11/13/2015	6.0	18.0	2	0.730
	4/6/2016	6.7	16.8	13	0.741
	10/27/2016	6.3	25.6	7	0.745
	4/24/2017		_	efore well was not samp	
	10/26/2017	6.3	20.3	5 10	0.753
	4/25/2018	6.3	15.0	19	0.640

 $Table\ E.3.\ Summary\ of\ Field\ Parameters,\ Old\ Midland\ Products\ Superfund\ Site.$

			Temperature	b .	Specific Conductance
			era	idit	fic Tuct;
337-11	C1!	Hd	emj	urb	peci Jond
Well ID	Sampling Date	(su)	(C)	(NLU)	Specific (mS/cm)
RW-7					
	10/5/2006	6.8	21.6	8	0.710
	12/20/2006	6.6	17.6	0	0.815
	3/22/2007	6.7	17.9	0	1.010
	10/8/2008	6.4	21.5	7	0.194
	5/22/2009	6.7	23.0	8	1.077
	11/5/2009	7.1	18.9	0	0.589
	4/29/2010	7.0	19.8	0	0.441
	10/11/2010	7.0	24.9	< 0.02	0.602
	4/7/2011	6.2	16.9	2	0.599
	10/17/2011	6.9	19.9	< 0.02	0.532
	4/17/2012	7.1	18.3	< 0.02	0.552
	10/22/2012	7.1	20.0	< 0.02	0.517
	5/8/2013	7.2	24.5	< 0.02	0.833
	10/2/2013	6.6	23.1	2	0.813
	4/23/2014	6.9	16.5	6	0.828
	10/8/2014	6.8	24.7	7	0.541
	4/13/2015	Flooded below grade s	urface completion, the	refore well was not samp	oled.
	11/13/2015	6.5	19.5	10	0.380
	4/6/2016	Flooded below grade s	urface completion, the	refore well was not sam	pled.
	10/28/2016	6.7	19.9	2	0.423
	4/24/2017	Flooded below grade s	urface completion, the	refore well was not sam	pled.
	10/26/2017	6.7	20.4	16	0.590
	4/25/2018	6.8	15.3	4	0.900
RW-8					
	10/5/2006	6.7	19.8	16	1.618
	12/20/2006	7.1	16.8	13	0.516
	3/22/2007	7.3	17.0	0	0.553
	10/8/2008	5.8	21.7	16	0.050
	11/5/2009	7.8	19.3	15	0.216
	4/29/2010	6.4	17.5	3	0.188
	10/12/2010	6.7	20.8	< 0.02	0.760
	4/7/2011	6.2	17.1	< 0.02	1.110
	10/18/2011	6.6	17.2	< 0.02	0.385
	4/17/2012	7.0	17.4	7	0.332
	10/23/2012	6.7	19.9	< 0.02	0.809
	5/8/2013	7.1	20.8	< 0.02	0.478
	10/2/2013	6.2	24.0	2	0.422
	4/23/2014	7.0	17.2	2	0.992
	10/8/2014	6.6	23.0	7	0.275
	4/14/2015	Flooded below grade s	urface completion, the	refore well was not samp	pled.
	11/13/2015	6.5	18.7	6	0.733
	4/6/2016	Flooded below grade s	urface completion, the	refore well was not samp	
	10/28/2016	6.7	19.8	2	1.026
	4/24/2017	Flooded below grade s	urface completion, the	refore well was not samp	
	10/26/2017	6.7	22.6	74	0.927
	4/23/2018	Flooded below grade s	urface completion, the	refore well was not samp	pled.

Table E.3. Summary of Field Parameters, Old Midland Products Superfund Site.

Well ID	Sampling Date	Hđ (su)	(C) Temperature	(DLZ) (ATurbidity	Specific SC Conductance
Barnes					
	10/12/2010	6.7	19.8	152	0.379
	4/13/2011	6.9	18.5	44	0.300
	10/17/2011	7.9	18.5	4	0.351
	10/18/2012	6.9	18.6	< 0.02	0.168
	10/3/2013	6.8	21.0	4	0.247
	4/22/2014	6.8	19.5	16	0.224
	10/6/2014	7.7	21.1	3	0.377
	4/15/2015	6.8	15.9	10	0.227
	11/10/2015	7.2	18.4	5	0.473
	4/5/2016	7.2	17.7	23	0.204
	10/25/2016	7.4	25.0	38	0.277
Neeley					
	10/9/2006	6.2	29.2	20	0.162
	12/18/2006	5.4	15.1	-2	0.114
	3/22/2007	5.8	16.0	-3	0.086
	10/22/2008	n/a	n/a	n/a	n/a
	5/21/2009	n/a	n/a	n/a	n/a
	5/4/2010	5.6	16.1	0	0.130
	4/13/2011	5.3	14.0	< 0.02	0.092
	4/12/2012	6.1	16.0	< 0.02	0.075
	10/18/2012	6.0	18.5	< 0.02	0.108
	5/2/2013	5.8	14.6	< 0.02	0.103
	10/3/2013	5.9	21.4	4	0.147
	4/22/2014	5.4	18.3	4	0.092
	10/6/2014	5.5	21.0	6	0.100
	4/15/2015	5.9	14.3	4	0.111
	11/10/2015	5.9	19.2	5	0.092
	4/5/2016	6.8	17.4	7	0.167
	10/25/2016	6.9	21.6	3	0.161
	4/27/2017	7.0	16.7	5	0.299
	10/25/2017	6.7	19.8	13	0.240
	4/26/2018	6.6	14.4	23	0.208
P-5S					
	4/15/2015	6.0	15.9	1	0.112